CN114540689B - 一种超低弹性模量抗菌医用钽合金及其制备方法 - Google Patents

一种超低弹性模量抗菌医用钽合金及其制备方法 Download PDF

Info

Publication number
CN114540689B
CN114540689B CN202210075606.6A CN202210075606A CN114540689B CN 114540689 B CN114540689 B CN 114540689B CN 202210075606 A CN202210075606 A CN 202210075606A CN 114540689 B CN114540689 B CN 114540689B
Authority
CN
China
Prior art keywords
tantalum
powder
alloy
antibacterial
tantalum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210075606.6A
Other languages
English (en)
Other versions
CN114540689A (zh
Inventor
胡剑
万现鹏
陈绵
邱靖
曹亮
李永祥
王小巧
黄海
易志坚
丁正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Jiaotong University
Original Assignee
East China Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Jiaotong University filed Critical East China Jiaotong University
Priority to CN202210075606.6A priority Critical patent/CN114540689B/zh
Publication of CN114540689A publication Critical patent/CN114540689A/zh
Application granted granted Critical
Publication of CN114540689B publication Critical patent/CN114540689B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/02Alloys based on vanadium, niobium, or tantalum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/047Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/102Metals or metal compounds, e.g. salts such as bicarbonates, carbonates, oxides, zeolites, silicates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/404Biocides, antimicrobial agents, antiseptic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Transplantation (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Mechanical Engineering (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Powder Metallurgy (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明公开了一种超低弹性模量抗菌医用钽合金,按照质量百分比,包括如下组分:5‑20%的钛,1‑5%的铜,余量为钽;该钽合金采用机械合金化(MA)和放电等离子烧结(SPS)两步制备;该钽合金的抗压强度为700‑1200MPa,弹性模量为6‑15GPa,其弹性模量与人体骨适配,克服了由于弹性模量高植入体植入后与骨骼界面之间产生应力屏蔽效应的缺陷,同时减少医用金属钽植入体引发的术后感染、延长植入体寿命;该钽合金具有优良的抗菌性能、耐蚀性及生物相容性,抗菌率随铜含量的增加而增加,大肠杆菌抗菌率可达92.6%,金黄色葡萄球菌抗菌率可达84.6%。该钽合金非常适合用作牙骨的医用植入材料。

Description

一种超低弹性模量抗菌医用钽合金及其制备方法
技术领域
本发明属于医用金属材料领域,具体为一种超低弹性模量抗菌医用钽合金及其制备方法。
背景技术
钽以其优良的化学稳定性、耐蚀性以及生物相容性引起了生物医学界的广泛关注,在医疗领域有着广阔的应用前景。但医用金属钽仍存在许多问题:(1)钽的弹性模量(约为190GPa)远高于人体骨骼的弹性模量(10~30GPa),弹性模量的严重失配会使植入体和骨骼的界面产生“应力屏蔽效应”,长期使用将引起骨质吸收和骨质疏松,导致植入体松动,缩短使用寿命;(2)植入体引发的术后感染问题越来越频繁,已成为临床上亟待解决的问题,世界卫生组织公布的数据显示,每年有超过1400万人饱受细菌感染痛苦,其中60%的细菌感染与植入体的使用有关。
目前,大量的研究表明,钛钽合金存在较高的弹性模量以及较低的压缩强度,容易导致应力屏蔽效应。另外,有研究表明,钛钽合金不具有抗菌功能,植入后容易引发细菌感染,严重时会导致并发症,最终会导致植入失败。因此,研究开发一种弹性模量适配的抗菌医用钽合金对减少细菌感染、延长植入体寿命具有重大意义。
发明内容
针对医用金属材料的弹性模量失配及细菌感染问题,本发明提供了一种超低弹性模量抗菌医用钽合金及其制备方法。
为了解决上述技术问题,本发明提出的一种超低弹性模量抗菌医用钽合金,该钽合金按照质量百分比包括如下组分:5-20%的钛,1-5%的铜,余量为钽;该钽合金采用机械合金化(MA)和放电等离子烧结(SPS)两步制备;该钽合金的抗压强度为700-1200MPa,弹性模量为6-15GPa,该钽合金的抗菌率随铜含量的增加而增加,其中,大肠杆菌抗菌率为31.7~92.6%,金黄色葡萄球菌抗菌率为35.8~84.6%。
所述的超低弹性模量抗菌医用钽合金的制备方法,包括以下步骤:
S1、机械合金化(MA):以钽粉、钛粉和铜粉为原料,按比例称取各组分,将配置好的原料放入惰性气体保护的球磨罐中进行球磨,得到粉料;
S2、放电等离子烧结(SPS):将步骤S1得到的粉料加入到模具中,再把模具放入放电等离子烧结炉中烧结,得到抗菌医用钽合金。
进一步讲,所述的制备方法中,所述钽粉、钛粉和铜粉的纯度均≥99.9%,平均粒度均≤100μm。
球磨的工艺条件是:球料质量比为(3~8):1、按照质量百分比为3~8%加入无水乙醇作为控制剂、球磨转速为200~300rpm、球磨时间10~30h后烘干。优选的,球料质量比为5:1,加入无水乙醇的质量百分比为5%,球磨转速为250rpm,球磨时间为18h.
烧结成形工艺条件是:压力≥30MPa,温度800~950℃,保温时间为3~10min。优选的,压力为50MPa,温度为900℃,保温时间为5min。
与现有技术相比,本发明的有益效果是:
(1)本发明通过优化高能球磨和放电等离子烧结工艺参数,制备出综合力学性能优异的钽合金(弹性模量模量仅6-15GPa,强度可达700-1200MPa),能够有效解决金属植入材料高弹性模量引发的应力屏蔽现象。
(2)本发明通过加入适量的Cu元素,使合金具有持久高效的抗菌和抗感染性能,能够解决医用钽合金植入引发的细菌感染问题。
附图说明
图1为对比例1制备的Ta-10Ti合金和实施例5、2、6制备的Ta-10Ti-xCu(x=1,3,5)抗菌钽合金的金黄色葡萄球菌和大肠杆菌共培养24h后的涂布。
图2为对比例1制备的Ta-10Ti合金和实施例5、2、6制备的Ta-10Ti-xCu(x=1,3,5)抗菌钽合金的压缩应力-应变曲线。
图3为对比例1制备的Ta-10Ti合金和实施例5、2、6制备的Ta-10Ti-xCu(x=1,3,5)抗菌钽合金的在0.9mol/L NaCl溶液中的动电位极化曲线图。
图4为对比例1制备的Ta-10Ti合金和实施例5、2、6制备的Ta-10Ti-xCu(x=1,3,5)抗菌钽合金的细胞增殖情况。
图5是对比例12制备的Ta-0Ti-3Cu合金的细胞增殖情况。
具体实施方式
在本发明研发的过程中,前期摸索研究实验表明,钽铜合金虽然具有良好的抗菌性能,但存在较大的细胞毒性,而且,有研究表明,钽铜合金存在一定的细胞毒性。另外,针对钛钽合金有研究表明,其并无抗菌功能。因此,本发明的设计思路是:为了克服医用金属钽作为人体骨骼有可能在植入体和骨骼的界面产生“应力屏蔽效应”的缺陷,同时减少由于医用金属钽植入体引发的术后感染,采用添加钛元素可以改善合金的致密度,添加铜元素赋予合金抗菌功能,因此设计了本发明配方的钽合金,并采用高能球磨和放电等离子烧结相结合的制备工艺,制备出一种具有超低弹性模量和广谱、长效的抗菌活性,同时兼具良好的耐蚀性,能够满足某些严苛条件下的服役要求。
下面结合附图及具体实施例对本发明做进一步的说明,但下述实施例绝非对本发明有任何限制。
下述对比例和实施例中所用的钽粉、钛粉和铜粉的纯度均≥99.9%,粒度均≤100μm。
对比例1、制备Ta-10Ti-0Cu块体合金
称取质量约为36.0g的钽粉和质量约为4.0g的钛粉(钽与钛的质量比为9:1)放入惰性气体保护的球磨罐中进行球磨,得到粉料;将得到的粉料放入直径20mm的石墨模具中,再把模具放入放电等离子烧结炉中烧结,得到医用钽合金;烧结成形工艺参数:烧结温度:900℃,压强:50MPa,保温5min。将对比例1得到的钽合金记为Ta-10Ti-0Cu合金。
实施例1、Ta-10Ti-3Cu粉末合金化
称取质量约为34.8g的钽粉、质量约为4.0g的钛粉和质量约为1.2g的铜粉(钽:钛:铜的质量比为87:10:3)放入惰性气体保护的球磨罐中进行球磨,得到粉料;球磨工艺参数与对比例1中相同。
对比例2、Ta-10Ti-3Cu粉末合金化,与实施例1的不同之处在于球磨过程中,球料质量比由5:1改为1:1。
对比例3、Ta-10Ti-3Cu粉末合金化,与实施例1的不同之处在于球磨过程中,球料质量比由5:1改为10:1。
对比例4、Ta-10Ti-3Cu粉末合金化,与实施例1的不同之处在于球磨过程中,加入无水乙醇的质量百分比由5%改为1%。
对比例5、Ta-10Ti-3Cu粉末合金化,与实施例1的不同之处在于球磨过程中,加入无水乙醇的质量百分比由5%改为10%。
对比例6、Ta-10Ti-3Cu粉末合金化,与实施例1的不同之处在于球磨过程中,球磨转速由250rpm改为100rpm。
对比例7、Ta-10Ti-3Cu粉末合金化,与实施例1的不同之处在于球磨过程中,球磨转速由250rpm改为400rpm。
对比例8、Ta-10Ti-3Cu粉末合金化,与实施例1的不同之处在于球磨过程中,球磨时间由18h改为5h。
对比例9、Ta-10Ti-3Cu粉末合金化,与实施例1的不同之处在于球磨过程中,球磨时间由18h改为40h。
由上述实施例1及对比例2-9可以得出:球磨过程中,球磨参数能够影响粉末合金化进程的快慢。与实施例1相比,通过观察可以得出:当球料比为1:1(对比例2)时因能量不足,使其合金化效果不明显;当球料比为10:1(对比例3)时因能量过高发生冷焊现象;当控制剂为1wt.%(对比例4)时会导致粉末能量过高发生冷焊、引入污染物,粉末呈片状;当控制剂为10wt.%时(对比例5),球磨后的粉末黏连在一起;当球磨转速为100rpm(对比例6)或球磨时间为5h(对比例8)时则合金化效果不明显;当球磨转速为400rpm(对比例7)球磨时间为40h(对比例9)则球磨后粉末的颗粒度较大,并存在轻微冷焊现象。因此,本发明中将球磨工艺参数限定在球料质量比为(3~8):1,加入的控制剂无水乙醇的质量百分比为3~8%,球磨转速为200~300rpm,球磨时间为10~30h。
实施例2、制备Ta-10Ti-3Cu块体合金,步骤如下:
步骤1)粉末的机械合金化:称取质量约为34.8g的钽粉、质量约为4.0g的钛粉和质量约为1.2g的铜粉(钽:钛:铜的质量比为87:10:3)放入惰性气体保护的球磨罐中进行球磨,得到粉料;球磨工艺参数与实施例1相同;
步骤2)放电等离子烧结:将步骤1)得到的粉料放入直径20mm的石墨模具中,再把模具放入放电等离子烧结炉中烧结,得到医用钽合金;烧结成形工艺参数:烧结温度:900℃,压强:50MPa,保温5min。得到Ta-10Ti-1Cu合金,记为Ta-10Ti-3Cu合金,经测定其致密度为98%。
对比例10、制备Ta-10Ti-3Cu块体合金,与实施例2的不同之处在于步骤2)放电等离子烧结过程中,将烧结温度由900℃改为700℃。
对比例11、制备Ta-10Ti-3Cu块体合金,与实施例2的不同之处在于步骤2)放电等离子烧结过程中,将烧结温度由900℃改为1000℃。
对比例12、制备Ta-0Ti-3Cu块体合金,与实施例2不同仅为步骤1)中不添加钛粉,即称取质量约为38.8g的钽粉和质量约为1.2g的铜粉(钽:钛:铜的质量比为97:0:3)放入惰性气体保护的球磨罐中进行球磨,得到粉料;然后,经过放电等离子烧结后即为所得。
实施例3、制备Ta-5Ti-3Cu块体合金。其制备方法与实施例2不同之处在于步骤1)中所添加的Ti的含量由3%改为5%,即称取质量约为36.8g的钽粉、质量约为2.0g的钛粉和质量约为1.2g的铜粉(钽:钛:铜的质量比为92:5:3),球磨后的粉料经过放电等离子烧结后即为所得。
实施例4、制备Ta-20Ti-3Cu块体合金。其制备方法与实施例2不同之处在于步骤1)中所添加的Ti的含量由3%改为20%,即称取质量约为31.8g的钽粉、质量约为8.0g的钛粉和质量约为1.2g的铜粉(钽:钛:铜的质量比为77:20:3),球磨后的粉料经过放电等离子烧结后即为所得。
对比例13、制备Ta-30Ti-3Cu块体合金,与实施例2不同仅为步骤1)中所添加的Ti的含量由5%改为30%,即称取质量约为26.8g的钽粉、质量约为12.0g的钛粉和质量约为1.2g的铜粉(钽:钛:铜的质量比67:30:3)放入惰性气体保护的球磨罐中进行球磨,得到粉料;然后,经过放电等离子烧结后即为所得。
由上述实施例2-4和对比例10-13可以得出,放电等离子烧结过程中,烧结参数会影响合金的性能。与实施例2相比,烧结温度为700℃(对比例10),其烧结温度低于实施例2的900℃,众所周知,烧结温度越低,越不利于原子之间的相互作用,导致材料的致密度较差,进而影响其力学性能,对比例10所制备的材料致密度较低,进而影响其力学性能。因此,烧结温度过低,导致材料的致密度较差,力学性能较差;但烧结温度也不能过高,否则合金出现熔融;烧结温度为1000℃(对比例11)时,合金出现有局部熔融;因此,本发明中,在放电等离子烧结过程中,将烧结温度限定在800~950℃。
钽合金中如果仅有钽、铜而不添加Ti元素(对比例12)时,合金致密度低(约为68%),细胞存在较大的毒性,图5示出了对比例12制备的Ta-0Ti-3Cu钽合金的细胞增殖情况。当Ti添加量为5%(实施例3)时,虽然与实施例2相比其抗菌性能及耐蚀性能略有下降,但与对比例1的钽钛合金相比具有良好的抗菌性能及耐蚀性,实施例3制备的Ta-5Ti-3Cu的抗菌率为:大肠杆菌抗菌率约为31.7%,金黄色葡萄球菌约为51.1%;Ta-5Ti-3Cu的腐蚀电位:-0.890V,腐蚀电流密度:4.32×10-10A·cm-2;当Ti添加量为20%(实施例4)时,虽然合金的抗菌性能、耐蚀性及力学性能也略有下降,但与对比例1的钽钛合金相比仍具有良好的抗菌性能及耐蚀性,实施例4制备得到的Ta-20Ti-3Cu的抗菌率为:大肠杆菌抗菌率约为44.3%,金黄色葡萄球菌抗菌率约为61.8%;Ta-20Ti-3Cu的腐蚀电位:-0.997V,腐蚀电流密度:6.02×10-10A·cm-2;当Ti添加量为30%(对比例13)时,合金的耐蚀性较差;因此,本发明中,将构成钽合金中的Ti的添加量在限定在5-20%。
实施例5、制备Ta-10Ti-1Cu块体合金。其制备方法与实施例2不同之处在于所添加的Cu的含量为1%,即称取质量约为35.6g的钽粉、质量约为4.0g的钛粉和质量约为0.4g的铜粉(钽:钛:铜的质量比89:10:1),球磨后的粉料经过放电等离子烧结后即为所得。
实施例6、制备Ta-10Ti-5Cu块体合金。其制备方法与实施例2不同之处在于所添加的Cu的含量为5%,即称取质量约为34.0g的钽粉、质量约为4.0g的钛粉和质量约为2.0g的铜粉(钽:钛:铜的质量比85:10:5),球磨后的粉料经过放电等离子烧结后即为所得。
将烧结后的钽合金加工成力学、电化学和生物学性能测试样品,相关测试方法和结果如下:
1、力学性能测试
采用维氏显微硬度计测定试样硬度,载荷为50g,保载时间为10s。切割4mm×4mm×6mm规格的试样,采用万能试验机对样品进行压缩试验,加载速率为0.18mm/min,根据应力-应变曲线得到压缩强度和弹性模量。结果如表1所示。图2示出了对比例1制备的Ta-10Ti合金和实施例5、2、6制备的Ta-10Ti-xCu(x=1,3,5)抗菌钽合金的压缩应力-应变曲线。
2、抗菌性能检测
切割
Figure BDA0003483843190000061
规格的试样,采用覆膜法对试样进行抗菌实验,细菌初始浓度均为106CFU/ml并取50μl置于试样表面,置于磷酸缓冲盐溶液(PBS)中恒温培养24h,涂板后再培养24h,最后,对活菌进行计数;按下述公式计算抗菌率:抗菌率(%)=[(对照样品表面活菌数-抗菌样品表面活菌数)/对照样品表面活菌数]×100%。结果如表1所示。图1示出了对比例1制备的Ta-10Ti合金和实施例5、2、6制备的Ta-10Ti-xCu(x=1,3,5)抗菌钽合金的金黄色葡萄球菌和大肠杆菌共培养24h后的涂布。
3、耐蚀性分析
切割
Figure BDA0003483843190000062
规格的试样,利用电化学工作站在室温条件下测试合金试样在0.9mol/LNaCl溶液中的动电位极化曲线,得到腐蚀电流密度,以此定量评价不同铜含量的耐蚀能力。电位扫描范围为-1.2~1.2V,扫描速率为0.5mV/s。结果如表1所示。图3示出了对比例1制备的Ta-10Ti合金和实施例5、2、6制备的Ta-10Ti-xCu(x=1,3,5)抗菌钽合金的在0.9mol/L NaCl溶液中的动电位极化曲线图。
4、细胞毒性测试
切割
Figure BDA0003483843190000063
规格的试样,采用Cell Counting Kit-8法检测合金的体外细胞相容性,选择成骨细胞(MC3T3-E1细胞)与合金样品进行共培养,通过细胞毒性、细胞增殖情况等实验来评估成骨细胞在材料上的生长情况。具体操作步骤如下:细胞在培养血上培养3d左右,吸取培养皿内的培养基,用PBS清洗细胞两遍。向培养皿中加入1mL 0.25%的胰酶对细胞进行消化,消化时间约2min后,加入5mL细胞培养液终止消化。吸取消化的细胞和培养基在1000rpm转速下离心5min,弃去上清液,重新加入新鲜的培养基将细胞吹打均匀,形成细胞悬浮液。采用细胞计数板计算细胞悬液细胞的密度,将细胞用培养基稀释至1×104个/mL的密度。将1mL细胞悬液接种到铺有材料的48孔板内,置于37℃、5%的CO2培养箱中,分别培养1、3和5d,每2d更换一次培养基。当材料与细胞共培养不同时间后,将材料取出置培养皿中,经PBS清洗2次,使用DAPI染色30s后,采用倒置荧光显微镜观察材料上细胞形态。将与细胞培养1、3和5d的材料取出,放置在新的孔板内部。在避光条件下,再向每孔加入200μL的含有10%CCK-8的完全培养基。将孔板置于培养箱中孵育2h后,然后将液体迅速转移到48孔培养板,进行测试。用酶标仪下在450nm波长测定吸光度(OD)值。结果如表1所示。图4示出了对比例1制备的Ta-10Ti合金和实施例5、2、6制备的Ta-10Ti-xCu(x=1,3,5)抗菌钽合金的细胞增殖情况。
表1、部分实施例和对比例钽合金的性能检测结果
Figure BDA0003483843190000071
本发明所述的钽合金具有优良的抗菌性能、耐蚀性及生物相容性,抗菌率随铜含量的增加而增加,大肠杆菌抗菌率可达92.6%,金黄色葡萄球菌抗菌率可达84.6%。该钽合金非常适合用作牙骨的医用植入材料。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围。

Claims (5)

1.一种超低弹性模量抗菌医用钽合金,其特征在于,按照质量百分比,包括如下组分:5-20%的钛,1-5%的铜,余量为钽;该钽合金采用机械合金化(MA)和放电等离子烧结(SPS)两步制备;该钽合金的抗压强度为700-1200MPa,弹性模量为6-15GPa,抗菌率随铜含量的增加而增加,其中,大肠杆菌抗菌率为31.7~92.6%,金黄色葡萄球菌抗菌率为35.8~84.6%;该钽合金按照下述步骤制备:
S1、机械合金化(MA):以钽粉、钛粉和铜粉为原料,按比例称取各组分,将配置好的原料放入惰性气体保护的球磨罐中进行球磨,得到粉料;其中,球磨的工艺条件是:球料质量比为(3~8):1、按照质量百分比为3~8%加入无水乙醇作为控制剂、球磨转速为200~300rpm、球磨时间10~30h后烘干;
S2、放电等离子烧结(SPS):将步骤S1得到的粉料加入到模具中,再把模具放入放电等离子烧结炉中烧结,得到抗菌医用钽合金;其中,烧结成形工艺条件是:压力≥30MPa,温度800~950℃,保温时间为3~10min。
2.如权利要求1所述的超低弹性模量抗菌医用钽合金的制备方法,其特征在于,包括以下步骤:
S1、机械合金化(MA):以钽粉、钛粉和铜粉为原料,按比例称取各组分,将配置好的原料放入惰性气体保护的球磨罐中进行球磨,得到粉料;其中,球料质量比为(3~8):1、按照质量百分比为3~8%加入无水乙醇作为控制剂、球磨转速为200~300rpm、球磨时间10~30h后烘干;
S2、放电等离子烧结(SPS):将步骤S1得到的粉料加入到模具中,再把模具放入放电等离子烧结炉中烧结,得到抗菌医用钽合金,其中,烧结成形工艺条件是:压力≥30MPa,温度800~950℃,保温时间为3~10min。
3.如权利要求2所述的制备方法,其特征在于,所述钽粉、钛粉和铜粉的纯度均≥99.9%,平均粒度均≤100μm。
4.如权利要求2所述的制备方法,其特征在于,球料质量比为5:1,加入无水乙醇的质量百分比为5%,球磨转速为250rpm,球磨时间为18h。
5.如权利要求2所述的制备方法,其特征在于,烧结成形中,压力为50MPa,温度为900℃,保温时间为5min。
CN202210075606.6A 2022-01-22 2022-01-22 一种超低弹性模量抗菌医用钽合金及其制备方法 Active CN114540689B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210075606.6A CN114540689B (zh) 2022-01-22 2022-01-22 一种超低弹性模量抗菌医用钽合金及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210075606.6A CN114540689B (zh) 2022-01-22 2022-01-22 一种超低弹性模量抗菌医用钽合金及其制备方法

Publications (2)

Publication Number Publication Date
CN114540689A CN114540689A (zh) 2022-05-27
CN114540689B true CN114540689B (zh) 2022-10-18

Family

ID=81670905

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210075606.6A Active CN114540689B (zh) 2022-01-22 2022-01-22 一种超低弹性模量抗菌医用钽合金及其制备方法

Country Status (1)

Country Link
CN (1) CN114540689B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115747596A (zh) * 2022-11-18 2023-03-07 东莞宜安科技股份有限公司 抗菌促成骨医用纳米多孔钽铜合金及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3161503A (en) * 1961-09-27 1964-12-15 Titanium Metals Corp Corrosion resistant alloy
CN106735280A (zh) * 2016-11-23 2017-05-31 西北有色金属研究院 一种球形TiTa合金粉末的制备方法
CN110629071A (zh) * 2019-09-23 2019-12-31 西安赛特金属材料开发有限公司 具有超弹性和形状记忆效应钛合金的制备方法
CN111819016A (zh) * 2018-03-05 2020-10-23 全球先进金属美国股份有限公司 球形钽粉末、含其的产品以及其制造方法
CN114207167A (zh) * 2019-07-19 2022-03-18 全球先进金属美国股份有限公司 球形钽-钛合金粉末、含有其的产品和制造其的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3161503A (en) * 1961-09-27 1964-12-15 Titanium Metals Corp Corrosion resistant alloy
CN106735280A (zh) * 2016-11-23 2017-05-31 西北有色金属研究院 一种球形TiTa合金粉末的制备方法
CN111819016A (zh) * 2018-03-05 2020-10-23 全球先进金属美国股份有限公司 球形钽粉末、含其的产品以及其制造方法
CN114207167A (zh) * 2019-07-19 2022-03-18 全球先进金属美国股份有限公司 球形钽-钛合金粉末、含有其的产品和制造其的方法
CN110629071A (zh) * 2019-09-23 2019-12-31 西安赛特金属材料开发有限公司 具有超弹性和形状记忆效应钛合金的制备方法

Also Published As

Publication number Publication date
CN114540689A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
Bakhsheshi-Rad et al. Fabrication of biodegradable Zn-Al-Mg alloy: mechanical properties, corrosion behavior, cytotoxicity and antibacterial activities
Chen et al. Effect of nano/micro-Ag compound particles on the bio-corrosion, antibacterial properties and cell biocompatibility of Ti-Ag alloys
Ma et al. In vitro study on an antibacterial Ti–5Cu alloy for medical application
Zhang et al. A new antibacterial titanium–copper sintered alloy: preparation and antibacterial property
Bolzoni et al. Ternary Ti alloys functionalised with antibacterial activity
Ren et al. Antibacterial properties of Ti–6Al–4V–xCu alloys
Ma et al. Study on antibacterial activity and cytocompatibility of Ti–6Al–4V–5Cu alloy
Zhang et al. Antibacterial activities against Porphyromonas gingivalis and biological characteristics of copper-bearing PEO coatings on magnesium
Kolawole et al. Preliminary study of microstructure, mechanical properties and corrosion resistance of antibacterial Ti-15Zr-xCu alloy for dental application
Spataru et al. In-depth assessment of new Ti-based biocompatible materials
CN114540689B (zh) 一种超低弹性模量抗菌医用钽合金及其制备方法
Xin et al. Biological corrosion behaviour and antibacterial properties of Ti-Cu alloy with different Ti2Cu morphologies for dental applications
Shi et al. Development of a low elastic modulus and antibacterial Ti-13Nb-13Zr-5Cu titanium alloy by microstructure controlling
Ebel et al. Ti–6Al–4V–0.5 B—A modified alloy for implants produced by metal injection molding
Shuai et al. Ag‐Introduced Antibacterial Ability and Corrosion Resistance for Bio‐Mg Alloys
Boda et al. Inhibitory effect of direct electric field and HA‐Z n O composites on S. aureus biofilm formation
Fu et al. A novel Ti-Au alloy with strong antibacterial properties and excellent biocompatibility for biomedical application
Rezvan et al. Antibacterial activity, cytocompatibility, and thermomechanical stability of Ti40Zr10Cu36Pd14 bulk metallic glass
Bao et al. Ti-Zr-Nb based BCC solid solution alloy containing trace Cu and Ag with low modulus and excellent antibacterial properties
CN106606801A (zh) 一种Zn-ZnO系锌合金及其制备方法与应用
Bao et al. β duplex phase Ti–Zr–Nb–Ag alloys with impressive mechanical properties, excellent antibacterial and good biocompatibility
Li et al. Biological actions of Cu/Zn coimplanted TiN on Ti-6Al-4V alloy
Li et al. Co-regulation of Cu/Zn contents enhanced the biological and mechanical properties of TiN coated Ti-6Al-4V alloy
Walunj et al. Light weight-low modulus biocompatible titanium alloys processed via spark plasma sintering
Luo et al. Novel function-structure-integrated Ti-Mo-Cu alloy combined with excellent antibacterial properties and mechanical compatibility as implant application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant