CN114538501A - 氧空位缺陷的SnO2纳米材料的制备方法、氧空位缺陷的SnO2纳米材料及使用方法 - Google Patents

氧空位缺陷的SnO2纳米材料的制备方法、氧空位缺陷的SnO2纳米材料及使用方法 Download PDF

Info

Publication number
CN114538501A
CN114538501A CN202210234274.1A CN202210234274A CN114538501A CN 114538501 A CN114538501 A CN 114538501A CN 202210234274 A CN202210234274 A CN 202210234274A CN 114538501 A CN114538501 A CN 114538501A
Authority
CN
China
Prior art keywords
sno
oxygen vacancy
nano material
vacancy defects
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210234274.1A
Other languages
English (en)
Inventor
杨静凯
任望为
张佳欣
崔延
孙宇
赵洪力
梁波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanshan University
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN202210234274.1A priority Critical patent/CN114538501A/zh
Publication of CN114538501A publication Critical patent/CN114538501A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/02Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种氧空位缺陷的SnO2纳米材料,及其制备、使用方法,本发明采用Sn2+为锡源,通过低温下的水热过程将其部分氧化为Sn4+,在SnO2晶格中引入氧空位缺陷。本发明获得的氧空位缺陷的SnO2在应用于吸附和光催化时展现出良好的性能,因氧空位的存在使其具有更宽的光响应范围、更强的光生电子和空穴分离效率、更多的表面吸附和氧化还原反应活性位点,可在环境修复方面发挥作用,对甲基橙的吸附效率为43.4%,模拟太阳光照6min对甲基橙的降解效率高达98.0%,对Cr(VI)的吸附效率为78.0%,模拟太阳光照4min对Cr(VI)的还原效率高达98.3%。本发明的氧空位缺陷的SnO2纳米材料是一种集优异的吸附和光催化活性于一体的光催化剂,其具有优异的吸附和光催化性能,能够应用于多个场景。

Description

氧空位缺陷的SnO2纳米材料的制备方法、氧空位缺陷的SnO2纳 米材料及使用方法
技术领域
本发明涉及光催化纳米材料领域,尤其涉及氧空位缺陷的SnO2纳米材料的制备方法、氧空位缺陷的SnO2纳米材料及使用方法。
背景技术
从环境治理的角度来看,已存在许多方法应用于去除污染物,包括沉淀法、渗透法、吸附法、光催化法等。值得一提的是,其中吸附和光催化是两种重要的方式,但单纯的吸附仅仅将污染物从水中分离,并没有彻底的减少其潜在的危害。而光催化反应局限于光催化剂表面的传质过程,所以继续深入探索高效且连续的光催化系统有其价值所在。SnO2因其低成本、无毒、良好的化学稳定性、以及优异的导电性和光电性能等优势而备受关注。但SnO2作为n型宽带隙半导体(3.6eV),仅能吸收紫外光,且光生电子和空穴分离效率低,在具体应用方面仍有待改进。SnO2晶格中的氧空位凭借其对材料微观电子结构的调整特性而在材料宏观光催化性能的提升方面做出了重要贡献。更重要的是,在催化剂表面存在的氧空位对光催化中污染物的吸附和降解均具有不可忽视的影响。因此,在SnO2中设计引入氧空位尤其是表面氧空位,以期制备一种集优异的吸附和高效的光催化反应于一体的半导体催化剂,促进污染物去除的整体进程。
一般来说,获得氧空位缺陷的SnO2可以通过使用金属锡和Sn4+之间自发进行的反应将部分四价锡离子还原为二价锡离子。当然,也可使用二价锡为锡源,将其部分氧化为Sn4+,虽然此过程并非热力学有利的反应,但可在SnO2晶格中较大程度的保留Sn2+,以调节氧空位缺陷的浓度。本发明采用Sn2+为锡源,通过低温下的水热过程获得氧空位缺陷的SnO2。首先,氧空位的作用体现在能带结构的调整,使带隙减小到3.16eV从而具备可见光响应能力,导带和价带均有不同程度的上移,增加了导带电子的还原能力。其次,存在于表面的氧空位作为吸附和光催化反应的活性位点,促进在表面发生的传质过程。最后,氧空位还对光生电子和空穴的有效分离发挥作用,可捕获光生电子并延长其寿命。总之,本发明制备的氧空位缺陷的SnO2是一种集优异吸附和光催化反应于一体的光催化剂。
发明内容
本发明的目的在于提供了一种氧空位缺陷的SnO2纳米材料及其在吸附和光催化的应用。本发明通过较低温度下的水热过程在SnO2合成中保留部分Sn2+,获得氧空位浓度可调的SnO2光催化剂,能响应可见光、有效分离光生电子和空穴以及具有优异的吸附能力。该方法操作简单、条件温和、氧空位浓度可调,采用该法制得的氧空位缺陷的SnO2纳米材料应用于污染物去除时,在光照下表现出高效的吸附和降解甲基橙、还原Cr(VI)的能力,证明了该发明的可行性。
为实现上述目的,本发明的技术方案如下:
具体地,本发明的第一方面提供一种氧空位缺陷的SnO2纳米材料的制备方法,其包括以下步骤:
S1、采用水热法制备氧空位缺陷的SnO2纳米材料,以二水二氯化锡(SnCl2·2H2O)为原料,将二水二氯化锡(SnCl2·2H2O)磁力搅拌后溶解于去离子水中获得白色半透明溶液A;
S2、将步骤S1得到的半透明溶液A转移至水热反应釜中并在恒温干燥箱中保温,得到反应物B;
S3、将步骤S2中的反应物B随炉冷却至室温后,离心收集沉淀物,并用水和乙醇洗涤数次,干燥研磨后获得浅黄色粉末即为氧空位缺陷的SnO2纳米材料。
优选地,所述步骤S1中磁力搅拌的时间为60~120min。
优选地,步骤S2中的保温温度为70-90℃,保温时间为10-14h。
优选地,所述步骤S3中干燥温度为40-60℃,干燥时间为10-14h。
本发明的第二方面还提供一种氧空位缺陷的SnO2纳米材料,该氧空位缺陷的SnO2纳米材料由权利要求1所述的方法制备得到。
本发明的第三方面还提供一种氧空位缺陷的SnO2纳米材料的使用方法,该氧空位缺陷的SnO2纳米材料为权利要求5所述的氧空位缺陷的SnO2纳米材料。
优选地,该氧空位缺陷的SnO2纳米材料能够应用于光催化降解甲基橙及Cr(VI)的吸附。
优选地,该氧空位缺陷的SnO2纳米材料能够应用于光催化过程。
优选地,将该氧空位缺陷的SnO2纳米材料按照质量-体积比为1:5-1:6的比例加入到5-10mg/L的甲基橙溶液或15-20mg/L的K2CrO4溶液中,在黑暗条件下搅拌一段时间达到吸附-脱附平衡后,再经光照应用于光催化降解甲基橙和还原Cr(VI)。
与现有技术相比,本发明的有益效果如下:
(1)本发明利用Sn2+为锡源,通过较低温度下的水热过程得以保留部分Sn2+,有目的获得氧空位缺陷的SnO2纳米材料。相比于原始SnO2,引入氧空位后具有更宽的光响应范围、更强的光生电载流子分离能力,展现出优异的吸附活性和光催化活性。在黑暗条件搅拌达到吸附-脱附平衡后,对甲基橙和Cr(VI)具有稳定的吸附能力,分别可达43.4%和78.0%。
(2)本发明的氧空位缺陷的SnO2纳米材料在模拟太阳光照射下,对甲基橙和Cr(VI)具有优异的光催化降解和还原能力,对甲基橙的降解效率在6min高达98.0%,对Cr(VI)的还原效率在4min高达98.3%,由此可以证明,本发明所述的氧空位缺陷的SnO2纳米材料是一种集优异的吸附和光催化活性于一体的光催化剂。
附图说明
图1为原始SnO2和氧空位缺陷的SnO2的XRD图。
图2a为原始SnO2的透射电镜图;
图2b为氧空位缺陷的SnO2的透射电镜图。
图3为原始SnO2和氧空位缺陷的SnO2的电子顺磁共振图。
图4a为原始SnO2和氧空位缺陷的SnO2对甲基橙的吸附效率图;
图4b为原始SnO2和氧空位缺陷的SnO2对甲基橙在模拟太阳光下的降解效率图。
图5a为原始SnO2和氧空位缺陷的SnO2对Cr(VI)的吸附效率图;
图5b为原始SnO2和氧空位缺陷的SnO2对Cr(VI)在模拟太阳光下的还原效率图。
具体实施方式
本发明提供一种氧空位缺陷的SnO2纳米材料的制备方法,其包括以下步骤:
S1、采用水热法制备氧空位缺陷的SnO2纳米材料,以二水二氯化锡(SnCl2·2H2O)为原料,磁力搅拌溶解到去离子水中获得白色半透明溶液;
S2、将上述半透明溶液转移至水热反应釜中并在恒温干燥箱中以一定温度保温一段时间;
S3、随炉冷却至室温后,离心收集沉淀物,并用水和乙醇洗涤数次,干燥研磨后获得浅黄色粉末即为氧空位缺陷的SnO2纳米材料。
本发明还提供一种氧空位缺陷的SnO2纳米材料的使用方法,该氧空位缺陷的SnO2纳米材料由上述方法制备得到。
优选地,该氧空位缺陷的SnO2纳米材料能够应用于光催化降解甲基橙及Cr(VI)的吸附。
优选地,该氧空位缺陷的SnO2纳米材料能够应用于光催化过程。
优选地,将该氧空位缺陷的SnO2纳米材料按照1:5的比例加入到10mg/L的甲基橙溶液或20mg/L的K2CrO4溶液中,在黑暗条件下搅拌一段时间达到吸附-脱附平衡后,再经光照应用于光催化降解甲基橙和还原Cr(VI)。
下面结合具体实施例对本发明的工作原理进行进一步说明:
实施例1:
步骤(1):采用水热法制备氧空位缺陷的SnO2纳米材料,以二水二氯化锡(SnCl2·2H2O)为原料,将0.76g SnCl2·2H2O加入到70mL去离子水中,磁力搅拌90min,获得白色半透明溶液。
步骤(2):将上述半透明溶液转移至水热反应釜中并在恒温干燥箱中80℃保温6h。
步骤(3):随炉冷却至室温后,离心收集沉淀物,并用水和乙醇洗涤数次,干燥研磨后获得浅黄色粉末即为氧空位缺陷的SnO2纳米材料。
图1是实施例1中原始SnO2和氧空位缺陷的SnO2的XRD图,原始SnO2的所有衍射峰均与金红石相(JCPDS,No.77-0452)匹配良好,其中位于26.486°、33.739°和51.563°处的衍射峰分别对应于(110)、(101)和(211)晶面。氧空位缺陷的SnO2的射峰整体上与金红石相SnO2(JCPDS,No.77-0452)对应良好,但其中对应于(101)晶面的衍射峰向小角度发生了偏移,这可能是由于在低温水热过程中部分Sn2+得以保留下来,替代了SnO2晶格中的Sn4+,因为离子半径Sn+(93pm)>Sn4+(71pm),因此在Sn2+成功掺杂后,引起晶格畸变使晶格常数变大。这证实了氧空位的成功引入。
图2a和图2b分别是实施例1中原始SnO2和氧空位缺陷的SnO2的透射电镜图,SnO2纳米颗粒的直径约为2~5nm左右,但因颗粒间吸引力存在自聚集的情况。氧空位缺陷的SnO2大部分为纳米尺度的小颗粒,同时也存在类似于纳米片的形貌。
图3是实施例1中原始SnO2和氧空位缺陷的SnO2的电子顺磁共振图,SnO2显示出以g=2.004为中心的对称信号,而氧空位缺陷的SnO2还观察到以g=1.987为中心的信号,这可以解释为g=1.987的ESR信号可能与表面氧空位相关联。
图4a和图4b分别是实施例1中原始SnO2和氧空位缺陷的SnO2对甲基橙的吸附效率图以及在模拟太阳光下的降解效率图。氧空位缺陷的SnO2对甲基橙表现出优异的吸附和光催化降解活性,吸附率为43.4%,降解效率在6min达到了98.0%,远高于原始的SnO2
图5a和图5b分别是实施例1中原始SnO2和氧空位缺陷的SnO2对Cr(VI)的吸附效率图和在模拟太阳光下还原效率图。氧空位缺陷的SnO2对Cr(VI)表现出优异的吸附和光催化降解活性,吸附率为78.0%,降解效率在4min达到了98.3%,远高于原始的SnO2。证实了氧空位的引入可有效拓宽光响应范围、提升光生载流子的分离能力、促进污染物在表面发生的吸附和氧化还原反应,具有卓越的吸附和光催化活性。
实施例2:
步骤(1):采用水热法制备氧空位缺陷的SnO2纳米材料,以二水二氯化锡(SnCl2·2H2O)为原料,将0.76g SnCl2·2H2O加入到70mL去离子水中,磁力搅拌60min,获得白色半透明溶液。
步骤(2)和步骤(3)与实施例1中相同。
实施例2得到的氧空位缺陷的SnO2纳米材料在模拟太阳光照射下,对甲基橙的吸附率为47.4%,降解率在6min为62.6%,对Cr(VI)的吸附率为72.5%,降解率在4min为92.6%。
实施例3:
步骤(1):采用水热法制备氧空位缺陷的SnO2纳米材料,以二水二氯化锡(SnCl2·2H2O)为原料,将0.76g SnCl2·2H2O加入到70mL去离子水中,磁力搅拌120min,获得白色半透明溶液。
步骤(2)和步骤(3)与实施例1中相同。
实施例3得到的氧空位缺陷的SnO2纳米材料在模拟太阳光照射下,对甲基橙的吸附率为45.8%,降解率在6min为68.4%,对Cr(VI)的吸附率为79.8%,降解率在4min为97.4%。
以上所述的实施例仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (8)

1.一种氧空位缺陷的SnO2纳米材料的制备方法,其特征在于:其包括以下步骤:
S1、采用水热法制备氧空位缺陷的SnO2纳米材料,以二水二氯化锡(SnCl2·2H2O)为原料,将二水二氯化锡(SnCl2·2H2O)磁力搅拌后溶解于去离子水中获得白色半透明溶液A;
S2、将步骤S1得到的半透明溶液A转移至水热反应釜中并在恒温干燥箱中保温,得到反应物B;
S3、将步骤S2中的反应物B随炉冷却至室温后,离心收集沉淀物,并用水和乙醇洗涤数次,干燥研磨后获得浅黄色粉末即为氧空位缺陷的SnO2纳米材料。
2.根据权利要求1所述的氧空位缺陷的SnO2纳米材料的制备方法,其特征在于:所述步骤S1中磁力搅拌的时间为60~120min。
3.根据权利要求1所述的氧空位缺陷的SnO2纳米材料的制备方法,其特征在于:步骤S2中的保温温度为70-90℃,保温时间为10-14h。
4.根据权利要求1所述的氧空位缺陷的SnO2纳米材料的制备方法,其特征在于:所述步骤S3中干燥温度为40-60℃,干燥时间为10-14h。
5.一种氧空位缺陷的SnO2纳米材料,其特征在于:该氧空位缺陷的SnO2纳米材料由权利要求1所述的方法制备得到。
6.一种氧空位缺陷的SnO2纳米材料的使用方法,其特征在于:该氧空位缺陷的SnO2纳米材料为权利要求5所述的氧空位缺陷的SnO2纳米材料,该氧空位缺陷的SnO2纳米材料能够应用于光催化降解甲基橙及Cr(VI)的吸附。
7.根据权利要求6所述的氧空位缺陷的SnO2纳米材料的使用方法,其特征在于:该氧空位缺陷的SnO2纳米材料能够应用于光催化过程。
8.根据权利要求7所述的氧空位缺陷的SnO2纳米材料的使用方法,其特征在于:将该氧空位缺陷的SnO2纳米材料按照质量-体积比为1:5-1:6的比例加入到5-10mg/L的甲基橙溶液或15-20mg/L的K2CrO4溶液中,在黑暗条件下搅拌一段时间达到吸附-脱附平衡后,再经光照应用于光催化降解甲基橙和还原Cr(VI)。
CN202210234274.1A 2022-03-10 2022-03-10 氧空位缺陷的SnO2纳米材料的制备方法、氧空位缺陷的SnO2纳米材料及使用方法 Pending CN114538501A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210234274.1A CN114538501A (zh) 2022-03-10 2022-03-10 氧空位缺陷的SnO2纳米材料的制备方法、氧空位缺陷的SnO2纳米材料及使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210234274.1A CN114538501A (zh) 2022-03-10 2022-03-10 氧空位缺陷的SnO2纳米材料的制备方法、氧空位缺陷的SnO2纳米材料及使用方法

Publications (1)

Publication Number Publication Date
CN114538501A true CN114538501A (zh) 2022-05-27

Family

ID=81663789

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210234274.1A Pending CN114538501A (zh) 2022-03-10 2022-03-10 氧空位缺陷的SnO2纳米材料的制备方法、氧空位缺陷的SnO2纳米材料及使用方法

Country Status (1)

Country Link
CN (1) CN114538501A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014125379A (ja) * 2012-12-26 2014-07-07 Yamagata Univ 酸化スズナノ微粒子の製造方法
CN113145154A (zh) * 2021-03-06 2021-07-23 徐州工程学院 一种光催化还原含铬(vi)废水复合催化剂的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014125379A (ja) * 2012-12-26 2014-07-07 Yamagata Univ 酸化スズナノ微粒子の製造方法
CN113145154A (zh) * 2021-03-06 2021-07-23 徐州工程学院 一种光催化还原含铬(vi)废水复合催化剂的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
QUAN LIU ETC.: ""High Visible Light Photocatalytic Activity of SnO2-x Nanocrystals with Rich Oxygen Vacancy"", 《EUROPEAN JOURANL OF INORGANIC CHEMISTRY》 *
张倩等: "《普通高等院校环境科学与工程类系列规划教材(水环境化学)》", 30 June 2018, 中国建材工业出版社 *
朱翰林等: "氧缺陷型SnO_2纳米颗粒可见光催化性能的研究", 《化学通报》 *
胡文科等: "高岭土/SnO_2/Sn~(2+)的制备及其光催化性能", 《广西大学学报(自然科学版)》 *

Similar Documents

Publication Publication Date Title
Yu et al. One-pot synthesis of BiOCl microflowers co-modified with Mn and oxygen vacancies for enhanced photocatalytic degradation of tetracycline under visible light
Luo et al. Rational design of Z-scheme LaFeO3/SnS2 hybrid with boosted visible light photocatalytic activity towards tetracycline degradation
Rajeshwari et al. Recent developments in architecturing the g-C3N4 based nanostructured photocatalysts: Synthesis, modifications and applications in water treatment
Guo et al. Effects of morphology on the visible-light-driven photocatalytic and bactericidal properties of BiVO4/CdS heterojunctions: a discussion on photocatalysis mechanism
Guo et al. Investigation of visible-light-driven photocatalytic tetracycline degradation via carbon dots modified porous ZnSnO3 cubes: Mechanism and degradation pathway
Imam et al. The photocatalytic potential of BiOBr for wastewater treatment: A mini-review
Cheng et al. One-step microwave hydrothermal preparation of Cd/Zr-bimetallic metal–organic frameworks for enhanced photochemical properties
Zhang et al. Microwave hydrothermally synthesized WO 3/UiO-66 nanocomposites toward enhanced photocatalytic degradation of rhodamine B
Yu et al. Facile synthesis of Bi-modified Nb-doped oxygen defective BiOCl microflowers with enhanced visible-light-driven photocatalytic performance
Hua et al. Bi-modified 3D BiOBr microsphere with oxygen vacancies for efficient visible-light photocatalytic performance
Zhao et al. Salt templated synthesis of NiO/TiO2 supported carbon nanosheets for photocatalytic hydrogen production
Jia et al. Construction of anatase/rutile TiO2 hollow boxes for highly efficient photocatalytic performance
Liu et al. Synthesis of nanocrystalline Ga–TiO2 powders by mild hydrothermal method and their visible light photoactivity
Duan et al. High photocatalytic activity of 2D sheet structure ZnO/Bi2WO6 Z-scheme heterojunction under simulated sunlight
Yu et al. Novel Bi12TiO20/g-C3N4 composite with enhanced photocatalytic performance through Z-scheme mechanism
Goveas et al. Electrochemical synthesis of ZnO-WO 3 nanocomposites and their photocatalytic activity
CN113649052A (zh) 一种石墨相氮化碳基光催化复合材料及其制备和应用
Gayathri et al. A simple and one step low cost microwave induced low cost grapheme modified CeO2 photo electrodes for high-efficiency dye-sensitized solar cells
Zhao et al. Facile construction of carbon dots layer and oxygen vacancies simultaneously onto TiO2 to enhance photoreduction activity
Wang et al. Roles of CeO2 in preparing Ce-doped CdIn2S4 with boosted photocatalytic degradation performance for methyl orange and tetracycline hydrochloride
Zuo et al. Facile access to high-efficiency degradation of tetracycline hydrochloride with structural optimization of TiN
CN112079410B (zh) 一种Ag/Ag2Mo2O7/WS2异质结光催化材料在降解有机污染物中的应用
US11896960B1 (en) High-efficiency visible-light catalytic material and preparation method and application thereof
Feng et al. Synthesis and enhanced visible light photocatalytic activity of g-C3N4/BiOClxBr1-x heterojunctions with adjustable energy band structure
CN114538501A (zh) 氧空位缺陷的SnO2纳米材料的制备方法、氧空位缺陷的SnO2纳米材料及使用方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220527

RJ01 Rejection of invention patent application after publication