CN114527768A - 基于hjb方程数据驱动解的无人船最优避障路径规划方法 - Google Patents

基于hjb方程数据驱动解的无人船最优避障路径规划方法 Download PDF

Info

Publication number
CN114527768A
CN114527768A CN202210215828.3A CN202210215828A CN114527768A CN 114527768 A CN114527768 A CN 114527768A CN 202210215828 A CN202210215828 A CN 202210215828A CN 114527768 A CN114527768 A CN 114527768A
Authority
CN
China
Prior art keywords
optimal
function
unmanned ship
data
avoidance path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210215828.3A
Other languages
English (en)
Other versions
CN114527768B (zh
Inventor
黄志坚
杨光
曹新宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Maritime University
Original Assignee
Shanghai Maritime University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Maritime University filed Critical Shanghai Maritime University
Priority to CN202210215828.3A priority Critical patent/CN114527768B/zh
Publication of CN114527768A publication Critical patent/CN114527768A/zh
Priority to ZA2022/08069A priority patent/ZA202208069B/en
Application granted granted Critical
Publication of CN114527768B publication Critical patent/CN114527768B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/0206Control of position or course in two dimensions specially adapted to water vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明公开了一种基于HJB方程数据驱动解的无人船最优避障路径规划方法,该方法包括:给定用于无人船避障路径规划的动态控制系统模型,并获取动态控制系统模型在无限时长优化上的效用函数;确定最优效用函数,并根据最优效用函数确定数据驱动无模型Hamilton函数;根据Pontryagin最小化原理,基于数据驱动无模型Hamilton函数得到确定动态控制系统模型的最优控制函数的必要条件,以确定最优控制函数,并根据最优控制函数进行无人船最优避障路径规划。本发明可从根本上解决无人船基于数据驱动HJB方程近似解的最优控制理论问题,并实现无人船避障路径规划。

Description

基于HJB方程数据驱动解的无人船最优避障路径规划方法
技术领域
本发明涉及无人船优化控制技术领域,尤其涉及一种基于HJB方程数据驱动解的无人船最优避障路径规划方法。
背景技术
无人船的最优避障路径规划,是一个最优化的控制问题,其精确解通常需要涉及到求解无人船避障动态控制系统的HJB(Hamilton-Jacobi-Bellman,哈密顿-雅可比-贝尔曼)方程。该方程是偏微分和泛函形式的复合函数,除线性系统和二次型效用函数形式之外,获得无人船避障动态控制系统HJB方程的精确解,早已被证明是非常困难的。
过去,迭代算法一直是求解无人船避障动态控制系统最优化方程的经典方法。后来,又有学者发明了同伦扰动法,用于求解无人船避障最优化动态控制系统涉及的微分和偏微分方程。近年来,学者们提出了一种基于神经网络逼近求解无人船避障动态控制系统最优化方程的方法。还有一些学者提出各种方法,以避免求解无人船避障动态控制系统的HJB方程。然而,迭代和神经网络方法都存在收敛等问题;同伦扰动法对无人船避障优化路径规划问题的适用范围有限;而避免求解最优化HJB方程,则无法从数学根本上解决无人船最优化避障路径规划问题。
经对现有专利检索发现,近年来,以无人船路径规划和避障控制为主题的公开和授权专利,是目前的热门研究成果和方向。有一些具有代表性,例如,申请号为:CN202111331127.8,名称为:“一种基于混合粒子群算法的无人船路径优化方法和系统”的发明专利,主要基于其改进的混合粒子群算法;申请号为:CN201910750052.3,名称为:“一种无人船全局气象航线动态规划方法和系统”的发明专利,主要还是采用动态规划方法;申请号为:CN202110551747.6,名称为:“一种基于大数据的无人船航行避障系统及方法”的发明专利,则综合了声纳、视觉、GPS(Global Positioning System,全球定位系统)和各种传感器等的数据应用;还有申请号为:CN202111047594.8,名称为:“无人船避障方法及其系统”的发明专利,等等。这些发明的路径规划方法,很多均不是从数学的根本角度解决无人船路径规划的优化问题;而这些避碰方法和系统,其实质还是采用的传统控制方法。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的一个目的在于提供一种基于HJB方程数据驱动解的无人船最优避障路径规划方法,通过确定数据驱动无模型Hamilton函数(哈密顿函数),然后采用数据驱动的跟踪微分器分解并跟踪逼近最优控制函数中的系统状态变量,得到无人船最优避障路径规划的解,以从根本上解决无人船基于数据驱动HJB方程近似解的最优控制理论问题。
为达到上述目的,本发明通过以下技术方案实现:
一种基于HJB方程数据驱动解的无人船最优避障路径规划方法,包括:
步骤S1:给定用于无人船避障路径规划的动态控制系统模型,并获取所述动态控制系统模型在无限时长优化上的效用函数;
步骤S2:确定最优效用函数,并根据所述最优效用函数确定所述动态控制系统模型的数据驱动无模型Hamilton函数;
步骤S3:根据Pontryagin(庞特里亚金)最小化原理,基于所述数据驱动无模型Hamilton函数得到确定所述动态控制系统模型的最优控制函数的必要条件,以确定所述最优控制函数,并根据所述最优控制函数进行无人船最优避障路径规划。
可选的,所述步骤S1中的所述动态控制系统模型采用如下公式表示:
Figure BDA0003534576650000021
所述步骤S1中的所述效用函数采用如下公式表示:
Figure BDA0003534576650000022
其中,x(t)为系统状态变量,u(t)为系统控制变量,A为系统状态变量系数矩阵,b为系统控制变量系数矩阵,J为所述效用函数,Q为二次型系数矩阵,r为系数,t为时间。
可选的,所述系统状态变量包括第一变量和第二变量,所述第一变量与无人船和最近障碍物的距离相关,所述第二变量与无人船和最近障碍物的瞬时相对速度相关。
可选的,所述步骤S2中的数据驱动无模型Hamilton函数采用如下公式表示:
Figure BDA0003534576650000031
其中,
Figure BDA0003534576650000032
为所述数据驱动无模型Hamilton函数,x为所述x(t),u为所述u(t),J*为所述最优效用函数。
可选的,确定所述动态控制系统模型的最优控制函数的必要条件采用如下公式表示:
Figure BDA0003534576650000033
其中,
Figure BDA0003534576650000034
H为所述
Figure BDA0003534576650000035
u*为所述最优控制函数。
可选的,所述步骤S3中的确定所述最优控制函数的步骤包括:
步骤S31:根据所述最优控制函数的必要条件确定初始的最优控制函数;
步骤S32:对初始的最优控制函数中的偏导部分进行变量分解,得到多个分解函数;
步骤S33:获取跟踪微分器,并采用所述跟踪微分器跟踪逼近多个所述分解函数中的系统状态变量,得到更新后的多个分解函数;
步骤S34:根据所述效用函数和更新后的多个所述分解函数确定所述最优控制函数。
可选的,所述步骤S31中的初始的最优控制函数采用如下公式表示:
Figure BDA0003534576650000036
所述跟踪微分器采用如下公式表示:
Figure BDA0003534576650000037
其中,x1为系统状态变量,x2为x1的一阶导数,fhan为非线性函数,v为系统输入设定值,r1为时间标尺,h0为滤波因子。
可选的,所述非线性函数采用如下公式表示:
Figure BDA0003534576650000041
其中,sign为符号函数,x1(t)为所述x1,x2(t)为所述x2,a、d、d0、y和a0为中间变量。
可选的,所述方法还包括:对初始的最优控制函数进行过零变量处理。
可选的,所述最优效用函数采用如下公式确定:
Figure BDA0003534576650000042
或者,在确定最优控制函数后,根据所述最优控制函数和所述效用函数确定所述最优效用函数。
本发明至少具有以下技术效果:
本发明通过推导用于无人船避障路径规划的动态控制系统模型的数据驱动无模型Hamilton函数,然后采用数据驱动的跟踪微分器分解和逼近最优控制函数中的系统状态变量,以得到所述最优控制函数,从而得到无人船最优避障路径规划的解,进而在根本上解决了无人船基于数据驱动HJB方程近似解的最优控制理论问题,且本发明中的动态控制系统模型为未知,所以本发明无需控制系统模型,可仅由测量的系统状态驱动,并且所有其他变量和导数均从提出的数据驱动无模型Hamilton函数和跟踪微分器中得出,使得该方法像PID(Proportional Integral Derivative,比例积分微分)控制器一样工作,避免了神经网络或迭代方法的训练或者收敛等问题,从而使得该方法能够成为真正实时在线的无人船最优化避障路径规划方法。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
图1为本发明一实施例提供的基于HJB方程数据驱动解的无人船最优避障路径规划方法的流程图;
图2为本发明一实施例提供的基于HJB方程数据驱动解的无人船最优避障路径规划控制器的工作原理图;
图3为本发明一实施例提供的基于HJB方程数据驱动解的无人船最优避障路径规划方法的工作流程图。
具体实施方式
下面详细描述本实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参考附图描述本实施例的基于HJB方程数据驱动解的无人船最优避障路径规划方法。
图1为本发明一实施例提供的基于HJB方程数据驱动解的无人船最优避障路径规划方法的流程图。如图1所示,基于HJB方程数据驱动解的无人船最优避障路径规划方法包括:
步骤S1:给定用于无人船避障路径规划的动态控制系统模型,并获取动态控制系统模型在无限时长优化上的效用函数。
需要说明的是,本实施例的基于HJB方程数据驱动解的无人船最优避障路径规划方法应用于图2所示的基于HJB方程数据驱动解的无人船最优避障路径规划控制器9。图3为本发明一实施例提供的基于HJB方程数据驱动解的无人船最优避障路径规划方法的工作流程图。
如图2和图3所示,可预先给定用于无人船避障路径规划的动态控制系统模型(图2中标识2),所述动态控制系统模型采用如下公式表示:
Figure BDA0003534576650000051
其在无限时长优化上的效用函数J(图2中标识3),根据最优控制目标设计为:
Figure BDA0003534576650000061
并且,通常假定公式(1)中的动态控制系统模型是未知的,即如下所示:
Figure BDA0003534576650000062
其中,x(t)为系统状态变量,u(t)为系统控制变量,A为系统状态变量系数矩阵,b为系统控制变量系数矩阵,J为所述效用函数,Q为二次型系数矩阵,r为系数,t为时间,单位为秒,x(0)为初始状态变量。
本实施例中,系统状态变量x(t)包括第一变量和第二变量,其中,第一变量与无人船(图2中标识1)和最近障碍物的距离相关,第二变量与无人船和最近障碍物的瞬时相对速度相关。
如图2所示,系统状态变量x(t)可分别为无人船与最近障碍物的距离的倒数x0(t)、无人船与最近障碍物的瞬时相对速度的倒数x1(t)。
本实施例中,系统控制变量u(t)可为舵角位置,系统状态变量系数矩阵
Figure BDA0003534576650000063
系统控制变量系数矩阵
Figure BDA0003534576650000064
初始状态变量
Figure BDA0003534576650000065
二次型系数矩阵
Figure BDA0003534576650000066
系数
Figure BDA0003534576650000067
步骤S2:确定最优效用函数,并根据最优效用函数确定动态控制系统模型的数据驱动无模型Hamilton函数。
如图3所示,可推导动态控制系统模型的数据驱动无模型Hamilton函数。本实施例中,避障路径规划的动态控制系统模型的数据驱动无模型Hamilton函数,可运用连续动态规划原理,采用如下HJB方程来表示:
Figure BDA0003534576650000068
通过上述公式(4)可确定最优效用函数。
进一步的,由公式(4)可推导得出数据驱动无模型Hamilton函数(图2中标识5),其可采用如下公式表示:
Figure BDA0003534576650000071
式(4)和(5)中,
Figure BDA0003534576650000072
为数据驱动无模型Hamilton函数,x为x(t),u为u(t),J*为最优效用函数,Ω为系统控制变量数据集合。
如图2所示,图2中的标识4也为动态控制系统模型,由于公式(1)中的动态控制系统模型2是未知的,所以在公式(5)中,用实时可测量系统状态的导数
Figure BDA0003534576650000073
代替标识4所示的动态控制系统模型,由此使得应用基于HJB方程数据驱动解的无人船最优避障路径规划方法的控制器9无需动态控制系统模型2,其完全由可测量系统状态的数据驱动,避免了神经网络或迭代方法的训练或者收敛等问题,从而使得该方法能够成为真正实时在线的无人船最优化避障路径规划方法。
步骤S3:根据Pontryagin最小化原理,基于数据驱动无模型Hamilton函数得到确定动态控制系统模型的最优控制函数的必要条件,以确定最优控制函数,并根据最优控制函数进行无人船最优避障路径规划。
所述步骤S3中的确定最优控制函数的步骤包括:
步骤S31:根据最优控制函数的必要条件确定初始的最优控制函数。
步骤S32:对初始的最优控制函数中的偏导部分进行变量分解,得到多个分解函数。
步骤S33:获取跟踪微分器,并采用跟踪微分器跟踪逼近多个分解函数中的系统状态变量,得到更新后的多个分解函数。
步骤S34:根据效用函数和更新后的多个所述分解函数确定最优控制函数。
本实施例中,确定动态控制系统模型的最优控制函数(图2中标识6)的必要条件采用如下公式表示:
Figure BDA0003534576650000074
其中,
Figure BDA0003534576650000075
H为所述
Figure BDA0003534576650000076
u*为所述最优控制函数,即图2中的u*(t)。
所述步骤S31中的初始的最优控制函数采用如下公式表示:
Figure BDA0003534576650000081
所述跟踪微分器(图2中的标识7)采用如下公式表示:
Figure BDA0003534576650000082
其中,x1为系统状态变量,x2为x1的一阶导数,fhan为非线性函数,v为系统输入设定值,r1为时间标尺,h0为滤波因子。
所述非线性函数采用如下公式表示:
Figure BDA0003534576650000083
其中,sign为符号函数,x1(t)为所述x1,x2(t)为所述x2,a、d、d0、y和a0为中间变量。
具体的,如图3所示,可推导动态控制系统模型的最优控制函数形式,即初始的最优控制函数,由于公式(7)满足公式(6)和
Figure BDA0003534576650000084
这两个条件,所以公式(7)中的u*即为最优控制函数。
本实施例中,在确定最优控制函数后,可根据最优控制函数u*和效用函数J确定最优效用函数J*。具体而言,可将根据公式(7)最后确定的最优控制函数u*代入公式(2)中,得到最优效用函数J*,所述最优效用函数J*即为规划的最优避障路径。
针对如何求解最优控制函数,可采用如下方式进行。具体而言,在得到公式(7)所示的初始的最优控制函数之后,可针对公式(7)中的偏导数进行分解,得到多个分解函数,具体如下所示:
Figure BDA0003534576650000091
Figure BDA0003534576650000092
Figure BDA0003534576650000093
Figure BDA0003534576650000094
进一步的,如图3所示,采用数据驱动的跟踪微分器跟踪逼近最优控制函数中的系统状态变量。
例如,采用公式(8)中的跟踪微分器跟踪公式(10)-(11)中的系统状态变量,并输出该系统状态变量的一阶导数,然后代入公式(10)-(11)中得到公式(10)-(11)所示的更新后的分解函数。本实施例中,可串联两个公式(8)中的跟踪微分器,以便于再跟踪公式(12)-(13)中的系统状态变量,并输出该系统状态变量的二阶导数,然后代入公式(12)-(13)中,得到公式(12)-(13)所示的更新后的分解函数。
本实施例中,系统状态变量和导数均可从提出的数据驱动无模型Hamilton函数和跟踪微分器中得出,从而使得该方法避免了神经网络或迭代方法的训练或者收敛等问题,进而使得该方法能够成为真正实时在线的无人船最优化避障路径规划方法。
进一步的,如图3所示,在得到更新后的分解函数之后,可相应得到最优控制函数u*,即基于HJB方程数据驱动解的无人船最优避障路径规划函数。
具体的,在得到公式(10)-(13)中的更新后的分解函数之后,将其与公式(2)中的效用函数J代入公式(7)中,即可得到最优控制函数u*
在本发明的一个实施例中,所述方法还包括:对初始的最优控制函数进行过零变量处理。
在得到公式(7)所示的初始的最优控制函数时,由于初始的最优控制函数中的所有除数均不能为0,为避免该种情况,可采用公式(14)所示的过零变量处理器(图2中标识8)对过零变量信号进行处理。
x=max(abs(x),0.0001)sign(x) (14)
其中,abs是绝对值函数,max是比较两个变量并输出较大值的函数。
作为一个具体示例,基于HJB方程数据驱动解的无人船最优避障路径规划控制器9的求解过程可由仿真工具Matlab2007a/Simulink及其S-Function工具实现。本实施例中,无人船最优避障路径规划控制器9选择固定步长类型和ODE3(求解器),固定步长为0.01,周期性采样时间不受约束,并设置周期采样时间的任务模式为自动,如下所示:
1)设置初始状态变量x(0)=[1 0]T,u*和J*的初始值分别设置为-2和0;
2)实时测量系统状态变量x(t);由于公式(1)中的动态控制系统模型是未知的,x(t)也是唯一需要从外部测量的信号,x(t)的一阶和二阶导数可从跟踪微分器实时输出;
3)采用公式(4)计算最优效用函数J*,公式(7)计算最优控制函数u*,其中,公式(7)中的每个系统状态变量都可以用跟踪微分器计算出,待求解出每个系统状态变量之后,再根据公式(7)的关系对公式(7)进行更新,最后通过更新后的公式(7)近似每个时间步长上的最优控制函数u*
综上所述,本发明通过推导用于无人船避障路径规划的动态控制系统模型的数据驱动无模型Hamilton函数,然后采用数据驱动的跟踪微分器分解和逼近最优控制函数中的系统状态变量,以得到所述最优控制函数,从而得到无人船最优避障路径规划的解,进而在根本上解决了无人船基于数据驱动HJB方程近似解的最优控制理论问题,且本发明中的动态控制系统模型为未知,所以本发明无需控制系统模型,可仅由测量的系统状态驱动,并且所有其他变量和导数均从提出的数据驱动无模型Hamilton函数和跟踪微分器中得出,使得该方法具有坚实的数学基础,像PID控制器一样工作,避免了神经网络或迭代方法的训练或者收敛等问题,从而使得该方法能够成为真正实时在线的无人船最优化避障路径规划方法。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (10)

1.一种基于HJB方程数据驱动解的无人船最优避障路径规划方法,其特征在于,包括:
步骤S1:给定用于无人船避障路径规划的动态控制系统模型,并获取所述动态控制系统模型在无限时长优化上的效用函数;
步骤S2:确定最优效用函数,并根据所述最优效用函数确定所述动态控制系统模型的数据驱动无模型Hamilton函数;
步骤S3:根据Pontryagin最小化原理,基于所述数据驱动无模型Hamilton函数得到确定所述动态控制系统模型的最优控制函数的必要条件,以确定所述最优控制函数,并根据所述最优控制函数进行无人船最优避障路径规划。
2.如权利要求1所述的基于HJB方程数据驱动解的无人船最优避障路径规划方法,其特征在于,
所述步骤S1中的所述动态控制系统模型采用如下公式表示:
Figure FDA0003534576640000011
所述步骤S1中的所述效用函数采用如下公式表示:
Figure FDA0003534576640000012
其中,x(t)为系统状态变量,u(t)为系统控制变量,A为系统状态变量系数矩阵,b为系统控制变量系数矩阵,J为所述效用函数,Q为二次型系数矩阵,r为系数,t为时间。
3.如权利要求2所述的基于HJB方程数据驱动解的无人船最优避障路径规划方法,其特征在于,所述系统状态变量包括第一变量和第二变量,所述第一变量与无人船和最近障碍物的距离相关,所述第二变量与无人船和最近障碍物的瞬时相对速度相关。
4.如权利要求3所述的基于HJB方程数据驱动解的无人船最优避障路径规划方法,其特征在于,所述步骤S2中的数据驱动无模型Hamilton函数采用如下公式表示:
Figure FDA0003534576640000013
其中,
Figure FDA0003534576640000021
为所述数据驱动无模型Hamilton函数,x为所述x(t),u为所述u(t),J*为所述最优效用函数。
5.如权利要求4所述的基于HJB方程数据驱动解的无人船最优避障路径规划方法,其特征在于,确定所述动态控制系统模型的最优控制函数的必要条件采用如下公式表示:
Figure FDA0003534576640000022
其中,
Figure FDA0003534576640000023
H为所述
Figure FDA0003534576640000024
u*为所述最优控制函数。
6.如权利要求5所述的基于HJB方程数据驱动解的无人船最优避障路径规划方法,其特征在于,所述步骤S3中的确定所述最优控制函数的步骤包括:
步骤S31:根据所述最优控制函数的必要条件确定初始的最优控制函数;
步骤S32:对初始的最优控制函数中的偏导部分进行变量分解,得到多个分解函数;
步骤S33:获取跟踪微分器,并采用所述跟踪微分器跟踪逼近多个所述分解函数中的系统状态变量,得到更新后的多个分解函数;
步骤S34:根据所述效用函数和更新后的多个所述分解函数确定所述最优控制函数。
7.如权利要求6所述的基于HJB方程数据驱动解的无人船最优避障路径规划方法,其特征在于,
所述步骤S31中的初始的最优控制函数采用如下公式表示:
Figure FDA0003534576640000025
所述跟踪微分器采用如下公式表示:
Figure FDA0003534576640000026
其中,x1为系统状态变量,x2为x1的一阶导数,fhan为非线性函数,v为系统输入设定值,r1为时间标尺,h0为滤波因子。
8.如权利要求7所述的基于HJB方程数据驱动解的无人船最优避障路径规划方法,其特征在于,所述非线性函数采用如下公式表示:
Figure FDA0003534576640000031
其中,sign为符号函数,x1(t)为所述x1,x2(t)为所述x2,a、d、d0、y和a0为中间变量。
9.如权利要求8所述的基于HJB方程数据驱动解的无人船最优避障路径规划方法,其特征在于,还包括:对初始的最优控制函数进行过零变量处理。
10.如权利要求4所述的基于HJB方程数据驱动解的无人船最优避障路径规划方法,其特征在于,所述最优效用函数采用如下公式确定:
Figure FDA0003534576640000032
或者,在确定最优控制函数后,根据所述最优控制函数和所述效用函数确定所述最优效用函数。
CN202210215828.3A 2022-03-07 2022-03-07 基于hjb方程数据驱动解的无人船最优避障路径规划方法 Active CN114527768B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210215828.3A CN114527768B (zh) 2022-03-07 2022-03-07 基于hjb方程数据驱动解的无人船最优避障路径规划方法
ZA2022/08069A ZA202208069B (en) 2022-03-07 2022-07-20 Optimal obstacle avoidance path planning of unmanned ship based on data-driven solution of hamilton-jacobi-bellman equation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210215828.3A CN114527768B (zh) 2022-03-07 2022-03-07 基于hjb方程数据驱动解的无人船最优避障路径规划方法

Publications (2)

Publication Number Publication Date
CN114527768A true CN114527768A (zh) 2022-05-24
CN114527768B CN114527768B (zh) 2023-06-30

Family

ID=81626628

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210215828.3A Active CN114527768B (zh) 2022-03-07 2022-03-07 基于hjb方程数据驱动解的无人船最优避障路径规划方法

Country Status (2)

Country Link
CN (1) CN114527768B (zh)
ZA (1) ZA202208069B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240270235A1 (en) * 2023-02-03 2024-08-15 Tongji University Coordinated control method for electric vehiles having independent four-wheel driving and steering
US12122359B2 (en) * 2023-10-18 2024-10-22 Tongji University Coordinated control method for electric vehicles having independent four-wheel driving and steering

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106096048A (zh) * 2016-06-28 2016-11-09 三峡大学 一种基于数据驱动无模型控制的灰霾演化分析方法和系统
CN108879690A (zh) * 2018-08-20 2018-11-23 东北大学 一种交直流混合微电网数据驱动控制方法
US20190001967A1 (en) * 2017-06-30 2019-01-03 MAGNETI MARELLI S.p.A. Path planning method for computing optimal parking maneuvers for road vehicles and corresponding system
CN110110342A (zh) * 2018-12-11 2019-08-09 上海航天控制技术研究所 一种基于邻近算法的组合体航天器数据驱动控制方法
CN110412877A (zh) * 2019-08-30 2019-11-05 中国人民解放军海军航空大学 一种基于nsp算法的舰载机甲板路径规划最优控制方法
WO2021186894A1 (en) * 2020-03-20 2021-09-23 Mitsubishi Electric Corporation Apparatus and method for control with data-driven model adaptation
CN114077256A (zh) * 2021-12-10 2022-02-22 威海海洋职业学院 一种水上无人船路径规划方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106096048A (zh) * 2016-06-28 2016-11-09 三峡大学 一种基于数据驱动无模型控制的灰霾演化分析方法和系统
US20190001967A1 (en) * 2017-06-30 2019-01-03 MAGNETI MARELLI S.p.A. Path planning method for computing optimal parking maneuvers for road vehicles and corresponding system
CN108879690A (zh) * 2018-08-20 2018-11-23 东北大学 一种交直流混合微电网数据驱动控制方法
CN110110342A (zh) * 2018-12-11 2019-08-09 上海航天控制技术研究所 一种基于邻近算法的组合体航天器数据驱动控制方法
CN110412877A (zh) * 2019-08-30 2019-11-05 中国人民解放军海军航空大学 一种基于nsp算法的舰载机甲板路径规划最优控制方法
WO2021186894A1 (en) * 2020-03-20 2021-09-23 Mitsubishi Electric Corporation Apparatus and method for control with data-driven model adaptation
CN114077256A (zh) * 2021-12-10 2022-02-22 威海海洋职业学院 一种水上无人船路径规划方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240270235A1 (en) * 2023-02-03 2024-08-15 Tongji University Coordinated control method for electric vehiles having independent four-wheel driving and steering
US12122359B2 (en) * 2023-10-18 2024-10-22 Tongji University Coordinated control method for electric vehicles having independent four-wheel driving and steering

Also Published As

Publication number Publication date
ZA202208069B (en) 2022-11-30
CN114527768B (zh) 2023-06-30

Similar Documents

Publication Publication Date Title
CN109885883B (zh) 一种基于gk聚类算法模型预测的无人车横向运动的控制方法
CN107065890B (zh) 一种无人车智能避障方法及系统
CN101221238B (zh) 基于高斯均值移动配准的动态偏差估计方法
Chang et al. Adaptive control of hypersonic vehicles based on characteristic models with fuzzy neural network estimators
CN113665574B (zh) 智能汽车换道时长预测及拟人化轨迹规划方法
CN102853836B (zh) 一种基于航迹质量的反馈加权融合方法
CN101701826A (zh) 基于分层粒子滤波的被动多传感器目标跟踪方法
CN111027692A (zh) 一种目标运动态势预测方法及装置
CN112180361A (zh) 一种基于动态联邦滤波的车载雷达目标跟踪方法
CN112651456A (zh) 基于rbf神经网络的无人车控制方法
CN114739391A (zh) 跟踪目标的定位优化方法
Cao et al. End-to-end adaptive cruise control based on timing network
CN114527768A (zh) 基于hjb方程数据驱动解的无人船最优避障路径规划方法
Ebert et al. Deep radar sensor models for accurate and robust object tracking
CN114995403B (zh) 相关噪声及非高斯干扰下轮式移动机器人轨迹跟踪方法
CN116338655A (zh) 一种基于dmd-lstm模型的dvl速度误差标定方法
CN114200959B (zh) 一种融合高斯过程的飞行器轨迹控制方法
Anhalt et al. Concept, Implementation, and Performance Comparison of a Particle Filter for Accurate Vehicle Localization Using Road Profile Data
CN104467742A (zh) 基于高斯混合模型的传感器网络分布式一致性粒子滤波器
Benninger et al. Traffic flow modeling using available cloud-based traffic velocity information
Sun et al. Analysis of coupling mechanism between driving skill and driving style in driver personalization
Kramer et al. Analysis and implementation of a neural extended Kalman filter for target tracking
CN115862310B (zh) 交通信息不确定环境下网联自动车队稳定性分析方法
CN114357872B (zh) 一种基于stacking模型融合的船舶运动黑箱辨识建模与运动预测方法
CN118387142B (zh) 一种车辆自动驾驶的速度控制方法、装置及车辆

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant