CN114527480A - 一种机场复杂环境下的地勤车辆精准定位方法 - Google Patents

一种机场复杂环境下的地勤车辆精准定位方法 Download PDF

Info

Publication number
CN114527480A
CN114527480A CN202111266117.0A CN202111266117A CN114527480A CN 114527480 A CN114527480 A CN 114527480A CN 202111266117 A CN202111266117 A CN 202111266117A CN 114527480 A CN114527480 A CN 114527480A
Authority
CN
China
Prior art keywords
vehicle
positioning
laser radar
target
camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111266117.0A
Other languages
English (en)
Inventor
张昊
王庆
阳媛
牛运丰
汤立凡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Jicui Future City Application Technology Research Institute Co ltd
Original Assignee
Jiangsu Jicui Future City Application Technology Research Institute Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Jicui Future City Application Technology Research Institute Co ltd filed Critical Jiangsu Jicui Future City Application Technology Research Institute Co ltd
Priority to CN202111266117.0A priority Critical patent/CN114527480A/zh
Publication of CN114527480A publication Critical patent/CN114527480A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • G06F18/232Non-hierarchical techniques
    • G06F18/2321Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Data Mining & Analysis (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Theoretical Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Probability & Statistics with Applications (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)

Abstract

本发明公开一种机场复杂环境下的地勤车辆精准定位方法,以降低自主定位成本为前提,重点解决机场半室外及航空器遮挡环境下地勤车辆定位精度差的问题。该算法为:车辆进入非理想区域路侧摄像头根据车辆自主定位信息及运动状态识别车辆;路侧激光雷达锁定目标,基于概率数据关联的卡尔曼滤波位姿估计消除非检测目标的干扰对车辆进行定位;根据环境特点采用协同容错融合算法实现高精度定位。本发明在减少车辆定位设备成本的基础上可为车辆在非理想环境下提供了精确的位置信息,提升车辆运行的安全性与经济性,同时该方法具有精度高和鲁棒性强的优点。

Description

一种机场复杂环境下的地勤车辆精准定位方法
技术领域:
本发明涉及复杂环境下得车辆定位方法,尤其是涉及一种机场非开阔区域环境下得地勤车辆精准定位方法。
技术背景:
目前,机场尚无行之有效的技术手段减少安全事故。而事故很大程度上是由于工作人员存在视线盲区,对飞机、车辆、人员的精确位置不清楚,从而造成作业或指挥上的失误,最终导致不安全事件的发生。如果精准获取飞机、车辆、人员的实时位置信息,针对风险态势,提前发出危警报,从技术层面上可有效减少剐蹭事故的发生,减少经济损失,实现机场智能化的安全管理。
机场地勤车辆的工作环境一般可以分为室外环境、半室内环境和室内环境。室外环境相对空旷,卫星信号相对较好,半室内环境和室内环境相对复杂,卫星信号容易被遮挡,定位偏差较大。就目前来说,还没有一套能够满足机场地勤车辆在不同工作环境下高精度定位要求的系统出现。
上述问题,值得解决。
发明内容:
鉴于此,本发明提出一种机场复杂环境下的地勤车辆精准定位方法,用于解决地勤车辆在半室内及卫星信号遮挡严重,定位结果精度不高的问题。
为达到上述目的,本发明提供如下技术方案:
本发明提供一种机场复杂环境下的地勤车辆精准定位方法,其特征在于,包括以下步骤:
S1,车辆自主定位;
S2,车辆进入非理想区域时路侧摄像头结合车辆自主定位信息进行目标识别与跟踪;
S3,路侧激光雷达背景滤除算法;
S4,路侧激光雷达基于概率数据关联的卡尔曼位姿估计车辆定位算法;
S5,建立协同加权融合定位算法;
依据车辆在非理性环境中的位置及距离激光雷达的距离设定融合定位权值,通过权值结合自主定位与路侧激光雷达定位进行协同加权融合定位,根据定位算法获取车辆精确位置信息,将定位结果反馈自主定位系统,对车辆状态信息进行修正。
进一步,所述的一种机场复杂环境下的地勤车辆精准定位方法,其特征在于,步骤2所述的路侧摄像头对目标车辆的识别与跟踪算法,具体如下:
在光照及通视范围等条件较好时,采用车牌识别方式,通过摄像头捕捉车辆车牌进行车辆识别;
当光线条件较差或视线受阻时,车辆运行至摄像头捕捉区域时,将自主定位信息发送给摄像头,摄像头根据位置锁定该位置区域,进一步根据车辆惯性导航模块所提供速度、加速度以及航向等信息对该区域车辆的运行状态进行自相关比对,通过比对结果锁定目标车辆。
进一步,所述的一种机场复杂环境下的地勤车辆精准定位方法,其特征在于,步骤3所述的路侧激光雷达背景滤除算法,具体如下:
激光雷达的扫描点包括扫描区域内的全部信息,但固定的场景信息对动态的车辆捕获与跟踪产生了干扰,因此,需要先定义车辆运行定位区域,然后对该空间区域内的干扰点进行排除。
采用背景差分法进行路侧激光雷达背景滤除。
将激光雷达任意数据帧M中的每个扫描点利用极坐标的方式进行扇形分割建立对应关系,如下:
Figure BDA0003327043440000021
Figure BDA0003327043440000022
其中,θ角为扫描角度,grid为扫描长度,n为扇区个数,m为栅格个数;
每个栅格中扫描点与原点的距离为:
Figure BDA0003327043440000023
其中,Dij扇形分割中任意i行j列的取值,nk为每个栅格中点的个数,Dk为改点到原点的距离;
判断该扫描点是否属于背景:
Figure BDA0003327043440000024
其中,Ik为1,表示该点为非背景的有效点,Ik为0,表示该点为背景点,Bij为每个栅格中到原点距离的平均值,T为克服阈值选择随距离发生变化的比例关系。
进一步,所述的一种机场复杂环境下的地勤车辆精准定位方法,其特征在于,步骤4所述的路侧激光雷达对目标车辆的定位算法,具体如下:
Figure BDA0003327043440000025
为t时刻激光雷达获取目标车辆卡尔曼滤波的系统状态量,
Figure BDA0003327043440000026
Figure BDA0003327043440000027
为路侧激光雷达在 t-1时刻的最优估计预测t时刻的车辆位姿与协方差矩阵,如下:
Figure BDA0003327043440000028
Figure BDA0003327043440000029
式中:At为状态转移矩阵,ψt为系统状态误差,Qt为系统状态误差的方差。
t时刻第i个观测量为目标观测量的概率
Figure BDA00033270434400000210
如下:
Figure BDA0003327043440000031
式中:
Figure BDA0003327043440000032
为激光雷达在t时刻观测量集合,其中
Figure BDA0003327043440000033
为t时刻第i个观测量,mt为激光雷达在t时刻观测量的总数;φt={Z1,Z2,…,Zt}为直到t时刻激光雷达累积观测量集合;
Figure BDA0003327043440000034
表示t时刻第i个观测量
Figure BDA0003327043440000035
为正确观测量;
Figure BDA0003327043440000036
Figure BDA0003327043440000037
的联合概率密度函数;
Figure BDA0003327043440000038
为Zt的联合概率密度函数。
设定跟踪门,求取Zt
Figure BDA0003327043440000039
的联合概率密度函数;
获取t时刻第i个观测量为正确观测量的概率
Figure BDA00033270434400000310
和t时刻无正确观测量的概率
Figure BDA00033270434400000311
根据卡尔曼滤波原理,可得t时刻目标状态的位姿估计和协方差,进而获取激光雷达目标车辆定位信息。
进一步,所述的一种机场复杂环境下的地勤车辆精准定位方法,其特征在于,步骤5所述的协同容错融合定位算法,具体如下:
K时刻,惯性与GNSS融合子滤波器和惯性与激光雷达融合子滤波器利用K-1时刻主滤波器分配和重置的参数进行更新;
惯性与GNSS融合的故障检测,利用主滤波器一步预测协方差矩阵结算残差协方差和故障检测函数值;
激光雷达的故障检测根据摄像头的影像信息判断目标车辆是否有遮挡,当遮挡存在时激光雷达的测距将发生故障;
故障检测函数与设定阈值进行对比,若小于阈值则认定子系统无故障,通过反馈系数结合量测噪声对子系统进行调节;若大于阈值认定为子系统发生故障,该子系统不参与融合估计,目标定位结果由另一子系统进行估计;若两子系统均发生故障,选择与阈值相差最小的子系统来进行估计,获取目标该时刻定位结果。
进一步,所述的一种机场复杂环境下的地勤车辆精准定位方法,其特征在于,车辆、摄像头、激光雷达的坐标系为:
车辆坐标系为世界坐标系,且坐标点为车辆的质心;
车载惯性导航在车辆坐标系中的相对位姿为
Figure BDA00033270434400000312
其中,V指车辆,I指车载惯性导航;
摄像头坐标系原点为摄像头在空间区域所处的位姿ΓC=[xC,yCC]T,其中,C指摄像头,摄像头所捕获的目标观测量为该相机坐标下的相对位姿,通过ΓC矢量叠加可以将目标坐标转换成世界坐标系中的绝对位置
Figure BDA00033270434400000313
激光雷达坐标系原点为激光雷达在空间区域所安装的位姿ΓL=[xL,yLL]T,其中,L指激光雷达,激光雷达所捕获的目标观测量为该雷达坐标下的相对位姿,通过ΓL矢量叠加可以将目标坐标转换成世界坐标系中的绝对位置
Figure BDA00033270434400000314
摄像头与激光雷达的固定位置在不影响功能的前提下应相邻安放,使得摄像头补足的画面与激光雷达扫描点云信息方向角大致吻合,以便判断目标车辆是否被其他移动物体遮挡。
进一步,所述的一种机场复杂环境下的地勤车辆精准定位方法,其特征在于,所述车路通信模块采用V2X 通信方式获取车辆的自主定位信息与路侧摄像头及激光雷达测量信息,包括:GNSS测量绝对位置信息、车辆速度加速度和航向信息、视觉相对位置信息、激光雷达相对位置信息,最终获取所述位置信息;所述V2X通信方式为DSRC、蓝牙、Wi-Fi、5G中的至少一种。
本发明与现有技术相比,其显著优点为:
(1)可有效解决地勤车辆在机场航空器遮挡、半室外及建筑物附近区域GNSS信号受到遮挡及多路径问题而导致的定位不准确问题;
(2)设备成本低,远由于每辆车辆安装激光雷达来提高定位精度的方案;
(3)根据区域特点设定子系统权重,自适应融合北斗、惯性和激光多种定位方法提高定位精度和可靠性。
附图说明:
图1为定位方法原理图
图2为摄像头对目标车辆识别流程图
图3为协同定位系统框图
具体实施方式:
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图及具体实施例对本发明进行详细描述。
实施例1复杂环境下的地勤车辆精准定位方法原理
定位算法流程如图1所示,
车辆进入摄像头视阈范围内,车辆将自主定位(GNSS+惯导)信息通过V2X通信发送给处理器;处理器根据车辆位置信息指导摄像头锁定目标车辆;摄像头成功捕获车辆后进行目标跟踪,并将车辆坐标信息传递给激光雷达;激光雷达根据摄像头提供的车辆相对位置对目标进行锁定,通过激光点云扫描信息对目标车辆位置进行精确获取,并将结果发送至处理器;处理器依据车辆在非理性环境中的位置及距离激光雷达的距离设定融合定位权值,通过权值结合自主定位与路侧激光雷达定位进行协同加权融合定位,根据定位算法获取车辆精确位置信息,将定位结果反馈自主定位系统,对车辆状态信息进行修正,进而在该复杂区域下获取目标车辆的精确位置信息。
实施例2路侧摄像头对目标车辆的识别与跟踪
如图2所示,在光照及通视范围等条件较好时,采用车牌识别方式,通过摄像头捕捉车辆车牌进行车辆识别;
当光线条件较差或视线受阻时,车辆运行至摄像头捕捉区域时,将自主定位信息发送给摄像头,摄像头根据位置锁定该位置区域,进一步根据车辆惯性导航模块所提供速度、加速度以及航向等信息对该区域车辆的运行状态进行自相关比对,通过比对结果锁定目标车辆。
实施例3路侧激光雷达背景滤除算法
激光雷达的扫描点包括扫描区域内的全部信息,但固定的场景信息对动态的车辆捕获与跟踪产生了干扰,因此,需要先定义车辆运行定位区域,然后对该空间区域内的干扰点进行排除。
采用背景差分法进行路侧激光雷达背景滤除。
将激光雷达任意数据帧M中的每个扫描点利用极坐标的方式进行扇形分割建立对应关系,如下:
Figure BDA0003327043440000041
Figure BDA0003327043440000051
其中,θ角为扫描角度,grid为扫描长度,n为扇区个数,m为栅格个数;
每个栅格中扫描点与原点的距离为:
Figure BDA0003327043440000052
其中,Dij扇形分割中任意i行j列的取值,nk为每个栅格中点的个数,Dk为改点到原点的距离;
判断该扫描点是否属于背景:
Figure BDA0003327043440000053
其中,Ik为1,表示该点为非背景的有效点,Ik为0,表示该点为背景点,Bij为每个栅格中到原点距离的平均值,T为克服阈值选择随距离发生变化的比例关系。
实施例4路侧激光雷达对目标车辆的定位算法
Figure BDA0003327043440000054
为t时刻激光雷达获取目标车辆卡尔曼滤波的系统状态量,
Figure BDA0003327043440000055
Figure BDA0003327043440000056
为路侧激光雷达在 t-1时刻的最优估计预测t时刻的车辆位姿与协方差矩阵,如下:
Figure BDA0003327043440000057
Figure BDA0003327043440000058
式中:At为状态转移矩阵,ψt为系统状态误差,Qt为系统状态误差的方差。
t时刻第i个观测量为目标观测量的概率
Figure BDA0003327043440000059
如下:
Figure BDA00033270434400000510
式中:
Figure BDA00033270434400000511
为激光雷达在t时刻观测量集合,其中
Figure BDA00033270434400000512
为t时刻第i个观测量,mt为激光雷达在t时刻观测量的总数;φt={Z1,Z2,…,Zt}为直到t时刻激光雷达累积观测量集合;
Figure BDA00033270434400000513
表示t时刻第i个观测量
Figure BDA00033270434400000514
为正确观测量;
Figure BDA00033270434400000515
Figure BDA00033270434400000516
的联合概率密度函数;
Figure BDA00033270434400000517
为Zt的联合概率密度函数。
设定椭圆跟踪门,跟踪体积为Vt,干扰信号
Figure BDA00033270434400000518
为正态分布:
Figure BDA00033270434400000519
Figure BDA00033270434400000520
Figure BDA00033270434400000521
其中,
Figure BDA00033270434400000522
为落入跟踪门中的正确观测值的概率;
Figure BDA00033270434400000523
为t时刻激光雷达第i个观测量与系统状态量测试值之差;
Figure BDA00033270434400000524
为观察量与系统预测量误差的协方差矩阵;求取Zt的联合概率密度函数如下:
Figure BDA00033270434400000525
当检测目标落入椭圆球跟踪门中,干扰信号的观测量减一,否则不变,
Figure BDA00033270434400000526
的联合概率密度函数如下:
Figure BDA0003327043440000061
其中,PD为t时刻至多有一个正确观测量的概率;
可得t时刻第i个观测量为正确观测量的概率为:
Figure BDA0003327043440000062
Figure BDA0003327043440000063
根据卡尔曼滤波原理,可得t时刻目标状态的位姿估计和协方差:
Figure BDA0003327043440000064
Figure BDA0003327043440000065
Figure BDA0003327043440000066
Figure BDA0003327043440000067
其中,
Figure BDA0003327043440000068
为观测新息;Kt为卡尔曼增益矩阵;Ht为观测矩阵;I为单位矩阵;根据卡尔曼滤波进而获取激光雷达目标车辆定位信息。
协同容错融合定位算法,具体如下:
融合导航系统状态方程为:
Xk=φk-1Xk-1k-1ωk-1 (18)
其中,Xk为系统k时刻状态估计值,包含15维误差矢量;φk-1为k-1时刻系统状态转移矩阵;Γk-1为k-1时刻系统输入噪声;ωk-1为k-1时刻过程噪声;
惯导/GNSS子系统量测方程为:
Z1(k)=H1(k)X(k)+V1(k) (19)
其中,H1(k)量测状态转移矩阵;V1(k)为量测误差;
同理,惯导/激光雷达子系统量测方程为:
Z2(k)=H2(k)X(k)+V2(k) (20)
子滤波器残差协方差矩阵
Figure BDA0003327043440000069
为:
Figure BDA00033270434400000610
其中,
Figure BDA00033270434400000611
为主滤波器的一步预测协方差;Hk为子滤波器的状态转移矩阵;Ri为量测误差的协方差矩阵;故障检测函数
Figure BDA00033270434400000612
为:
Figure BDA00033270434400000613
其中,Λik为第i个子滤波器的残差向量;
设第i个自滤波器的动态信息分配βi为:
Figure BDA0003327043440000071
其中,Mik为子系统故障门限设定值,值的大小根据误差拟合规律进行设定。

Claims (7)

1.一种机场复杂环境下的地勤车辆精准定位方法,其特征在于,包括以下步骤:
S1,车辆自主定位;
S2,车辆进入非理想区域时路侧摄像头结合车辆自主定位信息进行目标识别与跟踪;
S3,路侧激光雷达背景滤除算法;
S4,路侧激光雷达基于概率数据关联的卡尔曼位姿估计车辆定位算法;
S5,建立协同加权融合定位算法;
依据车辆在非理性环境中的位置及距离激光雷达的距离设定融合定位权值,通过权值结合自主定位与路侧激光雷达定位进行协同加权融合定位,根据定位算法获取车辆精确位置信息,将定位结果反馈自主定位系统,对车辆状态信息进行修正。
2.根据权利要求1所述的一种机场复杂环境下的地勤车辆精准定位方法,其特征在于,步骤2所述的路侧摄像头对目标车辆的识别与跟踪算法,具体如下:
在光照及通视范围条件较好时,采用车牌识别方式,通过摄像头捕捉车辆车牌进行车辆识别;
当光线条件较差或视线受阻时,车辆运行至摄像头捕捉区域时,将自主定位信息发送给摄像头,摄像头根据位置锁定该位置区域,进一步根据车辆惯性导航模块所提供速度、加速度以及航向信息对该区域车辆的运行状态进行自相关比对,通过比对结果锁定目标车辆。
3.根据权利要求1所述的一种机场复杂环境下的地勤车辆精准定位方法,其特征在于,步骤3所述的路侧激光雷达背景滤除算法,具体如下:
激光雷达的扫描点包括扫描区域内的全部信息,但固定的场景信息对动态的车辆捕获与跟踪产生了干扰,因此,需要先定义车辆运行定位区域,然后对该空间区域内的干扰点进行排除;
采用背景差分法进行路侧激光雷达背景滤除;
将激光雷达任意数据帧M中的每个扫描点利用极坐标的方式进行扇形分割建立对应关系,如下:
Figure FDA0003327043430000011
Figure FDA0003327043430000012
其中,θ角为扫描角度,grid为扫描长度,n为扇区个数,m为栅格个数;
每个栅格中扫描点与原点的距离为:
Figure FDA0003327043430000013
其中,Dij扇形分割中任意i行j列的取值,nk为每个栅格中点的个数,Dk为改点到原点的距离;
判断该扫描点是否属于背景:
Figure FDA0003327043430000014
其中,Ik为1,表示该点为非背景的有效点,Ik为0,表示该点为背景点,Bij为每个栅格中到原点距离的平均值,T为克服阈值选择随距离发生变化的比例关系。
4.根据权利要求1所述的一种机场复杂环境下的地勤车辆精准定位方法,其特征在于,步骤4所述的路侧激光雷达对目标车辆的定位算法,具体如下:
Figure FDA0003327043430000021
为t时刻激光雷达获取目标车辆卡尔曼滤波的系统状态量,
Figure FDA0003327043430000022
Figure FDA0003327043430000023
为路侧激光雷达在t-1时刻的最优估计预测t时刻的车辆位姿与协方差矩阵,如下:
Figure FDA0003327043430000024
Figure FDA0003327043430000025
式中:At为状态转移矩阵,ψt为系统状态误差,Qt为系统状态误差的方差;
t时刻第i个观测量为目标观测量的概率
Figure FDA0003327043430000026
如下:
Figure FDA0003327043430000027
式中:
Figure FDA0003327043430000028
为激光雷达在t时刻观测量集合,其中
Figure FDA0003327043430000029
为t时刻第i个观测量,mt为激光雷达在t时刻观测量的总数;φt={Z1,Z2,…,Zt}为直到t时刻激光雷达累积观测量集合;
Figure FDA00033270434300000210
表示t时刻第i个观测量
Figure FDA00033270434300000211
为正确观测量;
Figure FDA00033270434300000212
Figure FDA00033270434300000213
的联合概率密度函数;
Figure FDA00033270434300000214
为Zt的联合概率密度函数;
设定跟踪门,求取Zt
Figure FDA00033270434300000215
的联合概率密度函数;
获取t时刻第i个观测量为正确观测量的概率
Figure FDA00033270434300000216
和t时刻无正确观测量的概率
Figure FDA00033270434300000217
根据卡尔曼滤波原理,可得t时刻目标状态的位姿估计和协方差,进而获取激光雷达目标车辆定位信息。
5.根据权利要求1所述的一种机场复杂环境下的地勤车辆精准定位方法,其特征在于,步骤5所述的协同容错融合定位算法,具体如下:
K时刻,惯性与GNSS融合子滤波器和惯性与激光雷达融合子滤波器利用K-1时刻主滤波器分配和重置的参数进行更新;
惯性与GNSS融合的故障检测,利用主滤波器一步预测协方差矩阵结算残差协方差和故障检测函数值;
激光雷达的故障检测根据摄像头的影像信息判断目标车辆是否有遮挡,当遮挡存在时激光雷达的测距将发生故障;
故障检测函数与设定阈值进行对比,若小于阈值则认定子系统无故障,通过反馈系数结合量测噪声对子系统进行调节;若大于阈值认定为子系统发生故障,该子系统不参与融合估计,目标定位结果由另一子系统进行估计;若两子系统均发生故障,选择与阈值相差最小的子系统来进行估计,获取目标该时刻定位结果。
6.根据权利要求1所述的一种机场复杂环境下的地勤车辆精准定位方法,其特征在于,车辆、摄像头、激光雷达的坐标系为:
车辆坐标系为世界坐标系,且坐标点为车辆的质心;
车载惯性导航在车辆坐标系中的相对位姿为
Figure FDA00033270434300000218
其中,V指车辆,I指车载惯性导航;
摄像头坐标系原点为摄像头在空间区域所处的位姿ΓC=[xC,yCC]T,其中,C指摄像头,摄像头所捕获的目标观测量为该相机坐标下的相对位姿,通过ΓC矢量叠加可以将目标坐标转换成世界坐标系中的绝对位置
Figure FDA0003327043430000031
激光雷达坐标系原点为激光雷达在空间区域所安装的位姿ΓL=[xL,yLL]T,其中,L指激光雷达,激光雷达所捕获的目标观测量为该雷达坐标下的相对位姿,通过ΓL矢量叠加可以将目标坐标转换成世界坐标系中的绝对位置
Figure FDA0003327043430000032
摄像头与激光雷达的固定位置在不影响功能的前提下应相邻安放,使得摄像头补足的画面与激光雷达扫描点云信息方向角大致吻合,以便判断目标车辆是否被其他移动物体遮挡。
7.根据权利要求1所述的一种机场复杂环境下的地勤车辆精准定位方法,其特征在于,所述车路通信模块采用V2X通信方式获取车辆的自主定位信息与路侧摄像头及激光雷达测量信息,包括:GNSS测量绝对位置信息、车辆速度加速度和航向信息、视觉相对位置信息、激光雷达相对位置信息,最终获取所述位置信息;所述V2X通信方式为DSRC、蓝牙、Wi-Fi、5G中的至少一种。
CN202111266117.0A 2021-10-28 2021-10-28 一种机场复杂环境下的地勤车辆精准定位方法 Pending CN114527480A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111266117.0A CN114527480A (zh) 2021-10-28 2021-10-28 一种机场复杂环境下的地勤车辆精准定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111266117.0A CN114527480A (zh) 2021-10-28 2021-10-28 一种机场复杂环境下的地勤车辆精准定位方法

Publications (1)

Publication Number Publication Date
CN114527480A true CN114527480A (zh) 2022-05-24

Family

ID=81619554

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111266117.0A Pending CN114527480A (zh) 2021-10-28 2021-10-28 一种机场复杂环境下的地勤车辆精准定位方法

Country Status (1)

Country Link
CN (1) CN114527480A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115113631A (zh) * 2022-08-29 2022-09-27 科安特(山东)智能装备有限公司 一种可提高作业精度的agv小车视觉自检方法
CN117274862A (zh) * 2023-09-20 2023-12-22 华设设计集团北京民航设计研究院有限公司 基于卷积神经网络的机场地勤车辆状态检测方法和系统
CN117872360A (zh) * 2024-03-13 2024-04-12 成都云豆工业设计有限公司 基于雷达波形反馈的目标属性判定方法、系统及存储介质

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115113631A (zh) * 2022-08-29 2022-09-27 科安特(山东)智能装备有限公司 一种可提高作业精度的agv小车视觉自检方法
CN115113631B (zh) * 2022-08-29 2022-12-06 科安特(山东)智能装备有限公司 一种可提高作业精度的agv小车视觉自检方法
CN117274862A (zh) * 2023-09-20 2023-12-22 华设设计集团北京民航设计研究院有限公司 基于卷积神经网络的机场地勤车辆状态检测方法和系统
CN117274862B (zh) * 2023-09-20 2024-04-30 华设设计集团北京民航设计研究院有限公司 基于卷积神经网络的机场地勤车辆状态检测方法和系统
CN117872360A (zh) * 2024-03-13 2024-04-12 成都云豆工业设计有限公司 基于雷达波形反馈的目标属性判定方法、系统及存储介质
CN117872360B (zh) * 2024-03-13 2024-05-10 成都云豆工业设计有限公司 基于雷达波形反馈的目标属性判定方法、系统及存储介质

Similar Documents

Publication Publication Date Title
CN114527480A (zh) 一种机场复杂环境下的地勤车辆精准定位方法
US11353553B2 (en) Multisensor data fusion method and apparatus to obtain static and dynamic environment features
DE102011117809B4 (de) Verfahren zum Ergänzen der GPS- oder GPS/Sensor-Fahrzeugpositionsbestimmung unter Verwendung zusätzlicher fahrzeuginterner Bilderfassungssensoren
US10424205B2 (en) Auxiliary berthing method and system for vessel
CN1940591B (zh) 使用传感器融合进行目标跟踪的系统和方法
CN102081801B (zh) 多特征自适应融合船舶跟踪和航迹检测方法
CN109212521A (zh) 一种基于前视相机与毫米波雷达融合的目标跟踪方法
CN110850403A (zh) 一种多传感器决策级融合的智能船水面目标感知识别方法
US11538241B2 (en) Position estimating device
CA2853546A1 (en) Identification and analysis of aircraft landing sites
CN112924955B (zh) 一种路侧激光雷达点云坐标动态修正方法
CN113866758B (zh) 一种场面监视方法、系统、装置及可读存储介质
US20210319221A1 (en) Vessel Height Detection Through Video Analysis
CN108974054B (zh) 无缝列车定位方法及其系统
AU2020103979A4 (en) Multi-sensor cooperative target tracking system
CN115965655A (zh) 一种基于雷视一体的交通目标跟踪方法
Mamchenko et al. Algorithm for sensor data merging using analytical module for priority sensor selection
CN111816005A (zh) 基于ads-b的远程驾驶飞机环境监视优化方法
US20220089166A1 (en) Motion state estimation method and apparatus
CN115932834A (zh) 一种基于多源异构数据融合的反无人机系统目标检测方法
Glozman et al. A vision-based solution to estimating time to closest point of approach for sense and avoid
CN112802058A (zh) 一种非法运动目标的跟踪方法及装置
CN108416305B (zh) 连续型道路分割物的位姿估计方法、装置及终端
CN115236656B (zh) 用于飞机避障的多源传感器目标关联方法、设备及介质
CN114690222B (zh) 基于无线频谱无人机探测轨迹获取方法及无人机探测系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination