CN114527171A - 一种基于搭桥结构的天线甲烷传感器 - Google Patents

一种基于搭桥结构的天线甲烷传感器 Download PDF

Info

Publication number
CN114527171A
CN114527171A CN202210188000.3A CN202210188000A CN114527171A CN 114527171 A CN114527171 A CN 114527171A CN 202210188000 A CN202210188000 A CN 202210188000A CN 114527171 A CN114527171 A CN 114527171A
Authority
CN
China
Prior art keywords
metal
antenna
metal patch
bridging
patch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210188000.3A
Other languages
English (en)
Other versions
CN114527171B (zh
Inventor
轩秀巍
王光博
周宝增
赵婉伊
李明吉
李红姬
李琳
孔庆羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Aurora Intelligent Technology Co ltd
Tianjin University of Technology
Original Assignee
Tianjin Aurora Intelligent Technology Co ltd
Tianjin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Aurora Intelligent Technology Co ltd, Tianjin University of Technology filed Critical Tianjin Aurora Intelligent Technology Co ltd
Priority to CN202210188000.3A priority Critical patent/CN114527171B/zh
Publication of CN114527171A publication Critical patent/CN114527171A/zh
Application granted granted Critical
Publication of CN114527171B publication Critical patent/CN114527171B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/221Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance by investigating the dielectric properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/221Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance by investigating the dielectric properties
    • G01N2027/222Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance by investigating the dielectric properties for analysing gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Details Of Aerials (AREA)

Abstract

本发明公开了一种基于搭桥结构的天线甲烷传感器,属于微波天线技术领域。该天线传感器包括辐射金属贴片、石墨烯敏感膜、介质基板和金属接地板。金属贴片和石墨烯敏感膜位于介质基板的上表面,金属接地板位于介质基板的下表面;金属贴片包括长条矩形金属贴片、三角形辐射片、两个U形金属贴片、两个搭桥金属贴片;金属接地板采用镜像L型结构,并在长臂内侧有一个凹型槽。本发明中的石墨烯敏感膜可以吸收可燃气体甲烷,从而影响整个天线的谐振频率,实现对甲烷的无线监测,具有较高的应用价值。

Description

一种基于搭桥结构的天线甲烷传感器
技术领域
本发明属于微波天线技术领域,具体涉及一种基于搭桥结构的天线甲烷传感器。
背景技术
在能源、管道、石油、化工领域中不可避免的存在着各种易燃易爆、有毒有害的气体,这些气体一旦泄漏将可能酿成火灾或者是爆炸事故,给国家和人民的生命财产造成损失。因此,监测有毒有害气体对于工业生产、公共场所和居家生活都具有重要意义。天线传感器不仅可以采集信号,而且可以把信号无线发射出去,同时具备“感”和“传”的功能。但是目前常规的天线传感器带宽有限,灵敏度低,限制了其在某些领域的应用。
为了克服天线传感器频段有限和灵敏度低等缺点,有学者提出采用加载枝节的方法增加工作带宽。然而,该方法会增大天线的体积。文献“Microwave flexible gassensorbased onpolymer multi wall carbon nanotubes sensitive layer”提出利用多壁碳纳米管作为敏感膜检测气体,然而灵敏度只有-642.9Hz/ppm。文献“Hilbert curveinspired miniaturized MIMO antenna for wireless capsule endoscopy”提出基于Hilbert分形理论的天线结构,实现了尺寸缩减功能,但是其只有一个工作频段1.9-3GHz。可见,目前的设计方法不能满足天线传感器高灵敏度、多频段等性能要求。
发明内容
本发明的目的是解决现有天线传感器灵敏度低、频段单一等技术问题,提供一种基于搭桥结构的天线甲烷传感器。
本发明采用的技术方案如下:
一种基于搭桥结构的石墨烯天线可燃气体传感器,包括介质基板(3),所述介质基板(3)的下表面印刷有金属接地板(4),介质基板(3)的上表面依次印制有辐射金属贴片(1)和石墨烯敏感膜(2);
所述的辐射金属贴片(1)包括长条矩形金属贴片(1-1)、第一U形金属贴片(1-3)和第二U形金属贴片(1-4),所述第一U形金属贴片(1-3)和第二U形金属贴片(1-4)开口相反,共用一臂,且在第一U形金属贴片(1-3)和第二U形金属贴片(1-4)开口端的两臂之间分别跨接第一搭桥金属贴片(1-5)和第二搭桥金属贴片(1-6)。所述长条矩形金属贴片(1-1)和第一U形金属贴片(1-3)之间设有三角形金属贴片(1-2),所述三角形金属贴片(1-2)的两个锐角分别连接长条矩形金属贴片(1-1)和第一U形金属贴片(1-3)。
石墨烯敏感膜可以吸收可燃气体甲烷,从而影响整个天线的谐振频率,实现对甲烷的无线监测。
第一搭桥金属贴片(1-5)跨接在第一U形金属贴片(1-3)的两臂上,用于产生第一谐振频率。
第二搭桥金属贴片(1-6)跨接在第二U形金属贴片(1-4)的两臂上,用于产生第二谐振频率。
石墨烯敏感膜(2)跨接在长条矩形金属贴片(1-1)和第一U形金属贴片(1-3)上表面。
金属接地板(4)采用镜像L型结构,由一宽大矩形金属贴片与一小长条矩形金属贴片组成,并在L型内侧夹角处延宽大矩形金属贴片开设有一个凹槽,用于产生第三个谐振频率。
根据此搭桥结构,天线可以实现多频段筛选功能,不同频段间的带宽不一样。
通过第一和第二U形金属贴片(1-3)(1-4)宽度可以对谐振曲线深度进行一定调整,主要影响其筛选性。
第一和第二搭桥金属贴片(1-5)(1-6)分别与第一和第二U形金属贴片(1-3)(1-4)U形底部间的距离同样对谐振频点有着较为显著的影响,通过调整距离可以使得谐振点集中在所需要的三个谐振频率上。
第一和第二搭桥金属贴片(1-5)(1-6)的宽度对对应谐振曲线的Q值有所影响,在取小数点后一位的尺寸选择下,可以达到覆盖所需波段的设计要求。
金属接地板(4)采用的镜像L型结构与辐射金属贴片(1)间形成了平行的互容关系,与馈电孔间有着不同的回流电路长度,提供了第三频点处的较大带宽。
利用搭桥结构所形成的回路中,第一谐振频点频率较低,可以形成有效波长内较为全向的辐射模式。
第二谐振频点频率适中,通过回路电流分析,可以得出其辐射方向主要集中于基板顶部与底部方向。
第三谐振频点频率较高,回路电流较短,谐振方式较为单一,所以其辐射方向主要集中于基板顶部方向。
本发明的优点和有益效果在于:
1、本发明是一款周围环境甲烷气体浓度的新型传感器,用于气体浓度监测,将石墨烯敏感膜用于天线结构中,通过测试环境中甲烷气体浓度的变化从而影响石墨烯层介电常数的变化,利用其气体敏感的特点影响天线谐振点产生偏移,提出了一种新的气体浓度监测方式。
2、本发明是一款周围环境甲烷气体浓度的新型传感器,采用了搭桥结构,利用搭桥与镜像L型金属接地板产生多个谐振频点,具有多频段特点,并且根据结构特征可调节带宽,在不同ISM波段上有着不同的谐振带宽与辐射增益方向,有多种用途。
3、本发明提供了一种新的传感器设计方法,可以完成对周围气体浓度无线监测,并进行数据的收发,在石墨烯层介电常数处于10-90环境下可以较好覆盖2.45GHz频段,具有灵敏度高、多频段、辐射强、稳定性好等优点。
附图说明
图1为本发明天线甲烷传感器的侧视图。
图2为本发明天线甲烷传感器中辐射金属贴片1的俯视尺寸图。
图3为本发明天线甲烷传感器中金属接地板4的俯视尺寸图。
图4为本发明天线甲烷传感器在常态空气中的回波损耗S11三频段数据图。
图5为本发明天线甲烷传感器在常态空气中的回波损耗S11第一谐振频段数据图。
图6为本发明天线甲烷传感器在常态空气中的回波损耗S11第二谐振频段数据图。
图7为本发明天线甲烷传感器在常态空气中的回波损耗S11第三谐振频段数据图。
图8为本发明天线甲烷传感器在不同介电常数石墨烯敏感膜下的第一谐振频段的回波损耗S11频偏图。
图9为本发明天线甲烷传感器在不同介电常数石墨烯敏感膜下的第二谐振频段的回波损耗S11频偏图。
图10为本发明天线甲烷传感器在不同介电常数石墨烯敏感膜下的第三谐振频段的回波损耗S11频偏图。
图11为本发明天线甲烷传感器的灵敏度曲线。
图12为本发明天线甲烷传感器的第一谐振点增益方向图。
图13为本发明天线甲烷传感器的第二谐振点增益方向图。
图14为本发明天线甲烷传感器的第三谐振点增益方向图。
其中,1为辐射金属贴片,1-1长条矩形金属贴片,1-2三角形金属贴片,1-3第一U型金属贴片,1-4第二U型金属贴片,1-5第一搭桥金属贴片,1-6第二搭桥金属贴片,2石墨烯敏感膜,3介质基板,4金属接地板。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明作进一步的详细描述,并介绍本发明的一个优选实施例,对既定环境下甲烷气体浓度的监测。
图1所示为本发明天线传感器的侧视图,该天线传感器主要采用搭桥结构,由辐射金属贴片(1)、石墨烯敏感膜(2)、介质基板(3)和金属接地板(4)组成。其中石墨烯敏感膜为距离馈电孔最近的搭桥结构电路,根据石墨烯敏感层的气敏特性,在周围甲烷气体浓度变化的情况下,石墨烯敏感层的导电性也会发生变化,影响整体天线传感器的谐振频点。介质基板(3)厚度为4.0mm,馈电同轴外圆直径为3.0mm,内圆直径为1.2mm。
石墨烯敏感层对周围环境甲烷气体浓度有敏感的监测能力,正常情况下,石墨烯敏感层的导电能力较好,介电常数较大,在吸收一定甲烷气体后介电常数会有一定程度的降低,从而在搭桥电路中影响谐振频点的有效电长度,本发明利用此特性测量环境中甲烷气体浓度大小。
图2显示了本发明天线甲烷传感器的上层辐射金属贴片的俯视图,图中标出了具体数据参数,与介质基板长宽一致,本实施例中其整体形状呈边长为50.0mm的正方形,其余尺寸也可以形成相应的搭桥电路,本实施案例仅为其中的一个方案。
辐射金属贴片由长条矩形贴片、三角形贴片、两个U形金属贴片、两个搭桥金属贴片组成,所述的辐射金属贴片(1)包括长条矩形金属贴片(1-1)、三角形金属贴片(1-2)、第一U形金属贴片(1-3)、第二U形金属贴片(1-4)、第一搭桥金属贴片(1-5)和第二搭桥金属贴片(1-6)。其中,长条矩形金属贴片(1-1)位于介质基板(3)的一边,第一U形金属贴片(1-3)和第二U形金属贴片(1-4)位于介质基板(3)的另一边,第一U形金属贴片(1-3)和第二U形金属贴片(1-4)开口相反,共用一臂,且在第一U形金属贴片(1-3)和第二U形金属贴片(1-4)开口端的两臂之间分别跨接第一搭桥金属贴片(1-5)和第二搭桥金属贴片(1-6)。三角形金属贴片(1-2)的两个锐角分别连接长条矩形金属贴片(1-1)和第一U形金属贴片(1-3)。
第一和第二U形金属贴片(1-3)(1-4)共有三条矩形金属臂,其中中间金属臂为两U形金属贴片共用金属贴片,臂宽度取决于三段谐振频率,本实施例宽度分别为2.0mm,5.0mm,11.0mm,金属辐射片宽度越宽,谐振频点越小。第一、第二搭桥金属片贴片(1-5)(1-6)所处间隙宽度a、b分别为5.0mm、4.0mm,两搭桥金属贴片(1-5)(1-6)与U形金属贴片(1-3)(1-4)U形底部的距离分别为14.0mm与26.0mm,使得谐振曲线较为平滑,深度较深。
第一谐振频率形成于U形槽的第一搭桥金属贴片(1-5)处,构成谐振频点中心位于910MHz,窄带;第二谐振频率形成于U形槽的第二搭桥金属贴片(1-6)处,构成谐振频点中心位于2490MHz。具体仿真数据展示在图5、图6中。
图3显示了本发明天线甲烷传感器的金属接地板的俯视图,图中标出了具体数据参数。金属接地板4采用镜像L形结构,由一宽大矩形金属贴片与一小长条矩形金属贴片组成,并在L型内侧夹角处延宽大矩形金属贴片开设有一个凹槽,与图2中三角形金属贴片(1-2)结合构成第三谐振点电路回路,由于三角形金属贴片(1-2)的斜边与其余金属贴片形成夹角,该结构形成了不同的有效电长度谐振回路,从而达到拓宽频带的目的。第三谐振频点中心为5600MHz,相对带宽较宽。
图4显示了本发明天线甲烷传感器在石墨烯层不导电情况下,0-7GHz频段下的回波损耗S11,天线具有多频段特性,可以看出同上述谐振频段,该天线覆盖三个ISM波段,各个频段分离较好。
图5显示了本发明天线甲烷传感器在石墨烯层不导电情况下,800MHz-1000MHz频段下的回波损耗S11,可以看出该频段内,天线谐振曲线涉及ISM波段915MHz,带宽为17MHz(898MHz-915MHz),相对带宽为1.85%,为窄带工作模式,有较好的筛选性。
图6显示了本发明天线甲烷传感器在石墨烯层不导电情况下,2300MHz-2700MHz频段下的回波损耗S11,可以看出该频段内,天线谐振曲线涉及ISM波段2450MHz,带宽为336MHz(2348MHz-2684MHz),相对带宽为13.7%,带宽适中,曲线平滑,筛选性较好。
图7显示了本发明天线传感器在4000MHz-6500MHz频段下的回波损耗S11,可以看出该频段内,天线谐振曲线涉及ISM波段5800MHz,带宽为1590MHz(4480MHz-6070MHz),相对带宽为79.1%,带宽较宽,但曲线出现波折,有良好的通信特性。
图8显示了本发明天线甲烷传感器第一谐振频点910MHz随石墨烯层敏感层介电常数变化而产生的频点偏移,可以看出随着石墨烯敏感层介电常数的增加,即石墨烯敏感层导电性能的增加,频点呈下降趋势。谐振频点皆处于-10dB以下,有较大的测量范围,由于其窄带特性,其频点较为清晰。利用此性质,可以使所实施天线传感器监测其周围环境甲烷气体浓度的介电常数变化。
图9显示了本发明天线甲烷传感器第二谐振频点2450MHz随石墨烯层敏感层介电常数变化而产生的频点偏移,从介电常数为10情况出发,可以看出随着石墨烯敏感层介电常数的增加,频点呈下降趋势。谐振频点皆处于-10dB以下。相对带宽变化不大,测量范围较大。
图10显示了本发明天线甲烷传感器第三谐振频点5800MHz随石墨烯层敏感层介电常数变化而产生的频点偏移,从介电常数为10情况出发,可以看出随着石墨烯敏感层介电常数的增加,频点呈下降趋势。谐振频点皆处于-10dB以下。在不同介电常数情况下,该频段的谐振频段可在介电常数为10-80左右的条件下覆盖2.4GHz-2.5GHz ISM波段,可以用作稳定的通信频段,但该频段由于带宽过宽,传感性能不如前两频段,传感性能如图11所示。
图11显示了本发明天线甲烷传感器的灵敏度曲线。第一谐振频率介电常数和谐振频率之间的线性关系可以通过使用方程表示:f=1.094×10-4εr 2-0.017εr+1.032,其中,εr是周围环境的介电常数,f为天线甲烷传感器的谐振频率。因此,当周围环境甲烷气体浓度发生变化时,εr改变,进而影响天线甲烷传感器的谐振频率。第二谐振频率介电常数和谐振频率之间的线性关系可以通过使用方程表示:f=1.642×10-4εr 2-0.025εr+1.500。第三谐振频率介电常数和谐振频率之间的线性关系可以通过使用方程表示:f=2.012×10-4εr 2-0.042εr+4.364。拟合优度R2分别为0.97897、0.97876、0.98483,都较接近于1,拟合效果良好。考虑到谐振频率的不同,该天线甲烷传感器在第一谐振频率与第二谐振频率的绝对误差较小。
图12显示了本发明天线甲烷传感器在第一谐振点的增益方向图。所实施天线甲烷传感器在工作频点处有着良好的辐射方向图和辐射增益。辐射增益最高值为-4.4545dB,有较好的全向辐射性,辐射旁瓣较小。天线在低频段辐射增益较小,辐射方向较为分散。
图13显示了本发明天线甲烷传感器在第二谐振点的增益方向图。所实施天线甲烷传感器在工作频点处有着良好的辐射方向图和辐射增益。辐射增益最高值为4.8507dB,主要面向天线顶部与底部辐射,辐射旁瓣较小,较第一频段辐射方向性加强。
图14显示了本发明天线甲烷传感器在第三谐振点的增益方向图。所实施天线甲烷传感器在工作频点处有着良好的辐射方向图和辐射增益。辐射增益最高值为5.4547dB,主要面向天线顶部,辐射旁瓣增益较小,辐射方向性较强。在三个频段有不同的辐射增益效果,可以根据需求进行使用。
以上所述的实施例只是本发明的一个较佳的方案,然而其并非用以限制本发明。有关技术领域的普通技术人员,在不脱离本发明的思路和范围的情况下,可以做出各种变化和变型。例如,上述实例的辐射金属片尺寸、辐射线的线宽、天线传感器的应用场景等,均可以按照本发明所述原理进行更新与改进。
由此可见,凡采取等同替换或等效变换的方式所获得的技术方案,均落在本发明的保护范围内。

Claims (5)

1.一种基于搭桥结构的天线甲烷传感器,其特征在于包括介质基板(3),所述介质基板(3)的下表面印刷有金属接地板(4),介质基板(3)的上表面依次印制有辐射金属贴片(1)和石墨烯敏感膜(2);
所述的辐射金属贴片(1)包括长条矩形金属贴片(1-1)、第一U形金属贴片(1-3)与第二U形金属贴片(1-4),所述第一U形金属贴片(1-3)和第二U形金属贴片(1-4)开口相反,共用一臂,且在第一U形金属贴片(1-3)和第二U形金属贴片(1-4)开口端的两臂之间分别跨接第一搭桥金属贴片(1-5)和第二搭桥金属贴片(1-6),所述长条矩形金属贴片(1-1)和第一U形金属贴片(1-3)之间设有三角形金属贴片(1-2),所述三角形金属贴片(1-2)的两个锐角分别连接长条矩形金属贴片(1-1)和第一U形金属贴片(1-3)。
2.根据权利要求1所述的基于搭桥结构的石墨烯天线可燃气体传感器,其特征在于,所述第一搭桥金属贴片(1-5)跨接在第一U形金属贴片(1-3)的两臂上,用于产生第一谐振频率。
3.根据权利要求1所述的基于搭桥结构的石墨烯天线可燃气体传感器,其特征在于,所述第二搭桥金属贴片(1-6)跨接在U形金属贴片(1-4)的两臂上,用于产生第二谐振频率。
4.根据权利要求1所述的基于搭桥结构的石墨烯天线可燃气体传感器,其特征在于,所述石墨烯敏感膜(2)跨接在长条矩形金属贴片(1-1)和第一U形金属贴片(1-3)上表面。
5.根据权利要求1所述的基于搭桥结构的石墨烯天线可燃气体传感器,其特征在于,所述金属接地板(4)采用镜像L型结构,由一宽大矩形金属贴片与小长条矩形金属贴片组成,并在L型内侧夹角处延宽大矩形金属贴片开设有一凹槽,用于产生第三个谐振频率。
CN202210188000.3A 2022-02-28 2022-02-28 一种基于搭桥结构的天线甲烷传感器 Active CN114527171B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210188000.3A CN114527171B (zh) 2022-02-28 2022-02-28 一种基于搭桥结构的天线甲烷传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210188000.3A CN114527171B (zh) 2022-02-28 2022-02-28 一种基于搭桥结构的天线甲烷传感器

Publications (2)

Publication Number Publication Date
CN114527171A true CN114527171A (zh) 2022-05-24
CN114527171B CN114527171B (zh) 2023-07-04

Family

ID=81624382

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210188000.3A Active CN114527171B (zh) 2022-02-28 2022-02-28 一种基于搭桥结构的天线甲烷传感器

Country Status (1)

Country Link
CN (1) CN114527171B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201509103U (zh) * 2009-05-15 2010-06-16 Abb股份有限公司 用于机器的系统以及相关的接近传感器或执行机构
CN105870613A (zh) * 2016-04-07 2016-08-17 清华大学 一种用于环境监测的双频高灵敏度无源可重构传感天线
US20190204265A1 (en) * 2018-01-04 2019-07-04 Lyten, Inc. Resonant gas sensor
CN112467341A (zh) * 2020-11-10 2021-03-09 浙江中烟工业有限责任公司 一种基于石墨烯的频率可调谐车载天线
CN112964936A (zh) * 2021-01-30 2021-06-15 天津理工大学 一种对周围环境介电常数敏感的微型天线传感器
US20210328351A1 (en) * 2020-04-17 2021-10-21 Apple Inc. Electronic Devices Having Dielectric Resonator Antennas with Parasitic Patches

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201509103U (zh) * 2009-05-15 2010-06-16 Abb股份有限公司 用于机器的系统以及相关的接近传感器或执行机构
CN105870613A (zh) * 2016-04-07 2016-08-17 清华大学 一种用于环境监测的双频高灵敏度无源可重构传感天线
US20190204265A1 (en) * 2018-01-04 2019-07-04 Lyten, Inc. Resonant gas sensor
US20210328351A1 (en) * 2020-04-17 2021-10-21 Apple Inc. Electronic Devices Having Dielectric Resonator Antennas with Parasitic Patches
CN112467341A (zh) * 2020-11-10 2021-03-09 浙江中烟工业有限责任公司 一种基于石墨烯的频率可调谐车载天线
CN112964936A (zh) * 2021-01-30 2021-06-15 天津理工大学 一种对周围环境介电常数敏感的微型天线传感器

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GUANGBO WANG ET AL: "A miniaturized implantable antenna sensor for wireless capsule endoscopy system", AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, pages 1 - 10 *
S DESHMUKH ET AL: "Unpowered antenna sensor for crack detection and measurement", PROCEEDINGS OF THE SPIE, pages 764742 *
薛松涛;蒋灿;谢丽宇;王世聪;万国春;: "基于矩形贴片天线的应变传感器模拟与测试", 振动.测试与诊断, no. 01, pages 144 - 150 *

Also Published As

Publication number Publication date
CN114527171B (zh) 2023-07-04

Similar Documents

Publication Publication Date Title
Tiwari et al. Neutralization technique based two and four port high isolation MIMO antennas for UWB communication
US9627772B2 (en) Passive repeater for wireless communications
US7307625B2 (en) Touch panel, and input device and electronic apparatus each equipped with the touch panel
CN100514869C (zh) 用于降低折叠式通信手持机中接地效应的装置
CN102396109B (zh) 多频带偶极子天线
US7095374B2 (en) Low-profile embedded ultra-wideband antenna architectures for wireless devices
US6828939B2 (en) Multi-band antenna
Masius et al. Miniature high gain slot-fed rectangular dielectric resonator antenna for IoT RF energy harvesting
Chaturvedi et al. Compact QMSIW based antennas for WLAN/WBAN applications
Kulkarni An ultra-thin, dual band, Sub 6 GHz, 5G and WLAN antenna for next generation laptop computers
Biswas et al. Compact wearable UWB MIMO antenna with reduced mutual coupling and notch characteristics of WLAN band
US20100039328A1 (en) Annular antenna
SJ et al. Dual Band Monopole Antenna For WLAN MIMO Applications at 2.4 and 5 GHz
CN114527171A (zh) 一种基于搭桥结构的天线甲烷传感器
Shinde et al. Design of triple band slot antenna for 802.11 a/b WLAN and upper UWB application using pentagon tuning stub
US11621492B2 (en) Spiral wideband low frequency antenna
US20060176221A1 (en) Low-profile embedded ultra-wideband antenna architectures for wireless devices
Bora et al. The Design of Closed Square RR Loaded 2-Port MIMO for Dual Band Applications
Javali et al. A comparitive study on the performance of circular patch antenna using low cost substrate for S-band applications
CN103872444B (zh) 应用于射频检测程序的印刷式天线模块
Li et al. A band-notched base station antenna using the grounded coplanar waveguide filter
CN109546335B (zh) 一种新型的低剖面宽带全向天线
Bhushan et al. Cylindrical Dielectric Resonator Antenna for WiFi Jammer for blocking WiFi calls at prison
KR20040004218A (ko) 무선 랜 광대역 칩 안테나
Salih et al. A miniaturized dual-band meander line antenna for RF energy harvesting applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant