CN114525418B - 一种利用串联孔喉微通道在高相比下强化稀土钕离子萃取的方法 - Google Patents

一种利用串联孔喉微通道在高相比下强化稀土钕离子萃取的方法 Download PDF

Info

Publication number
CN114525418B
CN114525418B CN202210231205.5A CN202210231205A CN114525418B CN 114525418 B CN114525418 B CN 114525418B CN 202210231205 A CN202210231205 A CN 202210231205A CN 114525418 B CN114525418 B CN 114525418B
Authority
CN
China
Prior art keywords
rare earth
phase
channel
micro
extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210231205.5A
Other languages
English (en)
Other versions
CN114525418A (zh
Inventor
葛雪惠
黄晓连
王晓达
杨臣
邱挺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202210231205.5A priority Critical patent/CN114525418B/zh
Publication of CN114525418A publication Critical patent/CN114525418A/zh
Application granted granted Critical
Publication of CN114525418B publication Critical patent/CN114525418B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • B01D11/0488Flow sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • B01D11/0496Solvent extraction of solutions which are liquid by extraction in microfluidic devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

本发明公开了一种串联孔喉微通道在高相比下强化萃取稀土钕离子的方法,属于湿法冶金技术领域。首先将P507加入磺化煤油得到有机相,将稀土盐溶液作为水相,将有机相与水相按照相比1:20~1:200,以1005~1050μL/min的体积流量经过微通道进行常温萃取,最终获得稀土元素萃取相和萃余相。本发明利用所设计的微通道比表面积高、传质速率快等优点,在高相比(>10:1)下进行萃取实验,通过串联孔喉微通道优异的传质性能实现高效萃取稀土钕的目标,是一种安全、高效、低耗的方法。

Description

一种利用串联孔喉微通道在高相比下强化稀土钕离子萃取的 方法
技术领域
本发明属于湿法冶金技术领域,具体涉及一种利用串联孔喉微通道在高相比下强化稀土钕离子萃取的方法。
背景技术
我国稀土资源十分丰富,其应用亦十分广泛,在钢铁、储氢材料、催化剂、冶金、玻璃陶瓷、核工业、农业及医药等诸多领域均起着至关重要的作用。目前稀土萃取分离工艺有溶剂萃取法、吸附法、离子交换法、膜分离法等,其中溶剂萃取法作为一种经典而古老的方法在工业上广泛使用。但是现行的传统溶剂萃取技术及其配套的工业设备大多针对的g/L级的高浓度稀土溶液,在处理低浓度水体时,会有混合分散效果差、萃取效率低、相比小、能耗高等缺点。
微分散技术是上世纪90年代发展起来的一种基于机械力产生微米尺度两相或多相分散乳液的技术,由该分散技术得到的液滴尺寸比较小(几微米到几百微米),比传统萃取设备分散得到的液滴尺寸小1 ~ 3个数量级,因此其设备的比表面积相对于传统的分散设备有了极大的提高,这对于强化液液两相传质有很大的促进作用。使用微分散技术得到的液滴尺寸分布均匀,过程可控,重复性好,微型设备的安全性高,能耗少,是一种有希望在液液萃取工业上大展身手的分散技术。孔喉结构微通道可将一个母液滴(气泡)一次性破裂为多个子液滴(气泡),其尺寸甚至可以小于母液滴(气泡)的数十倍,破裂效率较高。微通道萃取金属离子的原理是微反应器较高的比表面积能够增强两相中目标元素的浓度梯度,大大提高了萃取推动力,传质效率大大提高,进而强化了冶金操作单元过程。微通道萃取具有尺寸小、试剂消耗量小、环境污染小等特点,而串联孔喉微通道不仅具有这些优势,更具有破裂产生的液滴多、比表面积更小、传质距离更短的长处。
近年来,微型化萃取传质装置的技术日趋成熟,微通道萃取传质设备因其可以增大传质面积、提高传质效率,克服传统稀土萃取过程中的很多问题,串联孔喉微通道可进一步提高传质性能,若将其应用于稀土元素萃取领域,具有广阔的发展前景。
发明内容
本发明的主要目的在于利用串联孔喉微通道在高相比下强化稀土钕离子的萃取。本发明结合微通道比表面积高、传质速率快等优点,通过串联孔喉微通道缩短传质距离、两相界面接触实现高效萃取低浓度稀土钕离子的目标,是一种安全、高效、低耗的方法。
为实现上述的发明目的,本发明采用以下技术方案:
一种利用串联孔喉微通道在高相比下强化稀土钕离子萃取的方法包括以下步骤:
(1)首先将磺化煤油加入到P507中,配制得到0.5 ~ 1.5 mol/L 的有机相;
(2)将加入0.5wt%氟碳型表面活性剂和0.3wt%曲拉通X-100的稀土盐溶液作为水相,将步骤(1)的有机相与水相按照体积比1:20 ~ 1:200,以1005 ~ 1050 μL/min的体积流量经过微通道进行常温萃取,最终获得稀土元素萃取相和萃余相。
所述步骤(2)中的稀土盐溶液为氯化稀土盐溶液,稀土盐溶液浓度为50 ~ 150mg/L,稀土盐溶液用酸或碱调整pH为3 ~ 5。
所述步骤(2)中微通道为串联孔喉微通道,包括前部、中部和后部;所述前部为T型微通道,其两个端口分别为水相和有机相的进口,另一端口与中部的一端口通过喉部A相连,中部的另一端口与后部的一端口通过喉部B相连,后部的另一端口为萃取相和萃余相出口。前部、中部和后部的截面为正方形,前部的长宽高分别为15mm、1mm、1mm,中部的长宽高分别为15mm、2mm、2mm,后部的长宽高分别为15mm、1mm、1mm;喉部A的截面为长方形,长宽高分别为1mm、0.2mm、0.1mm;喉部B的截面为长方形,长宽高分别为1mm、0.2mm、0.1mm。
本发明的有益效果在于:
(1)本发明串联孔喉微通道萃取稀土钕离子具有设备占地面积小的优点。
(2)本发明采用串联孔喉微通道高效萃取稀土,反应时间缩短,萃取效率大大提高。
(3)水相和有机相通过两相界面接触,避免常规萃取强烈搅拌引起的乳化现象。
(4)本发明使用串联孔喉微通道在高相比下进行萃取,实现低浓度下钕离子的富集。
(5)使用微通道萃取在密闭的反应器中进行,避免有机相与空气直接接触,提高了萃取过程的安全性。
附图说明
图1为本发明的串联孔喉微通道三维结构示意图(a)和主俯视图(b);
图2为对比例中T型通道三维结构示意图;
图中:1-前部,2-中部,3-后部,4-喉部A,5-喉部B。
具体实施方法
通过以下具体的实施例对本发明作进一步阐述。但本发明的保护范围并不限于以下实施例。
如图1所示,串联孔喉微通道,包括前部1、中部2和后部3;所述前部为T型微通道,其两个端口分别为水相和有机相的进口,另一端口与中部的一端口通过喉部A4相连,中部的另一端口与后部的一端口通过喉部B5相连,后部的另一端口为萃取相和萃余相出口;前部、中部和后部的截面为正方形,前部的长宽高分别为15mm、1mm、1mm,中部的长宽高分别为15mm、2mm、2mm,后部的长宽高分别为15mm、1mm、1mm;喉部A的截面为长方形,长宽高分别为1mm、0.2mm、0.1mm;喉部B的截面为长方形,长宽高分别为1mm、0.2mm、0.1mm。
实施例1
利用串联孔喉微通道在高相比下强化稀土钕离子萃取的方法,其具体步骤如下:
(1)首先将磺化煤油加入P507中,得到1mol/L的有机相。
称取15.3025g P507加入50ml的磺化煤油中,搅拌得到有机相。
(2)将稀土氯化盐溶液作为水相,将步骤(1)的有机相与水相按照相比为1:50,以1020 μL/min 的体积流量经过串联孔喉微通道中进行常温萃取,孔喉微通道出口连接10m聚四氟乙烯管子,最终获得含稀土元素的萃取相和萃余相,其中稀土盐溶液为100mg/L的NdCl3溶液,采用稀盐酸调整溶液的pH为4。
本实施例中Nd的萃取效率可达99.81%。
对比例1
(1)首先将磺化煤油加入P507中,得到1mol/L的有机相。
称取15.3025g P507加入50ml的磺化煤油中,搅拌得到有机相。
(2)将稀土氯化盐溶液作为水相,将步骤(1)的有机相与水相按照相比为1:50,以1020 μL/min 的体积流量经过T型微通道中进行常温萃取,T型微通道出口连接10m聚四氟乙烯管子,最终获得含稀土元素的萃取相和萃余相,其中稀土盐溶液为100mg/L的NdCl3溶液,采用稀盐酸调整溶液的pH为4。
本对比例中Nd的萃取效率是95.25%。
在对比例中使用的微通道为T型微通道,在此微通道中液滴只能产生并稳定流动。而在实施例中,设计的串联孔喉微通道在T型处产生液滴后,经过喉部A,液滴会发生破裂,此时液滴内部产生循环,增强了传质。并且在中部2处通道结构扩大,使得液滴停留时间增长,提高萃取效率。此外,通过第喉部B处液滴会发生二次破裂,进一步强化传质。综上,串联孔喉微通道将萃取效率大大提高。
实施例2
利用串联孔喉微通道在高相比下强化稀土钕离子萃取的方法,其具体步骤如下:
(1)首先将磺化煤油加入P507中,得到1mol/L的有机相。
称取15.3025g P507加入50ml的磺化煤油中,搅拌得到有机相。
(2)将稀土氯化盐溶液作为水相,将步骤(1)的有机相与水相按照相比为1:100,以1010 μL/min 的体积流量经过串联孔喉微通道中进行常温萃取,孔喉微通道出口连接10m聚四氟乙烯管子,最终获得含稀土元素的萃取相和萃余相,其中稀土盐溶液为100mg/L的NdCl3溶液,采用稀盐酸调整溶液的pH为4。
本实施例中Nd的萃取效率可达100%
对比例2
(1)首先将磺化煤油加入P507中,得到1mol/L的有机相。
称取15.3025g P507加入50ml的磺化煤油中,搅拌得到有机相。
(2)将稀土氯化盐溶液作为水相,将步骤(1)的有机相与水相按照相比为1:100,以1010 μL/min 的体积流量经过T型微通道中进行常温萃取,T型微通道出口连接10m聚四氟乙烯管子,最终获得含稀土元素的萃取相和萃余相,其中稀土盐溶液为100mg/L的NdCl3溶液,采用稀盐酸调整溶液的pH为4。
本对比例中Nd的萃取效率是75.76%。
实施例3
利用串联孔喉微通道在高相比下强化稀土钕离子萃取的方法,其具体步骤如下:
(1)首先将磺化煤油加入P507中,得到1mol/L的有机相。
称取15.3025g P507加入50ml的磺化煤油中,搅拌得到有机相。
(2)将稀土氯化盐溶液作为水相,将步骤(1)的有机相与水相按照相比为1:150,以1006.7μL/min 的体积流量经过串联孔喉微通道中进行常温萃取,孔喉微通道出口连接10m聚四氟乙烯管子,最终获得含稀土元素的萃取相和萃余相,其中稀土盐溶液为100mg/L的NdCl3溶液,采用稀盐酸调整溶液的pH为4。
本实施例中Nd的萃取效率可达100%。
对比例3
(1)首先将磺化煤油加入P507中,得到1mol/L的有机相。
称取15.3025g P507加入50ml的磺化煤油中,搅拌得到有机相。
(2)将稀土氯化盐溶液作为水相,将步骤(1)的有机相与水相按照相比为1:150,以1006.7 μL/min 的体积流量经过T型微通道中进行常温萃取,T型微通道出口连接10m聚四氟乙烯管子,最终获得含稀土元素的萃取相和萃余相,其中稀土盐溶液为100mg/L的NdCl3溶液,采用稀盐酸调整溶液的pH为4。
本对比例中Nd的萃取效率是67.02%。
实施例4
利用串联孔喉微通道在高相比下强化稀土钕离子萃取的方法,其具体步骤如下:
(1)首先将磺化煤油加入P507中,得到1mol/L的有机相。
称取15.3025g P507加入50ml的磺化煤油中,搅拌得到有机相。
(2)将稀土氯化盐溶液作为水相,将步骤(1)的有机相与水相按照相比为1:200,以1005 μL/min 的体积流量经过串联孔喉微通道中进行常温萃取,孔喉微通道出口连接10m聚四氟乙烯管子,最终获得含稀土元素的萃取相和萃余相,其中稀土盐溶液为100mg/L的NdCl3溶液,采用稀盐酸调整溶液的pH为4。
本实施例中Nd的萃取效率可达100%。
对比例4
(1)首先将磺化煤油加入P507中,得到1mol/L的有机相。
称取15.3025g P507加入50ml的磺化煤油中,搅拌得到有机相。
(2)将稀土氯化盐溶液作为水相,将步骤(1)的有机相与水相按照相比为1:200,以1005 μL/min 的体积流量经过T型微通道中进行常温萃取,T型微通道出口连接10m聚四氟乙烯管子,最终获得含稀土元素的萃取相和萃余相,其中稀土盐溶液为100mg/L的NdCl3溶液,采用稀盐酸调整溶液的pH为4。
本对比例中Nd的萃取效率是60.25%。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (2)

1.一种利用串联孔喉微通道在高相比下强化稀土钕离子萃取的方法,其特征在于,包括以下步骤:
(1)首先将磺化煤油加入到P507中,配制得到0.5 ~ 1.5 mol/L 的有机相;
(2)将加入0.5wt%氟碳型表面活性剂和0.3wt%曲拉通X-100的稀土盐溶液作为水相,将步骤(1)的有机相与步骤(2)水相按照体积比为1:20 ~ 1:200,以1005 ~ 1050 μL/min的体积流量经过串联孔喉微通道进行常温萃取,最终获得稀土元素萃取相和萃余相;
所述串联孔喉微通道包括前部、中部和后部;所述前部为T型微通道,其两个端口分别为水相和有机相的进口,另一端口与中部的一端口通过喉部A相连,中部的另一端口与后部的一端口通过喉部B相连,后部的另一端口为萃取相和萃余相出口;
前部、中部和后部的截面为正方形,前部的长宽高分别为15mm、1mm、1mm,中部的长宽高分别为15mm、2mm、2mm,后部的长宽高分别为15mm、1mm、1mm;喉部A的截面为长方形,长宽高分别为1mm、0.2mm、0.1mm;喉部B的截面为长方形,长宽高分别为1mm、0.2mm、0.1mm。
2. 根据权利要求1所述的利用串联孔喉微通道在高相比下强化稀土钕离子萃取的方法,其特征在于:步骤(2)中的稀土盐溶液为氯化稀土盐溶液,稀土盐溶液浓度为50 ~ 150mg/L,稀土盐溶液用酸或碱调整pH为3~ 5。
CN202210231205.5A 2022-03-10 2022-03-10 一种利用串联孔喉微通道在高相比下强化稀土钕离子萃取的方法 Active CN114525418B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210231205.5A CN114525418B (zh) 2022-03-10 2022-03-10 一种利用串联孔喉微通道在高相比下强化稀土钕离子萃取的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210231205.5A CN114525418B (zh) 2022-03-10 2022-03-10 一种利用串联孔喉微通道在高相比下强化稀土钕离子萃取的方法

Publications (2)

Publication Number Publication Date
CN114525418A CN114525418A (zh) 2022-05-24
CN114525418B true CN114525418B (zh) 2023-10-03

Family

ID=81627373

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210231205.5A Active CN114525418B (zh) 2022-03-10 2022-03-10 一种利用串联孔喉微通道在高相比下强化稀土钕离子萃取的方法

Country Status (1)

Country Link
CN (1) CN114525418B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116251380A (zh) * 2023-03-16 2023-06-13 福州大学 一种针对高相比体系的萃取方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101132854A (zh) * 2004-11-16 2008-02-27 万罗赛斯公司 使用微通道技术的多相反应方法
WO2010022441A1 (en) * 2008-08-25 2010-03-04 University Of South Australia Extraction processes
CN105112658A (zh) * 2015-08-28 2015-12-02 昆明理工大学 一种微通道萃取稀土元素的方法
CN106290076A (zh) * 2016-07-27 2017-01-04 西安交通大学 一种变孔喉数量的微通道实验装置
CN109776646A (zh) * 2019-03-04 2019-05-21 河南省科学院高新技术研究中心 一种连续逆流微通道萃取制备高纯度胆固醇的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6875247B2 (en) * 2000-06-06 2005-04-05 Battelle Memorial Institute Conditions for fluid separations in microchannels, capillary-driven fluid separations, and laminated devices capable of separating fluids
US9150494B2 (en) * 2004-11-12 2015-10-06 Velocys, Inc. Process using microchannel technology for conducting alkylation or acylation reaction

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101132854A (zh) * 2004-11-16 2008-02-27 万罗赛斯公司 使用微通道技术的多相反应方法
WO2010022441A1 (en) * 2008-08-25 2010-03-04 University Of South Australia Extraction processes
CN105112658A (zh) * 2015-08-28 2015-12-02 昆明理工大学 一种微通道萃取稀土元素的方法
CN106290076A (zh) * 2016-07-27 2017-01-04 西安交通大学 一种变孔喉数量的微通道实验装置
CN109776646A (zh) * 2019-03-04 2019-05-21 河南省科学院高新技术研究中心 一种连续逆流微通道萃取制备高纯度胆固醇的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《三维孔喉结构微通道内液滴的破裂行为研究》;《化工学报》;《化工学报》;第70卷(第10期);第3924-3931页 *

Also Published As

Publication number Publication date
CN114525418A (zh) 2022-05-24

Similar Documents

Publication Publication Date Title
Chen et al. Fast extraction and enrichment of rare earth elements from waste water via microfluidic-based hollow droplet
Darekar et al. Liquid–liquid extraction in microchannels with Zinc–D2EHPA system
Yang et al. An experimental study of copper extraction characteristics in a T‐junction microchannel
CN114525418B (zh) 一种利用串联孔喉微通道在高相比下强化稀土钕离子萃取的方法
Jiang et al. Separation of lanthanum and cerium from chloride medium in presence of complexing agent along with EHEHPA (P507) in a serpentine microreactor
He et al. Intensified extraction and separation Pr (III)/Nd (III) from chloride solution in presence of a complexing agent using a serpentine microreactor
Yin et al. Study on mass transfer behavior of extracting La (III) with EHEHPA (P507) using rectangular cross-section microchannel
Darekar et al. On microfluidic solvent extraction of uranium
He et al. Extraction of samarium using a serpentine Y-junction microreactor with 2-ethylhexyl phosphonic acid mono-2-ethylhexyl
CN107828961B (zh) 一种稀土元素离子的萃取方法及得到的稀土富集液
Xie et al. High-throughput extraction and separation of Ce (III) and Pr (III) using a chaotic advection microextractor
CN103667697B (zh) 一种从低浓度硫酸锌溶液中萃取锌的方法
CN103146934B (zh) 一种利用微流体技术萃取分离钴、镍的方法
CN105112658A (zh) 一种微通道萃取稀土元素的方法
CN112774596A (zh) 一种微流控制备氧化石墨烯的设备
Chen et al. Efficient extraction and stripping of Nd (III), Eu (III) and Er (III) by membrane dispersion micro-extractors
He et al. Solvent extraction performance of Sm (III) using a T-junction microreactor with 2-ethylhexyl phosphonic acid mono-2-ethylhexyl (EHEHPA)
Angeli et al. Intensified liquid-liquid extraction technologies in small channels: A review
Zhang et al. Intensified extraction and separation of zinc from cadmium and manganese by a slug flow capillary microreactor
Zhang et al. Solvent extraction of Ce (III) and Pr (III) with P507 using SiC foam as a static mixer
CN112657336B (zh) 一种稳定同位素浮游萃取精密分离的方法
CN113198402B (zh) 一种多级串联微反应器及流体混合方法
Muto et al. Liquid–Liquid Extraction of Lithium Ions Using a Slug Flow Microreactor: Effect of Extraction Reagent and Microtube Material
CN116251380A (zh) 一种针对高相比体系的萃取方法
Chen et al. Fast extraction of rare earth mixtures by membrane dispersion micro-extractors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant