CN114510517A - A data processing method and system for health management of large rotating units - Google Patents
A data processing method and system for health management of large rotating units Download PDFInfo
- Publication number
- CN114510517A CN114510517A CN202210188364.1A CN202210188364A CN114510517A CN 114510517 A CN114510517 A CN 114510517A CN 202210188364 A CN202210188364 A CN 202210188364A CN 114510517 A CN114510517 A CN 114510517A
- Authority
- CN
- China
- Prior art keywords
- data
- dimension
- running state
- module
- state data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000036541 health Effects 0.000 title claims abstract description 56
- 238000003672 processing method Methods 0.000 title claims abstract description 23
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 77
- 238000012545 processing Methods 0.000 claims abstract description 68
- 238000013135 deep learning Methods 0.000 claims abstract description 60
- 238000004364 calculation method Methods 0.000 claims abstract description 40
- 238000004140 cleaning Methods 0.000 claims abstract description 40
- 238000007619 statistical method Methods 0.000 claims abstract description 29
- 238000000034 method Methods 0.000 claims abstract description 26
- 230000008569 process Effects 0.000 claims abstract description 15
- 238000000605 extraction Methods 0.000 claims description 18
- 238000004458 analytical method Methods 0.000 claims description 17
- 230000002159 abnormal effect Effects 0.000 claims description 12
- 238000004220 aggregation Methods 0.000 claims description 11
- 230000002776 aggregation Effects 0.000 claims description 11
- 238000012800 visualization Methods 0.000 claims description 6
- 238000011835 investigation Methods 0.000 claims description 3
- 230000000007 visual effect Effects 0.000 claims 1
- 230000008439 repair process Effects 0.000 abstract description 22
- 230000008878 coupling Effects 0.000 abstract description 6
- 238000010168 coupling process Methods 0.000 abstract description 6
- 238000005859 coupling reaction Methods 0.000 abstract description 6
- 238000013434 data augmentation Methods 0.000 abstract description 3
- 238000012423 maintenance Methods 0.000 description 18
- 230000003416 augmentation Effects 0.000 description 8
- 238000013136 deep learning model Methods 0.000 description 5
- 238000012544 monitoring process Methods 0.000 description 5
- 238000013517 stratification Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012105 stratification Analysis Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/24—Querying
- G06F16/245—Query processing
- G06F16/2458—Special types of queries, e.g. statistical queries, fuzzy queries or distributed queries
- G06F16/2462—Approximate or statistical queries
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/21—Design, administration or maintenance of databases
- G06F16/215—Improving data quality; Data cleansing, e.g. de-duplication, removing invalid entries or correcting typographical errors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/24—Querying
- G06F16/245—Query processing
- G06F16/2455—Query execution
- G06F16/24553—Query execution of query operations
- G06F16/24554—Unary operations; Data partitioning operations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/24—Querying
- G06F16/245—Query processing
- G06F16/2455—Query execution
- G06F16/24553—Query execution of query operations
- G06F16/24554—Unary operations; Data partitioning operations
- G06F16/24556—Aggregation; Duplicate elimination
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/04—Manufacturing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Databases & Information Systems (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Computational Linguistics (AREA)
- Business, Economics & Management (AREA)
- Probability & Statistics with Applications (AREA)
- Software Systems (AREA)
- General Health & Medical Sciences (AREA)
- Fuzzy Systems (AREA)
- Manufacturing & Machinery (AREA)
- Quality & Reliability (AREA)
- Health & Medical Sciences (AREA)
- Economics (AREA)
- Mathematical Physics (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- Primary Health Care (AREA)
- Strategic Management (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Medical Treatment And Welfare Office Work (AREA)
Abstract
本发明提供了一种面向大型旋转机组健康管理的数据处理方法及系统,该系统包括源数据层,数据明细层,数据增维层和算法应用展示层,分别用于获取旋转机组运转过程中的运行状态数据;将获得的运行状态数据进行数据清洗修复处理,得到数据明细表;将清洗修复后的运行状态数据进行维度扩展处理和维度信息匹配处理,得到增维且信息匹配后的全量明细数据宽表;对全量明细数据宽表中各个维度的运行状态数据,分别匹配对应的深度学习算法模型进行数据计算和聚合统计分析,并对数据计算和聚合统计分析结果进行可视化展示。使用本发明的方法及系统,降低了深度学习算法中数据的耦合性,增加了中间数据的复用性,减少了健康管理过程中数据处理的人力、时间成本。
The invention provides a data processing method and system for health management of large-scale rotating units. The system includes a source data layer, a data detail layer, a data augmentation layer and an algorithm application display layer, which are respectively used to obtain the data of the rotating unit during the operation process. Running status data; perform data cleaning and repair processing on the obtained running status data, and obtain a data list; perform dimension expansion processing and dimension information matching processing on the running status data after cleaning and repair, and obtain the full amount of detailed data after dimension increase and information matching Wide table: For the running status data of each dimension in the wide table of full detailed data, match the corresponding deep learning algorithm model to perform data calculation and aggregated statistical analysis, and visualize the data calculation and aggregated statistical analysis results. Using the method and system of the present invention reduces the coupling of data in the deep learning algorithm, increases the reusability of intermediate data, and reduces the labor and time cost of data processing in the process of health management.
Description
技术领域technical field
本发明涉及设备信息监测及大数据技术领域,具体涉及一种面向大型旋转机组健康管理的数据处理方法及系统。The invention relates to the technical field of equipment information monitoring and big data, in particular to a data processing method and system for health management of large-scale rotating units.
背景技术Background technique
随着对机械设备安全性和可靠性的要求日益提高,健康管理和智能运维技术的重要性不断提升,面向大型旋转机组的健康管理智能运维技术发展愈发迅速。大型旋转机组健康管理智能运维即通过收集旋转机组运行过程数据,利用深度学习的方法对机械设备进行故障预测、寿命预测和维修决策。传统的深度学习方式往往要经过繁琐的数据处理流程,形成大量中间数据,健康管理智能运维数据存在耦合性强的特点,难以针对多种算法模型进行数据复用,造成大量的人力、时间成本浪费。因此,有必要建立面向大型旋转机组的健康管理的数据仓库,构建具有高复用性的健康管理数据。With the increasing requirements for the safety and reliability of mechanical equipment, the importance of health management and intelligent operation and maintenance technology continues to increase, and the health management and intelligent operation and maintenance technology for large-scale rotating units develops rapidly. The intelligent operation and maintenance of large-scale rotating unit health management is to collect the operating process data of the rotating unit and use the deep learning method to predict the failure, life prediction and maintenance decision of the mechanical equipment. Traditional deep learning methods often have to go through tedious data processing processes to form a large amount of intermediate data. Health management intelligent operation and maintenance data has the characteristics of strong coupling, and it is difficult to reuse data for multiple algorithm models, resulting in a lot of labor and time costs. waste. Therefore, it is necessary to establish a data warehouse for the health management of large-scale rotating units, and to construct health management data with high reusability.
传统数据仓库采用维度建模,通常分为数据准备层,数据明细层,数据汇总层,数据集市层,数据应用层。传统数据仓库领域建模往往以业务流程为导向进行数据分层,面向业务需求进行统计分析,而大型旋转机组健康管理智能运维所需数据主要面向不同深度学习模型的不同需求,因此传统的数据仓库建模方式在大型旋转机组健康管理智能运维中难以适用,需要针对大型旋转机组健康管理智能运维的特点建立面向大型旋转机组健康管理智能运维的数据仓库。The traditional data warehouse adopts dimensional modeling, which is usually divided into data preparation layer, data detail layer, data summary layer, data mart layer, and data application layer. Traditional data warehouse domain modeling is often oriented to business processes for data stratification and statistical analysis for business needs, while the data required for intelligent operation and maintenance of large-scale rotating unit health management is mainly oriented to the different needs of different deep learning models. Therefore, traditional data The warehouse modeling method is difficult to apply in the intelligent operation and maintenance of the health management of large rotating units. It is necessary to establish a data warehouse for the intelligent operation and maintenance of the health management of large rotating units according to the characteristics of the intelligent operation and maintenance of the health management of large rotating units.
发明内容SUMMARY OF THE INVENTION
针对上述现有技术的不足,本发明实际需要解决的问题是:如何一种面对大型旋转机组健康管理智能运维的数据处理方法及系统,以解决目前旋转机组健康管理智能运维过程中所使用的数据耦合性强,数据复用率低,人力、时间成本浪费高的问题。In view of the above-mentioned deficiencies of the prior art, the actual problem to be solved by the present invention is: how to deal with the data processing method and system for the intelligent operation and maintenance of the health management of large-scale rotating units, so as to solve the problems in the current intelligent operation and maintenance of the health management of rotating units. The data used has strong coupling, low data reuse rate, and high waste of manpower and time.
为解决上述技术问题,本发明采用了如下的技术方案:In order to solve the above-mentioned technical problems, the present invention adopts the following technical solutions:
一种面向大型旋转机组健康管理的数据处理方法,包括如下步骤:A data processing method for health management of large-scale rotating units, comprising the following steps:
步骤1:获取旋转机组运转过程中的运行状态数据;Step 1: Obtain the operating status data during the operation of the rotary unit;
步骤2:将获得的运行状态数据进行数据清洗修复处理,得到数据明细表;Step 2: Perform data cleaning and repair processing on the obtained operating status data to obtain a detailed data table;
步骤3:将清洗修复后的运行状态数据进行维度扩展处理和维度信息匹配处理,得到增维且信息匹配后的全量明细数据宽表;Step 3: Perform dimension expansion processing and dimension information matching processing on the running status data after cleaning and repair, to obtain a full detailed data wide table after dimension increase and information matching;
步骤4:对全量明细数据宽表中各个维度的运行状态数据,分别匹配对应的深度学习算法模型进行数据计算和聚合统计分析,并对数据计算和聚合统计分析结果进行可视化展示。Step 4: For the running status data of each dimension in the full detailed data wide table, match the corresponding deep learning algorithm model to perform data calculation and aggregated statistical analysis, and visualize the data calculation and aggregated statistical analysis results.
上述面向大型旋转机组健康管理的数据处理方法中,作为优选,所述步骤2具体为:In the above-mentioned data processing method for the health management of large-scale rotating units, preferably, the step 2 is specifically:
对获得的运行状态数据按照不同的数据维度进行数据切片处理,得到运行状态数据在不同数据维度的数据明细;Perform data slicing processing on the obtained operating status data according to different data dimensions, and obtain data details of the operating status data in different data dimensions;
对各维度的运行状态数据进行数据清洗处理,清除掉其中的无效数据;Perform data cleaning on the operating status data of each dimension to remove invalid data;
对各维度的运行状态数据进行异常数据排查,并对排查到的异常数据进行修复处理;Perform abnormal data investigation on the running status data of each dimension, and repair the abnormal data found;
对清洗修复后的各维度的运行状态数据进行整理,得到数据明细表。Sort out the running status data of each dimension after cleaning and repair, and obtain a detailed data table.
上述面向大型旋转机组健康管理的数据处理方法中,作为优选,所述步骤3具体为:In the above-mentioned data processing method for the health management of large-scale rotating units, preferably, the step 3 is specifically:
对清洗修复后的运行状态数据进行时频分析和参数指标提取,将时频分析所得的数据维度和参数指标提取所得的数据维度均添加至数据明细表中,进行维度扩展处理,得到增维数据宽表;Perform time-frequency analysis and parameter index extraction on the running status data after cleaning and repair, add the data dimension obtained by time-frequency analysis and the data dimension obtained by parameter index extraction to the data list, and perform dimension expansion processing to obtain dimension-enhancing data. wide table;
匹配与运行状态数据相关联的其它设备,将与运行状态数据相关联的其它设备参数信息作为新的数据维度,添加至增维数据宽表中,得到全量明细数据宽表。Match other devices associated with the running status data, and add the other device parameter information associated with the running status data as a new data dimension to the dimension-enhancing data wide table to obtain a full detailed data wide table.
上述面向大型旋转机组健康管理的数据处理方法中,作为优选,所述步骤4具体为:In the above-mentioned data processing method for the health management of large-scale rotating units, preferably, the step 4 is specifically:
从全量明细数据宽表读取各维度的运行状态数据,分别针对每个维度的运行状态数据从深度学习算法库中查找相匹配的深度学习算法模型,从而调用相匹配的深度学习算法模型分别对各个维度的运行状态数据进行数据计算;Read the running status data of each dimension from the full detailed data wide table, search for the matching deep learning algorithm model from the deep learning algorithm library for the running status data of each dimension, and then call the matching deep learning algorithm model to The running status data of each dimension is used for data calculation;
分别对每个维度的运行状态数据的数据计算结果进行聚合统计分析;Perform aggregate statistical analysis on the data calculation results of the running status data of each dimension;
对所述运行状态数据的数据计算结果和聚合统计分析结果进行可视化展示。Visually display the data calculation results and aggregated statistical analysis results of the operating status data.
相应的,本发明提供了一种面向大型旋转机组健康管理的数据处理系统,包括源数据层,数据明细层,数据增维层和算法应用展示层;Correspondingly, the present invention provides a data processing system for the health management of large-scale rotating units, including a source data layer, a data detail layer, a data dimension augmentation layer and an algorithm application display layer;
所述源数据层用于对获取的旋转机组运转过程中的运行状态数据进行存储;The source data layer is used to store the acquired operating state data during the operation of the rotating unit;
所述数据明细层用于将获得的运行状态数据进行数据清洗修复处理,得到数据明细表;The data detail layer is used to perform data cleaning and repair processing on the obtained operating status data to obtain a data detail table;
所述数据增维层用于将清洗修复后的运行状态数据进行维度扩展处理和维度信息匹配处理,得到增维且信息匹配后的全量明细数据宽表;The data dimension augmentation layer is used to perform dimension expansion processing and dimension information matching processing on the running state data after cleaning and repair, so as to obtain a full detailed data wide table after dimension addition and information matching;
所述算法应用展示层用于对全量明细数据宽表中各个维度的运行状态数据,分别匹配对应的深度学习算法模型进行数据计算和聚合统计分析,并对数据计算和聚合统计分析结果进行可视化展示。The algorithm application display layer is used to perform data calculation and aggregated statistical analysis on the running status data of each dimension in the full detailed data wide table, respectively matching the corresponding deep learning algorithm model, and visualize the data calculation and aggregated statistical analysis results. .
上述面向大型旋转机组健康管理的数据处理系统中,作为优选,所述数据明细层包括数据切片模块,数据清洗模块,数据修复模块和数据整理模块;In the above-mentioned data processing system for health management of large-scale rotating units, preferably, the data detail layer includes a data slicing module, a data cleaning module, a data repairing module and a data sorting module;
所述数据切片模块用于对获得的运行状态数据按照不同的数据维度进行数据切片处理,得到运行状态数据在不同数据维度的数据明细;The data slicing module is configured to perform data slicing processing on the obtained operating status data according to different data dimensions, and obtain data details of the operating status data in different data dimensions;
所述数据清洗模块用于对各维度的运行状态数据进行数据清洗处理,清除掉其中的无效数据;The data cleaning module is used to perform data cleaning processing on the operating status data of each dimension, and remove invalid data therein;
所述数据修复模块用于对各维度的运行状态数据进行异常数据排查,并对排查到的异常数据进行修复处理;The data repair module is used to check the abnormal data of the running status data of each dimension, and repair the checked abnormal data;
所述数据整理模块用于对清洗修复后的各维度的运行状态数据进行整理,得到数据明细表。The data sorting module is used for sorting the running status data of each dimension after cleaning and repairing to obtain a detailed data table.
上述面向大型旋转机组健康管理的数据处理系统中,作为优选,所述数据增维层包括信号处理模块,指标提取模块和维度扩展模块;In the above-mentioned data processing system for the health management of large-scale rotating units, preferably, the data dimension augmentation layer includes a signal processing module, an index extraction module and a dimension expansion module;
所述信号处理模块用于对清洗修复后的运行状态数据进行时频分析;The signal processing module is used to perform time-frequency analysis on the running state data after cleaning and repairing;
所述指标提取模块用于对清洗修复后的运行状态数据进行参数指标提取;The index extraction module is used for extracting parameter indexes for the running state data after cleaning and repairing;
所述维度扩展模块用于将时频分析所得的数据维度和参数指标提取所得的数据维度均添加至数据明细表中,进行维度扩展处理,得到增维数据宽表;并匹配与运行状态数据相关联的其它设备,将与运行状态数据相关联的其它设备参数信息作为新的数据维度,添加至增维数据宽表中,得到全量明细数据宽表。The dimension expansion module is used to add the data dimension obtained by the time-frequency analysis and the data dimension obtained by the parameter index extraction into the data detailed table, carry out dimension expansion processing, and obtain the dimension-enhanced data wide table; and match the data related to the running state data. For other connected devices, the parameter information of other devices associated with the operating status data is added as a new data dimension to the dimension-enhancing data wide table to obtain a full detailed data wide table.
上述面向大型旋转机组健康管理的数据处理系统中,作为优选,所述算法应用展示层包括深度学习算法库模块、聚合统计模块和可视化模块;In the above-mentioned data processing system for the health management of large-scale rotating units, preferably, the algorithm application display layer includes a deep learning algorithm library module, an aggregation statistics module and a visualization module;
所述深度学习算法库模块设有深度学习算法库,所述深度学习算法库中存储有与旋转机组不同维度的运行状态数据相匹配的多个深度学习算法模型;深度学习算法库模块用于从全量明细数据宽表读取各维度的运行状态数据,分别针对每个维度的运行状态数据从深度学习算法库中查找相匹配的深度学习算法模型,从而调用相匹配的深度学习算法模型分别对各个维度的运行状态数据进行数据计算;The deep learning algorithm library module is provided with a deep learning algorithm library, and the deep learning algorithm library stores a plurality of deep learning algorithm models that match the operating state data of the rotating unit in different dimensions; The full detailed data wide table reads the running state data of each dimension, searches for the matching deep learning algorithm model from the deep learning algorithm library for the running state data of each dimension, and then calls the matching deep learning algorithm model for each dimension. Dimension running state data for data calculation;
所述聚合统计模块用于分别对每个维度的运行状态数据的数据计算结果进行聚合统计分析;The aggregated statistics module is used to perform aggregated statistical analysis on the data calculation results of the operating status data of each dimension;
所述可视化模块用于对所述运行状态数据的数据计算结果和聚合统计分析结果进行可视化展示。The visualization module is used to visualize the data calculation results and aggregated statistical analysis results of the operating status data.
相比于现有技术,本发明的有益效果在于:Compared with the prior art, the beneficial effects of the present invention are:
1、本发明面向大型旋转机组健康管理的数据处理方法及系统,该系统包括源数据层,数据明细层,数据增维层和算法应用展示层,分别用于获取旋转机组运转过程中的运行状态数据;将获得的运行状态数据进行数据清洗修复处理,得到数据明细表;将清洗修复后的运行状态数据进行维度扩展处理和维度信息匹配处理,得到增维且信息匹配后的全量明细数据宽表;对全量明细数据宽表中各个维度的运行状态数据,分别匹配对应的深度学习算法模型进行数据计算和聚合统计分析,并对数据计算和聚合统计分析结果进行可视化展示;由此使得本发明面向大型旋转机组健康管理的数据处理系统能够将大量旋转机组运行数据按不同主题存入数据源,便于调用不同主题数据进行健康管理分析,解决了大型旋转机组运行过程中数据主题类别多,数据分类复杂的问题。1. The present invention is oriented to a data processing method and system for health management of large rotating units. The system includes a source data layer, a data detail layer, a data dimensionality layer and an algorithm application display layer, which are respectively used to obtain the operating status of the rotating unit during the operation process. Data; perform data cleaning and repair processing on the obtained operating status data to obtain a detailed data table; perform dimension expansion processing and dimension information matching processing on the operating status data after cleaning and repair to obtain a wide table of full detailed data after dimension increase and information matching ; For the running status data of each dimension in the full detailed data wide table, respectively match the corresponding deep learning algorithm model to carry out data calculation and aggregation statistical analysis, and visualize the data calculation and aggregation statistical analysis results; The data processing system for health management of large rotating units can store a large amount of operating data of rotating units into data sources according to different topics, which is convenient for calling data of different topics for health management analysis, which solves the problem of many data subject categories and complex data classification during the operation of large rotating units. The problem.
2、本发明面向大型旋转机组健康管理的数据处理系统,通过系统分层,使得大型旋转机组健康管理的源数据是经过数据分层处理,使各层数据能够进行多次数据复用,且各个系统分层也能够分别并行运行,解决了大型旋转机组健康管理智能运维过程中数据耦合性强的问题,减少了处理源数据的时间和人力成本。2. The present invention is oriented to the data processing system for the health management of large-scale rotating units. Through the system layering, the source data of the health management of large-scale rotating units is processed by data layering, so that the data at each layer can be multiplexed, and each layer can be reused. The system layers can also run in parallel, which solves the problem of strong data coupling in the intelligent operation and maintenance of large-scale rotating unit health management, and reduces the time and labor costs for processing source data.
3、本发明面向大型旋转机组健康管理的数据处理方法及系统中,将深度学习算法模型所需求数据按多维度进行匹配,从而得到算法所需数据以进行计算,传统数据仓库通常往往只是按业务流程进行数据分层和聚合统计而不是按照特定深度学习模型进行数据分层,因此本方法解决及系统了大型旋转机组健康管理智能运维过程中数据与深度学习算法匹配进行计算的问题,更能适用于旋转机组健康管理智能运维。3. In the data processing method and system for the health management of large rotating units of the present invention, the data required by the deep learning algorithm model is matched in multiple dimensions, so as to obtain the data required by the algorithm for calculation. Traditional data warehouses are usually only based on business The process performs data stratification and aggregation statistics instead of data stratification according to a specific deep learning model. Therefore, this method solves and systematically solves the problem of matching the data with the deep learning algorithm for calculation in the intelligent operation and maintenance process of the health management of large-scale rotating units, which is more efficient. It is suitable for intelligent operation and maintenance of rotating unit health management.
附图说明Description of drawings
为了使发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步的详细描述,其中:In order to make the purpose, technical solutions and advantages of the invention clearer, the present invention will be described in further detail below in conjunction with the accompanying drawings, wherein:
图1是本发明面向大型旋转机组健康管理的数据处理方法的流程图。FIG. 1 is a flow chart of a data processing method for health management of large-scale rotating units according to the present invention.
图2是本发明面向大型旋转机组健康管理的数据处理系统的构架结构图。FIG. 2 is a structural diagram of a data processing system for health management of large-scale rotating units according to the present invention.
图3是本发明面向大型旋转机组健康管理的数据处理系统的一个实施例示例图。FIG. 3 is an exemplary diagram of an embodiment of the data processing system for health management of large-scale rotating units according to the present invention.
具体实施方式Detailed ways
下面结合说明书附图对本发明的具体实施方式作进一步的详细说明。The specific embodiments of the present invention will be further described in detail below with reference to the accompanying drawings.
本发明所提出的针对大型旋转机组健康管理智能运维数据处理的方法,解决了旋转机组健康管理过程中不同深度学习模型算法调度数据耦合性强、数据复用率低,时间、人力耗费大的问题。The method for intelligent operation and maintenance data processing for the health management of large-scale rotating units proposed by the present invention solves the problems of strong data coupling, low data reuse rate, and high time and labor consumption in the process of rotating unit health management by different deep learning model algorithms. question.
如图1所示,本发明面向大型旋转机组健康管理的数据处理方法包括如下步骤:As shown in FIG. 1 , the data processing method for the health management of large-scale rotating units of the present invention includes the following steps:
步骤1:获取旋转机组运转过程中的运行状态数据。Step 1: Obtain the operating status data during the operation of the rotary unit.
步骤2:将获得的运行状态数据进行数据清洗修复处理,得到数据明细表。Step 2: Perform data cleaning and repair processing on the obtained operating status data to obtain a detailed data table.
步骤3:将清洗修复后的运行状态数据进行维度扩展处理和维度信息匹配处理,得到增维且信息匹配后的全量明细数据宽表。Step 3: Perform dimension expansion processing and dimension information matching processing on the running state data after cleaning and repair, to obtain a full detailed data wide table after dimension increase and information matching.
步骤4:对全量明细数据宽表中各个维度的运行状态数据,分别匹配对应的深度学习算法模型进行数据计算和聚合统计分析,并对数据计算和聚合统计分析结果进行可视化展示。Step 4: For the running status data of each dimension in the full detailed data wide table, match the corresponding deep learning algorithm model to perform data calculation and aggregated statistical analysis, and visualize the data calculation and aggregated statistical analysis results.
相应的,如图2所示,本发明也提供了一种面向大型旋转机组健康管理的数据处理系统,包括源数据层,数据明细层,数据增维层和算法应用展示层;Correspondingly, as shown in FIG. 2 , the present invention also provides a data processing system for the health management of large-scale rotating units, including a source data layer, a data detail layer, a data dimension augmentation layer and an algorithm application display layer;
源数据层用于对获取的旋转机组运转过程中的运行状态数据进行存储;The source data layer is used to store the obtained operating state data during the operation of the rotating unit;
数据明细层用于将获得的运行状态数据进行数据清洗修复处理,得到数据明细表;The data detail layer is used to perform data cleaning and repair processing on the obtained operating status data to obtain a data detail table;
数据增维层用于将清洗修复后的运行状态数据进行维度扩展处理和维度信息匹配处理,得到增维且信息匹配后的全量明细数据宽表;The data dimension augmentation layer is used to perform dimension expansion processing and dimension information matching processing on the running state data after cleaning and repair, and obtain a full detailed data wide table after dimension addition and information matching;
算法应用展示层用于对全量明细数据宽表中各个维度的运行状态数据,分别匹配对应的深度学习算法模型进行数据计算和聚合统计分析,并对数据计算和聚合统计分析结果进行可视化展示。The algorithm application display layer is used to perform data calculation and aggregated statistical analysis on the running status data of each dimension in the wide table of full detailed data, respectively match the corresponding deep learning algorithm model, and visualize the results of data calculation and aggregated statistical analysis.
首先,将大型旋转机组工作运行时所采集数据导入源数据层,得到原始数据事实表。源数据是指旋转机组在运转过程中通过不同采集方式所获取的设备运行状态数据,大型旋转机组数据来源分为多种主题,如振CMS(Condition Monitoring System,风电机组状态监控系统)振动数据,SCADA(Supervisory Control And Data Acquisition,数据采集与监视控制系统)监测数据等,不同主题源数据后续有不同的数据处理方式,也对应了不同的深度学习算法。如图3所示,本实施例以CMS振动数据为主题对象进行介绍。First, import the data collected during the operation of the large rotating unit into the source data layer to obtain the original data fact table. Source data refers to the equipment operating status data obtained by different collection methods during the operation of the rotating unit. The data sources of large-scale rotating units are divided into various topics, such as vibration data of CMS (Condition Monitoring System, wind turbine condition monitoring system), SCADA (Supervisory Control And Data Acquisition, data acquisition and monitoring control system) monitoring data, etc., different subject source data have different data processing methods, which also correspond to different deep learning algorithms. As shown in FIG. 3 , this embodiment introduces CMS vibration data as the subject object.
源数据层用用存放源数据,如CMS振动数据是旋转机组运转过程中较为常见的数据,振动数据包含了多种不同的维度,如风场名,风机号,齿轮箱编号,测点,测点类型,采样时间等,按照多维度统计CMS振动数据事实表导入源数据层。The source data layer is used to store source data. For example, CMS vibration data is the most common data during the operation of rotating units. The vibration data contains a variety of different dimensions, such as wind farm name, fan number, gear box number, measuring point, Point type, sampling time, etc. are imported into the source data layer according to the multi-dimensional statistical CMS vibration data fact table.
数据明细层主要是对数据进行预处理,包括数据切片、数据清洗、数据修复等,对应的功能模块有数据切片模块,数据清洗模块和数据修复模块。CMS数据由于采集频率高,具有数据量大的特点,因此需要在数据明细层调用数据切片模块对其进行切片,切片后的数据能够更好地应用于深度学习。The data detail layer mainly preprocesses the data, including data slicing, data cleaning, data repairing, etc. The corresponding functional modules include data slicing module, data cleaning module and data repairing module. CMS data has the characteristics of high collection frequency and large amount of data, so it is necessary to call the data slicing module at the data detail layer to slice it, and the sliced data can be better applied to deep learning.
具体而言,所述数据明细层包括数据切片模块,数据清洗模块,数据修复模块和数据整理模块;Specifically, the data detail layer includes a data slicing module, a data cleaning module, a data repairing module and a data sorting module;
所述数据切片模块用于对获得的运行状态数据按照不同的数据维度进行数据切片处理,得到运行状态数据在不同数据维度的数据明细;The data slicing module is configured to perform data slicing processing on the obtained operating status data according to different data dimensions, and obtain data details of the operating status data in different data dimensions;
所述数据清洗模块用于对各维度的运行状态数据进行数据清洗处理,清除掉其中的无效数据;The data cleaning module is used to perform data cleaning processing on the operating status data of each dimension, and remove invalid data therein;
所述数据修复模块用于对各维度的运行状态数据进行异常数据排查,并对排查到的异常数据进行修复处理;The data repair module is used to check the abnormal data of the running status data of each dimension, and repair the checked abnormal data;
所述数据整理模块用于对清洗修复后的各维度的运行状态数据进行整理,得到数据明细表。The data sorting module is used for sorting the running status data of each dimension after cleaning and repairing to obtain a detailed data table.
数据明细层中的不同模块可针对不同的主题数据特点以及不同的数据清洗、修复需求进行分别调用。Different modules in the data detail layer can be called separately for different thematic data characteristics and different data cleaning and repairing requirements.
因此,本发明面向大型旋转机组健康管理的数据处理方法的步骤2具体为:对获得的运行状态数据按照不同的数据维度进行数据切片处理,得到运行状态数据在不同数据维度的数据明细;对各维度的运行状态数据进行数据清洗处理,清除掉其中的无效数据;对各维度的运行状态数据进行异常数据排查,并对排查到的异常数据进行修复处理;对清洗修复后的各维度的运行状态数据进行整理,得到数据明细表。Therefore, step 2 of the data processing method for the health management of large-scale rotating units of the present invention is specifically: performing data slicing processing on the obtained operating state data according to different data dimensions, and obtaining data details of the operating state data in different data dimensions; Perform data cleaning on the running status data of the dimension to remove invalid data; check the abnormal data of the running status data of each dimension, and repair the abnormal data found; clean and repair the running status of each dimension The data is organized to obtain a data schedule.
数据增维层主要是根据深度学习算法需求对数据明细层的数据进行进一步处理,包括信号处理、指标提取、维表匹配等方式进行维度扩展,所包含的模块有信号处理模块,指标提取模块,维度扩展模块等。举例来说,由于深度学习模型算法对CMS振动信号的维度要求有所差异,因此有必要对CMS数据采取多种处理方式以满足不同深度学习算法的需求。The data dimension augmentation layer mainly further processes the data of the data detail layer according to the requirements of the deep learning algorithm, including signal processing, index extraction, dimension table matching, etc. for dimension expansion. The modules included include signal processing module, index extraction module, Dimension extension modules, etc. For example, since deep learning model algorithms have different dimensional requirements for CMS vibration signals, it is necessary to adopt multiple processing methods for CMS data to meet the needs of different deep learning algorithms.
具体而言,数据增维层包括信号处理模块,指标提取模块和维度扩展模块;Specifically, the data augmentation layer includes a signal processing module, an indicator extraction module and a dimension expansion module;
信号处理模块用于对清洗修复后的运行状态数据进行时频分析;The signal processing module is used to perform time-frequency analysis on the running state data after cleaning and repairing;
指标提取模块用于对清洗修复后的运行状态数据进行参数指标提取;The index extraction module is used to extract the parameter index of the running state data after cleaning and repair;
维度扩展模块用于将时频分析所得的数据维度和参数指标提取所得的数据维度均添加至数据明细表中,进行维度扩展处理,得到增维数据宽表;并匹配与运行状态数据相关联的其它设备,将与运行状态数据相关联的其它设备参数信息作为新的数据维度,添加至增维数据宽表中,得到全量明细数据宽表。The dimension expansion module is used to add the data dimensions obtained by the time-frequency analysis and the data dimensions extracted from the parameter indicators to the data detailed table, perform dimension expansion processing, and obtain the dimension-enhanced data wide table; and match the data associated with the running status data. For other devices, the parameter information of other devices associated with the running status data is added as a new data dimension to the dimension-enhancing data wide table to obtain a full detailed data wide table.
因此,本发明面向大型旋转机组健康管理的数据处理方法的步骤3具体为:对清洗修复后的运行状态数据进行时频分析和参数指标提取,将时频分析所得的数据维度和参数指标提取所得的数据维度均添加至数据明细表中,进行维度扩展处理,得到增维数据宽表;匹配与运行状态数据相关联的其它设备,将与运行状态数据相关联的其它设备参数信息作为新的数据维度,添加至增维数据宽表中,得到全量明细数据宽表。Therefore, step 3 of the data processing method for the health management of large-scale rotating units of the present invention is specifically: performing time-frequency analysis and parameter index extraction on the operating state data after cleaning and repairing, and extracting the data dimensions and parameter indexes obtained by the time-frequency analysis. All data dimensions are added to the data detail table, and dimension expansion processing is performed to obtain a wide table of dimension-enhanced data; other devices associated with the running status data are matched, and the parameter information of other devices associated with the running status data is used as new data. Dimension, add it to the dimension-enhancing data wide table to get the full detailed data wide table.
例如,针对CMS振动数据,首先需调用信号处理模块对CMS振动数据进行时频分析处理,包括小波包变换、包络等时频分析方法,不同的信号时频分析处理方法代表事实表的一个维度,将经过信号时频分析处理的信号数据按照不同维度增加到数据明细层的事实表中形成数据增维表;然后,对已经进行了信号处理的增维事实表进行参数指标提取,调用指标提取模块指标提取方法对前述数据增维表进行参数指标提取处理,获得包括峭度、斜度、均值等数据,不同指标代表一个维度,将经过指标提取的指标数据增加到前述数据增维表当中继续扩充事实表维度;最后,上述增维后的事实表经过整理得到的得到增维数据宽表还需要进行维度扩充,以得到信息全面的全量明细数据宽表,调用维度扩展模块中维度表对上述增维数据宽表表进行维度扩展,匹配与运行状态数据相关联的其它设备,提取与运行状态数据相关联的其它设备参数信息,由于CMS振动信号中与齿轮箱联系十分紧密,因此可以将齿轮箱维表与前述CMS运行状态数据的事实表相匹配,将齿轮箱名称及其他映射信息等齿轮箱的参数信息作为新的数据维度,添加至上述增维数据宽表中,形成全量明细数据宽表。For example, for CMS vibration data, the signal processing module needs to be called first to perform time-frequency analysis and processing on the CMS vibration data, including time-frequency analysis methods such as wavelet packet transform and envelope. Different signal time-frequency analysis and processing methods represent a dimension of the fact table , add the signal data processed by signal time-frequency analysis to the fact table of the data detail layer according to different dimensions to form a data augmentation table; then, extract the parameter indicators for the augmented fact table that has undergone signal processing, and call the index extraction The module index extraction method performs parameter index extraction processing on the aforementioned data dimension augmentation table, and obtains data including kurtosis, slope, mean and other data. Different indices represent one dimension, and the index data extracted by the indices is added to the aforementioned data dimension augmentation table. Continue Expand the dimension of the fact table; finally, the dimension-enhanced data wide table obtained from the above-mentioned dimension-enhanced fact table needs to be expanded by the dimension to obtain the full detailed data wide table with comprehensive information, and the dimension table in the dimension expansion module is called for the above The dimension-enhancing data wide table is used for dimension expansion, matching other equipment associated with the operating status data, and extracting other equipment parameter information associated with the operating status data. Since the CMS vibration signal is closely related to the gear box, the gear box can be The box dimension table matches the fact table of the aforementioned CMS operating status data, and the parameter information of the gearbox, such as the name of the gearbox and other mapping information, is used as a new data dimension and added to the above-mentioned dimension-enhancing data width table to form a full detailed data width. surface.
算法应用展示层主要是运用算法模块当中的深度学习算法,与前述的全量明细事实宽表相匹配,即每一个算法都需指明所需匹配的数据维度信息,即算法维表需包括风场号,风机号,测点信息,传感器编码,采样频率,切片长度,信号处理方式,所需指标等维度,同时还需要包括算法所在的地址用于调用。The algorithm application display layer mainly uses the deep learning algorithm in the algorithm module, which matches the above-mentioned full detailed fact wide table, that is, each algorithm needs to specify the data dimension information to be matched, that is, the algorithm dimension table needs to include the wind field number. , fan number, measuring point information, sensor code, sampling frequency, slice length, signal processing method, required indicators and other dimensions, and also need to include the address of the algorithm for calling.
具体而言,算法应用展示层包括深度学习算法库模块、聚合统计模块和可视化模块;Specifically, the algorithm application display layer includes a deep learning algorithm library module, an aggregation statistics module and a visualization module;
深度学习算法库模块设有深度学习算法库,所述深度学习算法库中存储有与旋转机组不同维度的运行状态数据相匹配的多个深度学习算法模型;深度学习算法库模块用于从全量明细数据宽表读取各维度的运行状态数据,分别针对每个维度的运行状态数据从深度学习算法库中查找相匹配的深度学习算法模型,从而调用相匹配的深度学习算法模型分别对各个维度的运行状态数据进行数据计算;The deep learning algorithm library module is provided with a deep learning algorithm library, and the deep learning algorithm library stores a plurality of deep learning algorithm models that match the operating state data of the rotating unit in different dimensions; the deep learning algorithm library module is used for full details. The data wide table reads the running status data of each dimension, searches for the matching deep learning algorithm model from the deep learning algorithm library for the running status data of each dimension, and then calls the matching deep learning algorithm model for each dimension. Running state data for data calculation;
聚合统计模块用于分别对每个维度的运行状态数据的数据计算结果进行聚合统计分析;The aggregated statistics module is used to perform aggregated statistical analysis on the data calculation results of the running status data of each dimension;
可视化模块用于对所述运行状态数据的数据计算结果和聚合统计分析结果进行可视化展示。The visualization module is used to visualize the data calculation results and aggregated statistical analysis results of the running state data.
因此,本发明面向大型旋转机组健康管理的数据处理方法的步骤4具体为:从全量明细数据宽表读取各维度的运行状态数据,分别针对每个维度的运行状态数据从深度学习算法库中查找相匹配的深度学习算法模型,从而调用相匹配的深度学习算法模型分别对各个维度的运行状态数据进行数据计算;分别对每个维度的运行状态数据的数据计算结果进行聚合统计分析;对所述运行状态数据的数据计算结果和聚合统计分析结果进行可视化展示。Therefore, step 4 of the data processing method for the health management of large-scale rotating units of the present invention is specifically as follows: reading the operating state data of each dimension from the full detailed data wide table, and obtaining the operating state data for each dimension from the deep learning algorithm library. Find the matching deep learning algorithm model, so as to call the matching deep learning algorithm model to perform data calculation on the running state data of each dimension; perform aggregate statistical analysis on the data calculation results of the running state data of each dimension; The data calculation results and aggregated statistical analysis results of the operating status data are displayed visually.
具体实施中,深度学习算法库模块中的算法维表需要手动维护,当深度学习算法库模块中不同深度学习算法模型与全量数据明细宽表中的数据维度一一匹配,就可以获得相应的数据,进行计算运用深度学习测试数据时往往会进行多次计算测试模型的准确率求取平均值,并且会对比多种方法的计算结果,因此有必要对深度学习的计算结果进行聚合汇总统计,并且对进行可视化展示。In the specific implementation, the algorithm dimension table in the deep learning algorithm library module needs to be maintained manually. When the different deep learning algorithm models in the deep learning algorithm library module match the data dimensions in the full data detail table one by one, the corresponding data can be obtained. , when using deep learning test data, the accuracy of the test model is often calculated multiple times to obtain an average value, and the calculation results of various methods are compared. Therefore, it is necessary to aggregate and summarize the calculation results of deep learning, and Visualize the display.
综上所述,本发明面向大型旋转机组健康管理的数据处理系统,通过系统分层,使得大型旋转机组健康管理的源数据是经过数据分层处理,使各层数据能够进行多次数据复用,且各个系统分层也能够分别并行运行,解决了大型旋转机组健康管理智能运维过程中数据耦合性强的问题,减少了处理源数据的时间和人力成本;同时,本发方法及系统中,将深度学习算法模型所需求数据按多维度进行匹配,从而得到算法所需数据以进行计算,传统数据仓库通常往往只是按业务流程进行数据分层和聚合统计而不是按照特定深度学习模型进行数据分层,因此本方法解决及系统了大型旋转机组健康管理智能运维过程中数据与深度学习算法匹配进行计算的问题,更能适用于旋转机组健康管理智能运维。To sum up, the present invention is oriented to the data processing system for the health management of large-scale rotating units. Through the system layering, the source data of the health management of large-scale rotating units is processed by data layering, so that the data at each layer can be multiplexed for multiple times. , and each system layer can also be run in parallel, which solves the problem of strong data coupling in the process of intelligent operation and maintenance of large-scale rotating unit health management, and reduces the time and labor cost of processing source data; at the same time, the method and system of the present invention are , the data required by the deep learning algorithm model is matched in multiple dimensions, so as to obtain the data required by the algorithm for calculation. Traditional data warehouses usually only perform data stratification and aggregation statistics according to business processes instead of data according to specific deep learning models. Therefore, this method solves and systematically solves the problem of matching data and deep learning algorithms for calculation in the process of intelligent operation and maintenance of health management of large rotating units, and is more suitable for intelligent operation and maintenance of health management of rotating units.
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管通过参照本发明的优选实施例已经对本发明进行了描述,但本领域的普通技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离所附权利要求书所限定的本发明的精神和范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention and not to limit them. Although the present invention has been described with reference to the preferred embodiments of the present invention, those of ordinary skill in the art should Various changes in the above and in the details may be made therein without departing from the spirit and scope of the present invention as defined by the appended claims.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210188364.1A CN114510517A (en) | 2022-02-28 | 2022-02-28 | A data processing method and system for health management of large rotating units |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210188364.1A CN114510517A (en) | 2022-02-28 | 2022-02-28 | A data processing method and system for health management of large rotating units |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114510517A true CN114510517A (en) | 2022-05-17 |
Family
ID=81553350
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210188364.1A Pending CN114510517A (en) | 2022-02-28 | 2022-02-28 | A data processing method and system for health management of large rotating units |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114510517A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117112039A (en) * | 2023-08-24 | 2023-11-24 | 中邮通建设咨询有限公司 | Transmission optimization system and operation method of data center |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111506660A (en) * | 2020-04-21 | 2020-08-07 | 瑞纳智能设备股份有限公司 | Heat supply network real-time data warehouse system |
CN112765232A (en) * | 2021-01-05 | 2021-05-07 | 广东核电合营有限公司 | Data management method and system for nuclear power plant major equipment |
CN113482863A (en) * | 2021-07-16 | 2021-10-08 | 南京安维士传动技术股份有限公司 | State evaluation and health management system of wind generating set |
CN113988421A (en) * | 2021-10-29 | 2022-01-28 | 北京中恒博瑞数字电力科技有限公司 | Wind turbine generator power intelligent prediction method based on deep learning |
CN114077635A (en) * | 2021-11-22 | 2022-02-22 | 南京轨道交通系统工程有限公司 | Urban rail intelligent operation and maintenance platform based on big data analysis and deep learning |
-
2022
- 2022-02-28 CN CN202210188364.1A patent/CN114510517A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111506660A (en) * | 2020-04-21 | 2020-08-07 | 瑞纳智能设备股份有限公司 | Heat supply network real-time data warehouse system |
CN112765232A (en) * | 2021-01-05 | 2021-05-07 | 广东核电合营有限公司 | Data management method and system for nuclear power plant major equipment |
CN113482863A (en) * | 2021-07-16 | 2021-10-08 | 南京安维士传动技术股份有限公司 | State evaluation and health management system of wind generating set |
CN113988421A (en) * | 2021-10-29 | 2022-01-28 | 北京中恒博瑞数字电力科技有限公司 | Wind turbine generator power intelligent prediction method based on deep learning |
CN114077635A (en) * | 2021-11-22 | 2022-02-22 | 南京轨道交通系统工程有限公司 | Urban rail intelligent operation and maintenance platform based on big data analysis and deep learning |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117112039A (en) * | 2023-08-24 | 2023-11-24 | 中邮通建设咨询有限公司 | Transmission optimization system and operation method of data center |
CN117112039B (en) * | 2023-08-24 | 2024-04-26 | 中邮通建设咨询有限公司 | Transmission optimization system and operation method of data center |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ma et al. | Early fault diagnosis of rotating machinery based on composite zoom permutation entropy | |
CN112633781B (en) | Vehicle energy consumption evaluation method based on Internet of vehicles big data | |
CN114462446A (en) | Rolling bearing fault diagnosis method based on vibration signal and electronic equipment | |
CN117092980B (en) | Electrical fault detection control system based on big data | |
CN114510517A (en) | A data processing method and system for health management of large rotating units | |
CN117628005A (en) | A fusion signal hydraulic motor fault diagnosis method and system | |
CN113468818B (en) | Method and device for monitoring winding operation state of wind power generating set | |
CN116611741A (en) | Construction method and system of service quality index system based on wind power equipment | |
CN117993895A (en) | Full life cycle management system of power grid equipment | |
CN112598142A (en) | Wind turbine generator overhaul work quality examination assisting method and system | |
CN111241145A (en) | A method and device for self-healing rule mining based on big data | |
CN114564325A (en) | Data acquisition and management method, equipment and system for ship diagnosis | |
CN113268552A (en) | Generator equipment hidden danger early warning method based on locality sensitive hashing | |
CN112486096A (en) | Machine tool operation state monitoring method | |
CN112417966A (en) | Multi-dimensional machine fault detection method based on audio signal characteristics and AI algorithm | |
CN111310272A (en) | Building structure reinforcing, repairing and diagnosing system | |
CN118568549B (en) | Bearing acoustic signal fault diagnosis method based on entropy feature and sparse filter network | |
CN118532303B (en) | Wind turbine operating status evaluation method and system based on forward-forward propagation | |
CN117807523A (en) | Wind power gear box compound fault diagnosis method and system based on zero sample learning | |
CN118013443B (en) | Online real-time vacuum dry pump abnormality detection method based on generation model algorithm | |
CN118566701B (en) | Fault diagnosis system and method applied to integrated circuit of industrial robot | |
CN116910323A (en) | Full life cycle data management method based on three-dimensional visualization equipment | |
CN118833587A (en) | Carrier roller health identification method and system | |
CN117077017A (en) | Server fault detection method, device, equipment and medium based on SVM | |
CN118152786A (en) | Knowledge graph-based equipment fault auxiliary decision-making method, system and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |