CN114510101A - 振荡信号产生电路 - Google Patents

振荡信号产生电路 Download PDF

Info

Publication number
CN114510101A
CN114510101A CN202011281363.9A CN202011281363A CN114510101A CN 114510101 A CN114510101 A CN 114510101A CN 202011281363 A CN202011281363 A CN 202011281363A CN 114510101 A CN114510101 A CN 114510101A
Authority
CN
China
Prior art keywords
circuit
voltage
oscillation signal
coupled
common mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011281363.9A
Other languages
English (en)
Inventor
邓平援
陈家源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Realtek Semiconductor Corp
Original Assignee
Realtek Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Realtek Semiconductor Corp filed Critical Realtek Semiconductor Corp
Priority to CN202011281363.9A priority Critical patent/CN114510101A/zh
Publication of CN114510101A publication Critical patent/CN114510101A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices

Abstract

振荡信号产生电路包括振荡器电路、反馈电路与稳压电路。该振荡器电路具有第一输出端与第二输出端,用以依据第一参考电压于第一输出端与第二输出端分别产生第一振荡信号与第二振荡信号。该第一振荡信号与第二振荡信号互为差分对。该振荡器电路包括耦接于该第一输出端与该第二输出端之间的共模感测电路。该共模感测电路用以感测该第一振荡信号与该第二振荡信号的共模成分以产生感测电压。该反馈电路用以依据该感测电压产生反馈电压。该稳压电路用以依据该反馈电压及第二参考电压对供应电压进行稳压,以产生该第一参考电压。

Description

振荡信号产生电路
技术领域
本发明是关于一种振荡信号产生电路,特别是关于一种使用反馈电路来消除噪声的振荡信号产生电路。
背景技术
振荡器在产生振荡信号时,需要稳压电路与偏压电流源来执行操作,其中稳压电路用于提供振荡器所需的供应电压,偏压电流源用于提供振荡器的偏压电流。然而,稳压电路的供应电压源、偏压电流源与振荡器所在的芯片均会产生耦合在振荡信号中的噪声,使振荡信号的相位噪声变大。当降低振荡器的敏感增益时,耦合在振荡信号中的噪声可以被降低,但亦降低了振荡器的调频范围。因此,要如何在不降低振荡器敏感增益的情况下降低耦合在振荡信号中的噪声,已成为本领域极欲解决的问题之一。
发明内容
本发明公开一种振荡信号产生电路,其包括振荡器电路、反馈电路与稳压电路。振荡器电路具有第一输出端与第二输出端。振荡器电路依据第一参考电压于第一输出端与第二输出端分别产生第一振荡信号与第二振荡信号,其中第一振荡信号与第二振荡信号互为差分对。振荡器电路包括耦接于第一输出端与第二输出端之间的共模感测电路。共模感测电路用以感测第一振荡信号与第二振荡信号的共模成分以产生感测电压。反馈电路耦接于共模感测电路,用以依据感测电压产生反馈电压。稳压电路耦接于振荡器电路与反馈电路,用以依据反馈电压及第二参考电压对供应电压进行稳压,以产生第一参考电压。
本发明公开一种振荡信号产生电路,其包括第一放大器、传输晶体管、振荡器电路及反馈电路。传输晶体管的控制端耦接第一放大器的输出端,传输晶体管的第一端用以接收供应电压,及传输晶体管的第二端用以输出第一参考电压。振荡器电路的输入端用以接收第一参考电压,振荡器电路的第一输出端与第二输出端分别用以输出第一振荡信号与第二振荡信号,及振荡器电路的共模节点用以输出感测电压。感测电压具有第一振荡信号与第二振荡信号的共模成分。反馈电路的输入端耦接共模节点,及反馈电路的输出端耦接第一放大器的第一输入端。
相较于已知技术,利用本申请的振荡信号产生电路可以在不降低振荡器电路的敏感增益的情况下,减少耦合在输出振荡信号上的噪声。
附图说明
图1为本发明一些实施例中,振荡信号产生电路的方块示意图。
图2为本发明一些实施例中,振荡信号产生电路的组件示意图。
图3为本发明一些实施例中,振荡信号产生电路的操作示意图。
图4为本发明一些实施例中,图2中振荡信号产生电路的振荡器电路的效能示意图。
图5为本发明一些其他的实施例中,振荡信号产生电路的操作示意图。
图6为本发明一些实施例中,图2中振荡信号产生电路的稳压电路的效能示意图。
具体实施方式
图1为依据本发明一些实施例,振荡信号产生电路10的方块示意图。振荡信号产生电路10包括稳压电路100、振荡器电路200与反馈电路300。振荡信号产生电路10通过稳压电路100、振荡器电路200与反馈电路300形成的闭合回路降低耦合在振荡信号VP与振荡信号VN中的噪声。
稳压电路100用以对供应电压VDD进行稳压,以产生参考电压V1。其中,稳压电路100依据参考电压V2与由反馈电路300产生的反馈电压VF对供应电压VDD进行稳压。在一些实施例中,稳压电路100为线性稳压器,例如低压线性稳压器(low dropout regulator,LDO)。振荡器电路200由稳压电路100供电,用以依据参考电压V1分别在输出端N1与输出端N2上产生振荡信号VP与振荡信号VN,并在共模节点NC上产生感测电压VC。振荡信号VP与振荡信号VN互为差分对。例如,振荡器电路200包括共模感测电路210。共模感测电路210耦接于输出端N1与输出端N2之间,且用以依据振荡信号VP与振荡信号VN的共模成分于共模节点NC产生感测电压VC。也就是说,从共模节点NC输出的感测电压VC可携带振荡信号VP与振荡信号VN的该共模成分,其可包括出现在输出端N1与输出端N2的共模噪声。反馈电路300依据感测电压VC产生反馈电压VF,并将反馈电压VF反馈至稳压电路100。
图2为依据本发明一些实施例,图1所示的振荡信号产生电路10的组件示意图。
稳压电路100包括放大器AMP1、晶体管M1、电阻器R1、电阻器R2与电容器C1。电阻器R1的第一端用以接收参考电压V2,电阻器R1的第二端耦接于电容器C1的第一端与放大器AMP1的第一输入端(例如正输入端)。电容器C1的第二端可耦接于一参考电压,例如接地电压。放大器AMP1的输出端耦接晶体管M1的控制端,晶体管M1的第一端用以接收供应电压VDD,晶体管M1的第二端耦接电阻器R2的第一端与放大器AMP1的第二输入端(例如负输入端),以及电阻器R2的第二端可耦接于一参考电压,例如接地电压。其中,晶体管M1的第二端用以输出参考电压V1。在一些实施例中,参考电压V2为能隙电压。
在一些实施例中,振荡器电路200为压控振荡器,其藉由接收的参考电压V1、控制电压VCONT与电流IB来控制振荡信号VP、VN。振荡器电路200还包括第一交叉耦接的晶体管对220、第二交叉耦接的晶体管对230、电压控制电路240与电流源250。如图2所示,共模感测电路210、第一交叉耦接的晶体管对220、第二交叉耦接的晶体管对230与电压控制电路240均耦接于输出端N1与输出端N2。第一交叉耦接的晶体管对220用以接收参考电压V1,第二交叉耦接晶体管对230耦接于电流源250。
于此实施例中,共模感测电路210可包括振荡组件L,其耦接于输出端N1与输出端N2之间,其中共模节点NC位于振荡组件L的中心处。在一些实施例中,振荡组件L为电感器,输出端N1与共模节点NC之间的电感值大致(substantially)相等于输出端N2与共模节点NC之间的电感值。例如,共模节点NC为该电感器的中心抽头处。在一些实施例中,振荡组件L包括两个电感器L1与L2,其中电感器L1耦接于输出端N1与共模节点NC之间,且电感器L2耦接于输出端N2与共模节点NC之间。电感器L1与电感器L2可具有相同或大致相同的电感值。
电压控制电路240包括可变电容器C3与可变电容器C4。可变电容器C3的第一端耦接输出端N1,可变电容器C3的第二端耦接可变电容器C4的第一端与电压控制端N3,可变电容器C4的第二端耦接输出端N2。振荡器电路200藉由电压控制端N3接收的控制电压VCONT与可变电容器C3、C4的电容值来调整振荡信号VP与振荡信号VN的频率。
值得注意的是,电感器L1、电感器L2、可变电容器C3与可变电容器C4可作为振荡器电路200的电感电容共振腔(LC tank)的至少一部分。共模感测电路210可视为重复利用振荡器电路200的电感电容共振腔之中的振荡元件。然而,上述共模感测电路210的设置仅为示例用途,各种不同的共模感测电路210的设置均在本发明的考虑与范畴之内。在一些实施例中,共模感测电路210还可包括耦接于输出端N1与输出端N2之间的高阻抗电阻器(图中未绘示)。共模节点NC位于高阻抗电阻器的中心点,亦即输出端N1至共模节点NC的电阻值大致等于输出端N2至共模节点NC的电阻值。共模感测电路210从共模节点NC输出的感测电压VC可携带振荡信号VP与振荡信号VN的该共模成分,使反馈电路300可通过共模节点NC得到振荡信号VP与振荡信号VN的该共模成分。在一些实施例中,共模感测电路210还可包括另外的电容器串联耦接在输出端N1、N2之间,其中输出端N1与共模节点NC之间的电容值可大致相等于输出端N2与共模节点NC之间的电容值。在一些实施例中,共模感测电路210可采用不同于电感器L1、电感器L2、可变电容器C3与可变电容器C4的振荡组件来感测振荡信号VP与振荡信号VN的该共模成分。例如,共模感测电路210可接收振荡信号VP与振荡信号VN,并对振荡信号VP与振荡信号VN进行信号平均处理,以产生感测电压VC。这些设计上的变化均属于本发明的范围。
反馈电路300包括放大器AMP2与电容器C2。放大器AMP2的输入端耦接共模节点NC作为反馈电路300的输入端,用以接收感测电压VC。放大器AMP2的输出端耦接电容器C2的第一端,电容器C2的第二端作为反馈电路300的输出端用以输出反馈电压VF。电容器C2的第二端耦接于稳压电路100中放大器AMP1的第一输入端、电阻器R1的第二端与电容器C1的第一端汇集的节点。换言之,在放大器AMP1的第一输入端上不但包括参考电压V2的成分,亦包括反馈电压VF的成分。
在一些实施例中,振荡器电路200输出的振荡信号VP、VN可表示为供应电压VDD与电流IB的函数,因此耦合在供应电压VDD中的噪声与耦合在电流源250上的噪声均会影响振荡信号VP与振荡信号VN。在一些其他的实施例中,反馈电路300产生的噪声和/或振荡器电路200所处芯片产生的噪声亦会影响振荡信号VP与振荡信号VN。本发明所提供的振荡信号产生电路10用以降低上述噪声的至少一部分,其细节说明如下。
图3为图2所示的振荡信号产生电路10的操作示意图,请一并参照图2及图3。如图3所示,电流源250的噪声n1以共模的形式出现在输出端N1与输出端N2上的振荡信号VP与振荡信号VN中。因为输出端N1输出的振荡信号VP与输出端N2所输出的振荡信号VN互为差分对,且共模节点NC位于输出端N1与输出端N2之间的电感的对称中心点,所以从共模节点NC输出的感测电压VC可携带振荡信号VP与振荡信号VN的共模成分的信息。于此实施例中,从共模节点NC输出的感测电压VC的电压电平可等于或大致等于振荡信号VP的信号电平与振荡信号VN的信号电平的算术平均值。基于交叉耦合对振荡器电路200的特性,由于互为差分对的振荡信号VP与振荡信号VN两者的平均大致是出现在输出端N1与输出端N2的共模噪声(即噪声n1),感测电压VC相当于出现在输出端N1与输出端N2的共模噪声(即噪声n1)。接着,感测电压VC经过放大器AMP2放大后产生辅助电压V3。辅助电压V3可示为a2*VC+n2(亦即a2*n1+n2),其中a2与n2分别为放大器AMP2的增益值与放大器AMP2的噪声。
因为参考电压V2为直流电压,当振荡信号产生电路10以小信号模型的观点来分析时,电阻器R1具有高阻抗可视为开路,放大器AMP1的第一输入端接收到的反馈电压VF可表示为电容器C1与电容器C2对辅助电压V3的分压,并以a3*V3(亦即a3*a2*n1+a3*n2)示于图3中,其中分压比例a3等于电容器C2的电容值除以电容器C1与电容器C2各自的电容值的总和。
在一些实施例中,放大器AMP1与晶体管M1形成的闭合回路增益等于1,因此,反馈电压VF被传输至晶体管M1的控制端。在小信号模型下,晶体管M1被视为共漏极晶体管,因此,在栅极端(即控制端)上的反馈电压VF被传输至晶体管M1的第二端,并耦合在参考电压V1之上以a3*a2*n1+a3*n2示于图3中。振荡器电路200接收携带噪声a3*a2*n1+a3*n2的参考电压V1时,噪声a3*a2*n1+a3*n2也一并地耦合在输出端N1与输出端N2的振荡信号VP与振荡信号VN上。基于上述电路操作,耦合在振荡信号VP与振荡信号VN上的噪声可分为来自电流源的噪声n1与反馈电路300反馈的噪声a3*a2*n1+a3*n2。因此,耦合在振荡信号VP与振荡信号VN上的噪声为n1+a3*a2*n1+a3*n2。为了简单起见,将耦合在振荡信号VP与振荡信号VN上的噪声改写为(1+a3*a2)n1+a3*n2并示于图3中。
在一些实施例中,振荡信号产生电路10用以消除电流源的噪声n1,因此,可将噪声n1前的系数(1+a3*a2)设定为0。如此一来,振荡信号VP与振荡信号VN上的噪声n1即被消除,仅剩下部分噪声a3*n2。
当(1+a3*a2)被设定为0时,a3*a2的值等于-1。因为分压比例a3恒为正值,所以放大器AMP2的增益值a2被设定为负值,使分压比例a3与增益值a2相乘为-1。在此情况下,当电容器C1与电容器C2的电容值决定后,增益值a2亦被决定。例如,当电容器C1与电容器C2的电容值相等,a3等于0.5,因此增益值a2等于-2。在一些实施例中,电容器C1的电容值远大于电容器C2的电容值。例如,电容器C1与电容器C2的电容值的比例为9:1,则a3等于0.1,因此增益值a2约等于-10。
此外,当(1+a3*a2)被设定为0时,耦合在振荡信号VP与振荡信号VN上的噪声中剩下噪声a3*n2。由此关系可知,降低分压比例a3可抑制剩余噪声a3*n2。又a3*n2可改写为-n2/a2(由于a3*a2=-1),因此当放大器AMP2的增益值a2的绝对值越大时,耦合在振荡信号VP与振荡信号VN上的噪声-n2/a2越可以被抑制。
在一些实施例中,如图4所示,振荡器电路200的敏感增益K与噪声消除工作带宽BW成反比。为了使噪声消除工作带宽BW变小以消除特定频率范围的噪声,敏感增益K必须提升。在图4中,线段40a代表没有使用由稳压电路100、振荡器电路200与反馈电路300形成的闭合回路来消除噪声的现有技术电路,以及曲线40b代表本发明所提供的振荡器电路200。本发明提供的振荡信号产生电路10利用稳压电路100、振荡器电路200与反馈电路300形成的闭合回路可以将电流源的噪声n1有效地消除,并且不须提升敏感增益K即可达到较小的噪声消除工作带宽BW。在一些实施例中,曲线40b表示的噪声消除工作带宽BW约在数百KHz至约数十MHz之间。
在一些实施例中,振荡信号产生电路10难以预测因供应电压VDD引起而耦合在参考电压V1中的噪声n3。因此,藉由稳压电路100、振荡器电路200与反馈电路300形成的闭合回路可以将噪声n3有效的消除,使得参考电压V1上不带有噪声n3的成分,其细节说明如下。
图5为图2所示的振荡信号产生电路10的操作示意图,请一并参照图2及图5。如图5所示,耦合在供应电压VDD上的噪声通过晶体管M1亦耦合在参考电压V1上,并以共模形式出现在输出端N1与输出端N2(即示于图5中的噪声n3)。当振荡信号VN、VP包括噪声n3时,反馈电路300可藉由共模感测电路210在共模节点上得到包括噪声n3的感测电压VC。如同图3中对噪声n1的操作所示,稳压电路100、振荡器电路200与反馈电路300形成的闭合回路亦对噪声n3具有相同类似的操作,亦即放大器AMP2产生辅助电压V3=(a2*n3+n2)以及反馈电路产生反馈电压VF=(a3*V3)。当稳压电路100产生参考电压V1时,耦合在参考电压V1的噪声包括了原本由供应电压VDD耦合来的噪声n3与由反馈电压VF反馈的噪声a3*a2*n3+a3*n2。为了简单起见,将耦合在参考电压V1上的噪声改写为(1+a3*a2)n3+a3*n2并示于图5中。
类似于图3的说明,为了消除噪声n3,可将噪声n3前的系数(1+a3*a2)设定为0,其相关计算的关系于此不再赘述。
在其他的实施例中,振荡信号产生电路10还用以消除振荡器电路200所处芯片产生的噪声n4。在一些实施例中,噪声n1、噪声n2与噪声n3耦合在振荡信号VN、VP上,并会改变可变电容器C3、C4的偏压点以及改变振荡信号VN、VP的频率,使相位噪声变大。而振荡器电路200所处芯片产生的噪声n4为邻近数字电路低频的切换噪声(switching noise),噪声n4亦藉由输出端N1、N2耦合至振荡信号VN、VP上,使得振荡信号VN、VP的相位噪声再度恶化。
在一些现有技术中,电路系统为了达到低功率的目的,将供应电压降低,例如从3V降到1.3V。然而,降低供应电压时亦会使电路系统中的稳压器的电源纹波抑制比(powersupply ripple rejection,PSRR)变差,使得稳压器供应的电压具有较大的噪声。为了降低噪声,振荡器的敏感增益被降低。但当敏感增益被降低时,调频范围亦被降低。因此,在现有技术中,敏感增益与调频范围难以同时兼具。
图6为图2中所示的稳压电路100的效能示意图。稳压电路100的PSRR越小,代表稳压电路100抑制噪声的效能越好。曲线60a代表没有使用由稳压电路100、振荡器电路200与反馈电路300形成的闭合回路来消除噪声的现有技术电路,以及曲线60b代表本发明所提供的稳压电路100。由图6可知,稳压电路100因使用了本发明提供的噪声消除方法,在相同的工作频率F下可具有较低的PSRR。
相较于上述的现有技术,本发明提供的振荡信号产生电路10可以使用较低的供应电压VDD,且在不降低振荡器电路200的敏感增益K的同时亦降低电路上的噪声,使得敏感增益K与调频范围可以兼具。
附图标记说明:
10:振荡信号产生电路
100:稳压电路
200:振荡器电路
210:共模感测电路
220:第一交叉耦接的晶体管对
230:第二交叉耦接的晶体管对
240:电压控制电路
250:电流源
300:反馈电路
VDD:供应电压
V1:参考电压
V2:参考电压
R1:电阻器
R2:电阻器
M1:晶体管
AMP1:放大器
AMP2:放大器
C1:电容器
C2:电容器
C3:可变电容器
C4:可变电容器
L:振荡组件
L1:电感器
L2:电感器
VP:振荡信号
VN:振荡信号
VC:感测电压
VF:反馈电压
VCONT:控制电压
N1:输出端
N2:输出端
N3:电压控制端
NC:共模节点
IB:电流
n1:噪声
n2:噪声
n3:噪声
a2:增益值
a3:分压比例
V3:辅助电压
40a:线段
40b:曲线
K:敏感增益
BW:噪声消除工作带宽
60a:曲线
60b:曲线
PSRR:电源纹波抑制比
F:工作频率

Claims (10)

1.一种振荡信号产生电路,包括:
振荡器电路,具有第一输出端与第二输出端,用以依据第一参考电压于该第一输出端与该第二输出端分别产生第一振荡信号与第二振荡信号,该第一振荡信号与该第二振荡信号互为差分对,其中该振荡器电路包括耦接于该第一输出端与该第二输出端之间的共模感测电路,该共模感测电路用以感测该第一振荡信号与该第二振荡信号的共模成分以产生感测电压;
反馈电路,耦接于该共模感测电路,用以依据该感测电压产生反馈电压;及
稳压电路,耦接于该振荡器电路与该反馈电路,用以依据该反馈电压及第二参考电压对供应电压进行稳压,以产生该第一参考电压。
2.根据权利要求1所述的振荡信号产生电路,其中该共模感测电路包括耦接于该第一输出端与该第二输出端之间的振荡组件,该振荡组件用以根据该共模成分于该振荡组件的共模节点产生该感测电压。
3.根据权利要求1所述的振荡信号产生电路,其中该稳压电路包括:
第一放大器;
第一电阻器,其中该第一电阻器的第一端接收该第二参考电压,该第一电阻器的第二端耦接该第一放大器的第一输入端;
第二电阻器,其中该第二电阻器的第一端耦接于该第一放大器的第二输入端,该第二电阻器的第二端接地;及
传输晶体管,其中该传输晶体管的控制端耦接于该第一放大器的输出端,该传输晶体管的第一端用以接收该供应电压,及该传输晶体管的第二端耦接该第一放大器的该第二输入端,该传输晶体管的该第二端用以输出该第一参考电压。
4.根据权利要求3所述的振荡信号产生电路,其中该反馈电路包括:
第二放大器,用以放大该感测电压以产生辅助电压;及
第一电容器,其中该第一电容器的第一端用以接收该辅助电压,及该第一电容器的第二端用以输出该反馈电压。
5.根据权利要求4所述的振荡信号产生电路,其中该第二放大器具有负增益值。
6.一种振荡信号产生电路,包括:
第一放大器;
传输晶体管,其中该传输晶体管的控制端耦接该第一放大器的输出端,该传输晶体管的第一端用以接收供应电压,及该传输晶体管的第二端用以输出第一参考电压;
振荡器电路,其中该振荡器电路的输入端用以接收该第一参考电压,该振荡器电路的第一输出端与第二输出端分别用以输出第一振荡信号与第二振荡信号,及该振荡器电路的共模节点用以输出感测电压,其中该感测电压具有该第一振荡信号与该第二振荡信号的共模成分;及
反馈电路,其中该反馈电路的输入端耦接该共模节点,及该反馈电路的输出端耦接该第一放大器的第一输入端。
7.根据权利要求6所述的振荡信号产生电路,其中该振荡器电路包括耦接于该第一输出端与该第二输出端之间的振荡组件,该振荡组件用以根据该共模成分于该振荡组件的该共模节点产生该感测电压。
8.根据权利要求6所述的振荡信号产生电路,其中该振荡组件包括第一电感器与第二电感器,该第一电感器耦接于该第一输出端与该共模节点之间,及该第二电感器耦接于该第二输出端与该共模节点之间。
9.根据权利要求6所述的振荡信号产生电路,其中该反馈电路包括:
第二放大器,其中该第二放大器的输入端作为该反馈电路的该输入端;及
第一电容器,其中该第一电容器的第一端耦接于该第二放大器的输出端,及该第一电容器的第二端作为该反馈电路的该输出端。
10.根据权利要求9所述的振荡信号产生电路,还包括第二电容器,其中该第二电容器的第一端耦接于该第一放大器的该第一输入端与该第一电容器的该第二端,该第二电容器的第二端接地。
CN202011281363.9A 2020-11-16 2020-11-16 振荡信号产生电路 Pending CN114510101A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011281363.9A CN114510101A (zh) 2020-11-16 2020-11-16 振荡信号产生电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011281363.9A CN114510101A (zh) 2020-11-16 2020-11-16 振荡信号产生电路

Publications (1)

Publication Number Publication Date
CN114510101A true CN114510101A (zh) 2022-05-17

Family

ID=81546803

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011281363.9A Pending CN114510101A (zh) 2020-11-16 2020-11-16 振荡信号产生电路

Country Status (1)

Country Link
CN (1) CN114510101A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5889393A (en) * 1997-09-29 1999-03-30 Impala Linear Corporation Voltage regulator having error and transconductance amplifiers to define multiple poles
US20050212611A1 (en) * 2004-03-12 2005-09-29 Harish Muthali Feedback loop for LC VCO
US20060103475A1 (en) * 2003-01-22 2006-05-18 Gunter Hofer Oscillator device for frequency modulation
US20180367097A1 (en) * 2017-06-15 2018-12-20 Commissariat A L'energie Atomique Et Aux Energies Alternatives Architecture for voltage sharing between two oscillators
US20190267972A1 (en) * 2018-02-26 2019-08-29 Seiko Epson Corporation Variable resistance circuit, oscillator circuit, and semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5889393A (en) * 1997-09-29 1999-03-30 Impala Linear Corporation Voltage regulator having error and transconductance amplifiers to define multiple poles
US20060103475A1 (en) * 2003-01-22 2006-05-18 Gunter Hofer Oscillator device for frequency modulation
US7369009B2 (en) * 2003-01-22 2008-05-06 Austriamicrosystems Ag Oscillator device for frequency modulation
US20050212611A1 (en) * 2004-03-12 2005-09-29 Harish Muthali Feedback loop for LC VCO
US20180367097A1 (en) * 2017-06-15 2018-12-20 Commissariat A L'energie Atomique Et Aux Energies Alternatives Architecture for voltage sharing between two oscillators
US20190267972A1 (en) * 2018-02-26 2019-08-29 Seiko Epson Corporation Variable resistance circuit, oscillator circuit, and semiconductor device

Similar Documents

Publication Publication Date Title
Chava et al. A frequency compensation scheme for LDO voltage regulators
US7944277B1 (en) Circuit and methods of adaptive charge-pump regulation
US7170264B1 (en) Frequency compensation scheme for a switching regulator using external zero
US6943637B2 (en) Voltage controlled oscillator circuit for a low power electronic device
US20090128110A1 (en) Compact Frequency Compensation Circuit And Method For A Switching Regulator Using External Zero
US20070216381A1 (en) Linear regulator circuit
US7202748B2 (en) Ultra-wideband constant gain CMOS amplifier
US11258404B2 (en) Variable gain power amplifiers
US7724101B2 (en) Crystal oscillator circuit with amplitude control
US8228132B2 (en) Voltage-controlled oscillator robust against power noise and communication apparatus using the same
US5994927A (en) Circuit for comparison of signal voltage with reference voltage
US9000857B2 (en) Mid-band PSRR circuit for voltage controlled oscillators in phase lock loop
US7755440B2 (en) Voltage controlled oscillator for controlling phase noise and method using the same
US7498893B2 (en) Circuit for generating a high-frequency oscillation in a specified frequency band
TWI763116B (zh) 振盪訊號產生電路
CN114510101A (zh) 振荡信号产生电路
US6847260B2 (en) Low dropout monolithic linear regulator having wide operating load range
US8035450B2 (en) Operational transconductance amplifier having two amplification stages
EP1517435A2 (en) Crystal oscillator circuit
CN110808718B (zh) 一种高稳定性的射频功率放大器
US7642867B2 (en) Simple technique for reduction of gain in a voltage controlled oscillator
US7528672B2 (en) Oscillator arrangement having increased EMI robustness
US6995611B1 (en) Inductive amplifier with a feed forward boost
US20190020330A1 (en) Variable capacitance circuit, oscillator circuit, and method of controlling variable capacitance circuit
JP7084479B2 (ja) 定電圧発生回路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination