CN114508307A - Biomimetic high impact polycrystalline diamond compact - Google Patents
Biomimetic high impact polycrystalline diamond compact Download PDFInfo
- Publication number
- CN114508307A CN114508307A CN202210139025.4A CN202210139025A CN114508307A CN 114508307 A CN114508307 A CN 114508307A CN 202210139025 A CN202210139025 A CN 202210139025A CN 114508307 A CN114508307 A CN 114508307A
- Authority
- CN
- China
- Prior art keywords
- polycrystalline diamond
- impact
- composite sheet
- steel
- cemented carbide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B10/00—Drill bits
- E21B10/46—Drill bits characterised by wear resisting parts, e.g. diamond inserts
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Earth Drilling (AREA)
Abstract
Description
技术领域technical field
本发明涉及石油天然气勘探钻具技术领域,尤其涉及一种仿螳螂虾附足结构的仿生高抗冲击聚晶金刚石复合片。The invention relates to the technical field of drilling tools for oil and natural gas exploration, in particular to a bionic high-impact polycrystalline diamond composite sheet imitating a mantis shrimp attachment foot structure.
背景技术Background technique
聚晶金刚石钻头在坚硬地层钻井过程中由于钻头冲击载荷较高,聚晶金刚石复合片极易损坏,导致钻头寿命短、钻井效率低。为了提高聚晶金刚石复合片抗冲击性,研究人员对复合片结构形态进行了大量的优化改进,如改变复合片工作面形态、增加聚晶金刚石层厚度等,但现场应用效果依然不够理想。Due to the high impact load of the drill bit in the process of drilling hard formations, the polycrystalline diamond composite sheet is easily damaged, resulting in short life of the drill bit and low drilling efficiency. In order to improve the impact resistance of the polycrystalline diamond composite sheet, researchers have carried out a lot of optimization and improvement on the structure and shape of the composite sheet, such as changing the shape of the working surface of the composite sheet and increasing the thickness of the polycrystalline diamond layer, but the field application effect is still not satisfactory.
自然界中,雀尾螳螂虾是一种海洋甲壳纲动物,具有如同锤头一般的附足结构,可利用附足高速撞击捕食猎物。为了承受高达10000G的加速度形成的冲击力,雀尾螳螂虾进化了特殊的附足结构:最外层为高度结晶的羟基磷灰石、下面为未结晶的多层羟基磷灰石、最里层为几丁质,上述这种由硬及软的结构具有极高的抗冲击特性。In nature, the bird-tailed mantis shrimp is a marine crustacean with a hammer-like attachment structure that can be used to slam into prey at high speed. In order to withstand the impact force formed by the acceleration of up to 10,000G, the bird-tailed mantis shrimp has evolved a special attachment structure: the outermost layer is highly crystalline hydroxyapatite, the lower layer is uncrystallized multi-layer hydroxyapatite, and the innermost layer is As chitin, the above-mentioned hard and soft structure has extremely high impact resistance properties.
受此启发,急需开展雀尾螳螂虾附足结构仿生研究,设计一种仿生高抗冲击聚晶金刚石复合片,该复合片在破岩过程中具有良好的抗冲击性能,能大幅提高复合片硬地层工作寿命。Inspired by this, it is urgent to carry out biomimetic research on the attached foot structure of the sparrow mantis shrimp, and design a biomimetic high-impact polycrystalline diamond composite sheet, which has good impact resistance in the process of rock breaking and can greatly improve the hardness of the composite sheet. The working life of the formation.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明所要解决的技术问题是:提供一种仿生高抗冲击聚晶金刚石复合片,能大幅提高复合片破岩过程中的抗冲击能力,延长复合片工作寿命,提高硬岩地层钻头的钻进效率。In view of this, the technical problem to be solved by the present invention is to provide a bionic high-impact polycrystalline diamond composite sheet, which can greatly improve the impact resistance of the composite sheet in the process of rock breaking, prolong the working life of the composite sheet, and improve the hard rock formation. The drilling efficiency of the drill bit.
为解决上述技术问题,本发明的技术方案是:仿生高抗冲击聚晶金刚石复合片,所述仿生高抗冲击聚晶金刚石复合片呈柱状,在所述仿生高抗冲击聚晶金刚石复合片的工作面,沿着径向由外到内,或/和沿着轴向由上到下,依次分布有聚晶金刚石、硬质合金、合金钢,所述聚晶金刚石、所述硬质合金、所述合金钢的硬度依次降低,所述聚晶金刚石、所述硬质合金、所述合金钢的变形能力依次增强。In order to solve the above-mentioned technical problems, the technical solution of the present invention is: a bionic high-impact polycrystalline diamond composite sheet, the bionic high-impact polycrystalline diamond composite sheet is columnar, and the bionic high-impact The working face, from outside to inside along the radial direction, or/and from top to bottom along the axial direction, is sequentially distributed with polycrystalline diamond, cemented carbide, alloy steel, the polycrystalline diamond, the cemented carbide, The hardness of the alloy steel decreases sequentially, and the deformability of the polycrystalline diamond, the cemented carbide, and the alloy steel increases sequentially.
以下是对本发明仿生高抗冲击聚晶金刚石复合片的多项进一步优化设计:The following are a number of further optimized designs for the bionic high-impact polycrystalline diamond composite sheet of the present invention:
其中,所述仿生高抗冲击聚晶金刚石复合片包括:Wherein, the bionic high-impact polycrystalline diamond composite sheet includes:
硬质合金基体,所述硬质合金基体为柱状体,所述硬质合金基体的侧面设置有周向环槽,所述周向环槽的上方为周向凸台,所述周向凸台与所述硬质合金基体的顶面之间形成环形台阶,所述硬质合金基体的顶面设置有沿轴向延伸的中心孔;Cemented carbide base, the cemented carbide base is a columnar body, the side surface of the cemented carbide base is provided with a circumferential annular groove, the upper part of the circumferential annular groove is a circumferential boss, and the circumferential boss is connected with the hard alloy. An annular step is formed between the top surfaces of the cemented carbide base, and the top surface of the cemented carbide base is provided with a central hole extending in the axial direction;
钢质外环,所述钢质外环设置于所述周向环槽;a steel outer ring, the steel outer ring is arranged in the circumferential ring groove;
钢质内芯,所述钢质内芯设置于所述中心孔;a steel inner core, the steel inner core is arranged in the central hole;
聚晶金刚石环,所述聚晶金刚石环复合于所述环形台阶。A polycrystalline diamond ring, the polycrystalline diamond ring is compounded on the annular step.
其中,所述钢质外环、所述周向凸台、所述聚晶金刚石环的侧面齐平。Wherein, the side surfaces of the steel outer ring, the circumferential boss and the polycrystalline diamond ring are flush.
其中,所述聚晶金刚石环、所述硬质合金基体、所述钢质内芯的顶面齐平。Wherein, the top surfaces of the polycrystalline diamond ring, the cemented carbide substrate, and the steel inner core are flush.
其中,所述钢质外环包括对扣的两个钢质半环。Wherein, the steel outer ring includes two steel half-rings that are buckled.
其中,所述钢质外环过盈安装于所述周向环槽。Wherein, the steel outer ring is installed in the circumferential ring groove with interference.
其中,所述钢质内芯过盈安装于所述中心孔。Wherein, the steel inner core is installed in the center hole with interference.
其中,在顶面,沿径向,定义所述钢质内芯的外径为d1、所述硬质合金基体顶面的外径为d2、所述聚晶金刚石环的外径为d3,d1:d2:d3=1:2:3。Wherein, on the top surface, along the radial direction, define the outer diameter of the steel inner core as d 1 , the outer diameter of the top surface of the cemented carbide base as d 2 , and the outer diameter of the polycrystalline diamond ring as d 3 , d 1 :d 2 :d 3 =1:2:3.
其中,在侧面,沿轴向,定义所述聚晶金刚石环的厚度为h1、所述周向凸台的厚度为h2、所述钢质外环的厚度为h3,h1:h2:h3=1:1:1。Wherein, on the side, along the axial direction, the thickness of the polycrystalline diamond ring is defined as h 1 , the thickness of the circumferential boss is h 2 , and the thickness of the steel outer ring is h 3 , h 1 :h 2 :h3 = 1:1:1.
其中,定义所述钢质内芯的厚度为H,H=h1+h2+h3。Wherein, the thickness of the steel inner core is defined as H, and H=h 1 +h 2 +h 3 .
采用了上述技术方案后,本发明至少取得了如下有益效果:After adopting the above-mentioned technical scheme, the present invention has achieved the following beneficial effects at least:
由于本发明的仿生高抗冲击聚晶金刚石复合片借鉴了雀尾螳螂虾附足结构,在复合片的工作面,沿着径向由外到内,或/和沿着轴向由上到下,依次分布有聚晶金刚石、硬质合金、合金钢三种不同材料,聚晶金刚石、硬质合金、合金钢的硬度依次降低,聚晶金刚石、硬质合金、合金钢的变形能力依次增强,形成吸能减振结构;破岩过程中,当复合片受到径向或/和轴向冲击时,一方面,冲击产生的应力波在材料界面位置发生反射和折射,可以有效削弱和抵消应力波;同时,另一方面,相对于聚晶金刚石,硬质合金和合金钢在冲击作用下更易发生变形,可有效吸收冲击能量,保护聚晶金刚石,避免复合片冲击损坏,提高了复合片抗冲击性能,延长了复合片使用寿命,进而大幅提高了钻头整体工作性能,实现了钻井提速增效。Since the bionic high-impact-resistant polycrystalline diamond composite sheet of the present invention draws on the attachment structure of the mantis shrimp, on the working surface of the composite sheet, from outside to inside along the radial direction, or/and from top to bottom along the axial direction , there are three different materials of polycrystalline diamond, cemented carbide, and alloy steel in turn. The hardness of polycrystalline diamond, cemented carbide, and alloy steel decreases in turn, and the deformation ability of polycrystalline diamond, cemented carbide, and alloy steel increases in turn. Form an energy-absorbing and vibration-damping structure; in the process of rock breaking, when the composite sheet is subjected to radial or/and axial impact, on the one hand, the stress wave generated by the impact is reflected and refracted at the material interface, which can effectively weaken and offset the stress wave At the same time, on the other hand, compared with polycrystalline diamond, cemented carbide and alloy steel are more prone to deformation under impact, which can effectively absorb impact energy, protect polycrystalline diamond, avoid impact damage to the composite sheet, and improve the impact resistance of the composite sheet. performance, prolonging the service life of the composite sheet, thereby greatly improving the overall working performance of the drill bit, and realizing the increase of drilling speed and efficiency.
附图说明Description of drawings
图1是本发明实施例一仿生高抗冲击聚晶金刚石复合片爆炸结构示意图;1 is a schematic diagram of the explosion structure of a bionic high-impact polycrystalline diamond composite sheet according to an embodiment of the present invention;
图2是图1中复合片剖面结构示意图;Fig. 2 is a schematic diagram of the cross-sectional structure of the composite sheet in Fig. 1;
图3是图2中复合片顶面结构示意图;Fig. 3 is a schematic view of the top surface structure of the composite sheet in Fig. 2;
图4是图1中硬质合金基体剖面结构示意图;Fig. 4 is a schematic diagram of the cross-sectional structure of the cemented carbide substrate in Fig. 1;
图中:1、硬质合金基体;11、周向环槽;12、周向凸台;13、环形台阶;14、中心孔;2、聚晶金刚石环;3、钢质内芯;4、钢质半环;d1、钢质内芯外径;d2、硬质合金基体顶面外径;d3、聚晶金刚石环外径;h1、聚晶金刚石环厚度;h2、周向凸台厚度;h3、钢质外环厚度;H、钢质内芯厚度。In the figure: 1. Carbide base body; 11. Circumferential annular groove; 12. Circumferential boss; 13. Annular step; 14. Center hole; 2. Polycrystalline diamond ring; 3. Steel inner core; 4. Steel Half ring; d 1 , outer diameter of steel inner core; d 2 , outer diameter of cemented carbide substrate top surface; d 3 , outer diameter of polycrystalline diamond ring; h 1 , thickness of polycrystalline diamond ring; h 2 , circumferential convex table thickness; h 3 , thickness of steel outer ring; H, thickness of steel inner core.
具体实施方式Detailed ways
本发明的仿生高抗冲击聚晶金刚石复合片,技术构思的本质在于,借鉴雀尾螳螂虾附足结构,在柱状的复合片的工作面,沿着径向由外到内,或/和沿着轴向由上到下,依次分布有聚晶金刚石、硬质合金、合金钢这三种不同材料,聚晶金刚石、硬质合金、合金钢的硬度依次降低,聚晶金刚石、硬质合金、合金钢的变形能力依次增强,形成吸能减振结构;破岩过程中,保护聚晶金刚石,避免复合片冲击损坏,提高复合片抗冲击性能。The essence of the technical concept of the biomimetic high-impact polycrystalline diamond composite sheet of the present invention lies in that, drawing on the attachment structure of the sparrow mantis shrimp, on the working surface of the columnar composite sheet, from the outside to the inside along the radial direction, or/and along the From top to bottom in the axial direction, there are three different materials: polycrystalline diamond, cemented carbide, and alloy steel. The hardness of polycrystalline diamond, cemented carbide, and alloy steel decreases in turn. The deformation ability of the alloy steel increases in turn, forming an energy-absorbing and vibration-damping structure; in the process of rock breaking, the polycrystalline diamond is protected, the impact damage of the composite sheet is avoided, and the impact resistance of the composite sheet is improved.
下面结合附图和实施例对本发明做进一步详细的非限制性说明。The present invention will be further detailed and non-limiting description below in conjunction with the accompanying drawings and embodiments.
实施例一Example 1
如图1、图2和图3共同所示,本发明实施例一的仿生高抗冲击聚晶金刚石复合片包括:结合在一起的硬质合金基体1、聚晶金刚石环2、钢质内芯3和钢质外环。As shown in FIG. 1, FIG. 2 and FIG. 3, the bionic high-impact polycrystalline diamond composite sheet according to the first embodiment of the present invention includes: a cemented
如图4所示,其中,硬质合金基体1为柱状体,具体为圆柱状,在硬质合金基体1的侧面设置有周向环槽11,在周向环槽11的上方为周向凸台12,周向凸台12的上台面与硬质合金基体1的顶面之间形成环形台阶13,在硬质合金基体1的顶面中部设置有沿轴向延伸的中心孔14。As shown in FIG. 4 , the cemented
如图2和图4所示,钢质内芯3设置于中心孔14内,优选采用过盈方式将钢质内芯3安装于中心孔14;聚晶金刚石环2采用本领域公知的方式复合于环形台阶13;钢质外环设置于周向环槽11内,优选采用过盈方式将钢质外环安装于周向环槽11,为便于安装,钢质外环优化设计为组件结构,具体包括对扣的两个钢质半环4。并且,进一步优化设计为,钢质半环4、周向凸台12、聚晶金刚石环2的侧面齐平;聚晶金刚石环2、硬质合金基体1、钢质内芯3的顶面齐平。As shown in FIG. 2 and FIG. 4 , the steel
如图2和图3所示,在复合片顶面,沿径向,定义钢质内芯3的外径为d1,硬质合金基体1顶面的外径为d2,聚晶金刚石环2的外径为d3,最优设计是d1:d2:d3=1:2:3。在复合片侧面,沿轴向,定义聚晶金刚石环2的厚度为h1,硬质合金基体1的周向凸台12的厚度为h2,钢质半环4的厚度为h3,钢质内芯3的厚度为H,最优设计是h1:h2:h3=1:1:1,H=h1+h2+h3。As shown in Figure 2 and Figure 3, on the top surface of the composite sheet, along the radial direction, the outer diameter of the steel
由于本发明实施例的仿生高抗冲击聚晶金刚石复合片借鉴了雀尾螳螂虾附足结构,在复合片的工作面,沿着径向由外到内,沿着轴向由上到下,皆依次分布有聚晶金刚石、硬质合金、合金钢三种不同材料,聚晶金刚石、硬质合金、合金钢的硬度依次降低,变形能力依次增强,从而形成吸能减振结构;破岩过程中,当复合片受到径向和轴向冲击时,一方面,冲击产生的应力波在材料界面位置发生反射和折射,可以有效削弱和抵消应力波;同时,另一方面,相对于聚晶金刚石,硬质合金和合金钢在冲击作用下更易发生变形,可有效吸收冲击能量,保护聚晶金刚石,避免复合片冲击损坏,提高了复合片抗冲击性能,延长了复合片使用寿命,进而大幅提高了钻头整体工作性能,实现了钻井提速增效。Because the bionic high-impact-resistant polycrystalline diamond composite sheet of the embodiment of the present invention draws on the structure of the foot of the sparrow mantis shrimp, on the working surface of the composite sheet, from outside to inside along the radial direction, and from top to bottom along the axial direction, There are three different materials of polycrystalline diamond, cemented carbide and alloy steel distributed in sequence. The hardness of polycrystalline diamond, cemented carbide and alloy steel decreases in turn, and the deformation capacity increases in turn, thus forming an energy-absorbing and vibration-damping structure; the rock breaking process When the composite sheet is subjected to radial and axial impact, on the one hand, the stress wave generated by the impact is reflected and refracted at the material interface, which can effectively weaken and offset the stress wave; at the same time, on the other hand, compared with polycrystalline diamond, , Cemented carbide and alloy steel are more prone to deformation under impact, which can effectively absorb impact energy, protect polycrystalline diamond, avoid impact damage to the composite sheet, improve the impact resistance of the composite sheet, prolong the service life of the composite sheet, and greatly improve the The overall working performance of the drill bit is improved, and the drilling speed and efficiency are improved.
显然,本发明的技术构思不局限于上述实施例,在复合片工作面的径向和轴向,由外到内,由上到下,皆依次分布有聚晶金刚石、硬质合金、合金钢这三种不同材料。基于本发明的技术构思,还可以获得以下实施例:Obviously, the technical concept of the present invention is not limited to the above-mentioned embodiments. In the radial and axial directions of the working surface of the composite sheet, from outside to inside, from top to bottom, polycrystalline diamond, cemented carbide, and alloy steel are distributed in sequence. three different materials. Based on the technical concept of the present invention, the following embodiments can also be obtained:
实施例二
相较于实施例一,实施例二中仅在复合片工作面的径向,由外到内,依次分布有聚晶金刚石、硬质合金、合金钢这三种不同材料,不设置钢质外环。Compared with the first embodiment, in the second embodiment, three different materials of polycrystalline diamond, cemented carbide, and alloy steel are sequentially distributed in the radial direction of the working surface of the composite sheet, from the outside to the inside, and no steel outer surface is provided. ring.
实施例三
相较于实施例一,实施例三中仅在复合片工作面的轴向,由上到下,依次分布有聚晶金刚石、硬质合金、合金钢这三种不同材料,不设置钢质内芯。Compared with the first embodiment, in the third embodiment, three different materials of polycrystalline diamond, cemented carbide, and alloy steel are sequentially distributed in the axial direction of the working surface of the composite sheet, from top to bottom. core.
相较于实施例一,实施例二和实施例三的结构较为简单,吸能减振效果稍弱于实施例一,在客观上,也能起到削弱和抵消应力波、吸收冲击能量、保护聚晶金刚石的目的。至于实施例二、实施例三的具体结构,本领域技术人员能够根据实施例二、实施例三的技术构思具体设计,在此不再图示及赘述。Compared with the first embodiment, the structures of the second and third embodiments are relatively simple, and the energy absorption and vibration reduction effect is slightly weaker than that of the first embodiment. Objectively, they can also weaken and offset stress waves, absorb impact energy, protect The purpose of polycrystalline diamond. As for the specific structures of the second and third embodiments, those skilled in the art can specifically design them according to the technical concepts of the second and third embodiments, and will not be illustrated or described in detail here.
以上所述为本发明较佳实施方式的举例,其中未详细述及的部分皆为本领域的已知技术,本发明的保护范围以权利要求的内容为准,任何基于本发明的技术启示而进行的等效变换皆在本发明保护范围内。The above are examples of preferred embodiments of the present invention, and the parts not described in detail are known technologies in the art. The protection scope of the present invention is subject to the content of the claims. Anything based on the technical inspiration of the present invention The equivalent transformations performed are all within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210139025.4A CN114508307B (en) | 2022-02-15 | 2022-02-15 | Bionic high impact resistant polycrystalline diamond composite sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210139025.4A CN114508307B (en) | 2022-02-15 | 2022-02-15 | Bionic high impact resistant polycrystalline diamond composite sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114508307A true CN114508307A (en) | 2022-05-17 |
CN114508307B CN114508307B (en) | 2025-01-28 |
Family
ID=81551485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210139025.4A Active CN114508307B (en) | 2022-02-15 | 2022-02-15 | Bionic high impact resistant polycrystalline diamond composite sheet |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114508307B (en) |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5429200A (en) * | 1994-03-31 | 1995-07-04 | Dresser Industries, Inc. | Rotary drill bit with improved cutter |
US20040026983A1 (en) * | 2002-08-07 | 2004-02-12 | Mcalvain Bruce William | Monolithic point-attack bit |
CN2906032Y (en) * | 2005-11-24 | 2007-05-30 | 江汉石油钻头股份有限公司 | Polycrystalline diamond composite sheet with granular gradient |
CN102414393A (en) * | 2009-06-05 | 2012-04-11 | 维拉国际工业有限公司 | Casing bit and casing reamer designs |
US20130199693A1 (en) * | 2010-08-24 | 2013-08-08 | Klaus Tank | Wear part |
CN203614044U (en) * | 2013-12-20 | 2014-05-28 | 江汉石油钻头股份有限公司 | Polycrystalline diamond clad sheet |
CN104832101A (en) * | 2015-05-15 | 2015-08-12 | 中国水利水电第十工程局有限公司 | Double-base-material type cutting component and down-hole hammer bit with cutting component |
CN204782793U (en) * | 2015-05-26 | 2015-11-18 | 株洲翔宇硬质合金有限公司 | Take polycrystalline diamond compact in internal cooling hole |
CN105134086A (en) * | 2015-08-18 | 2015-12-09 | 中国石油大学(华东) | Polycrystalline diamond compact with anti-adhesion characteristic |
CN107532455A (en) * | 2015-06-24 | 2018-01-02 | 哈利伯顿能源服务公司 | Away drill cuttings and knife combination part |
WO2018035981A1 (en) * | 2016-08-26 | 2018-03-01 | 聊城市昌润复合材料有限公司 | Polygonal composite sheet matrix comprising diamond |
CN211173947U (en) * | 2019-08-06 | 2020-08-04 | 中石化江钻石油机械有限公司 | Diamond compact with adjustable tooth exposure height |
CN214741117U (en) * | 2021-03-02 | 2021-11-16 | 广东钜鑫新材料科技股份有限公司 | Polycrystalline diamond compact, PDC bearing assembly and cutting tool |
-
2022
- 2022-02-15 CN CN202210139025.4A patent/CN114508307B/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5429200A (en) * | 1994-03-31 | 1995-07-04 | Dresser Industries, Inc. | Rotary drill bit with improved cutter |
US20040026983A1 (en) * | 2002-08-07 | 2004-02-12 | Mcalvain Bruce William | Monolithic point-attack bit |
CN2906032Y (en) * | 2005-11-24 | 2007-05-30 | 江汉石油钻头股份有限公司 | Polycrystalline diamond composite sheet with granular gradient |
CN102414393A (en) * | 2009-06-05 | 2012-04-11 | 维拉国际工业有限公司 | Casing bit and casing reamer designs |
US20130199693A1 (en) * | 2010-08-24 | 2013-08-08 | Klaus Tank | Wear part |
CN203614044U (en) * | 2013-12-20 | 2014-05-28 | 江汉石油钻头股份有限公司 | Polycrystalline diamond clad sheet |
CN104832101A (en) * | 2015-05-15 | 2015-08-12 | 中国水利水电第十工程局有限公司 | Double-base-material type cutting component and down-hole hammer bit with cutting component |
CN204782793U (en) * | 2015-05-26 | 2015-11-18 | 株洲翔宇硬质合金有限公司 | Take polycrystalline diamond compact in internal cooling hole |
CN107532455A (en) * | 2015-06-24 | 2018-01-02 | 哈利伯顿能源服务公司 | Away drill cuttings and knife combination part |
CN105134086A (en) * | 2015-08-18 | 2015-12-09 | 中国石油大学(华东) | Polycrystalline diamond compact with anti-adhesion characteristic |
WO2018035981A1 (en) * | 2016-08-26 | 2018-03-01 | 聊城市昌润复合材料有限公司 | Polygonal composite sheet matrix comprising diamond |
CN211173947U (en) * | 2019-08-06 | 2020-08-04 | 中石化江钻石油机械有限公司 | Diamond compact with adjustable tooth exposure height |
CN214741117U (en) * | 2021-03-02 | 2021-11-16 | 广东钜鑫新材料科技股份有限公司 | Polycrystalline diamond compact, PDC bearing assembly and cutting tool |
Non-Patent Citations (3)
Title |
---|
朱从容等: "数控加工先进刀具材料及其应用", 31 December 2021, 上海交通大学出版社, pages: 8 * |
邹德永等: "硬地层PDC钻头切削齿尺寸及后倾角优化设计", 石油钻探技术, vol. 39, no. 6, 30 November 2011 (2011-11-30), pages 91 - 94 * |
高科等: "仿生自补偿一体式高胎体孕镶金刚石取心钻头研究", 钻探工程, vol. 49, no. 1, 31 January 2022 (2022-01-31), pages 16 - 24 * |
Also Published As
Publication number | Publication date |
---|---|
CN114508307B (en) | 2025-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105604491B (en) | A kind of PDC cutting tooths based on shock-damping structure | |
CN111411897B (en) | A punching PDC drill bit | |
EP1627129B1 (en) | Drill bit, system, and method for drilling a borehole in an earth formation | |
CN111622676A (en) | Rock-entering drill bit of rotary drilling rig and rotary drilling rig | |
CN206233859U (en) | A kind of PDC drill bit suitable for directed drilling | |
CN103628821B (en) | Be applicable to soft-hard lead into the core bit of object | |
CN114508307A (en) | Biomimetic high impact polycrystalline diamond compact | |
CN109594927A (en) | A kind of elastic drill bit for oil exploitation | |
CN105507804A (en) | Ultrasonic vibration cord coring drill tool | |
CN205370456U (en) | PDC cutting teeth based on shock -absorbing structure | |
CN110259388B (en) | An adaptive omnidirectional variable-angle PDC bit tooth for alleviating rock-to-tooth impact force | |
CN211851674U (en) | Novel cone-PDC composite drill bit | |
CN206513368U (en) | A kind of polycrystal diamond composite teeth | |
CN201763248U (en) | Double-cone double spiral bit for rotary drill | |
CN210309324U (en) | Superhard composite sheet with multilayer structure | |
CN202338205U (en) | Novel PDC (Polycrystalline Diamond Compact) bit | |
CN201835753U (en) | Polycrystalline diamond compact for rock-breaking tool for drilling | |
CN207776799U (en) | A kind of full exposure PDC drill bit | |
CN208184666U (en) | PDC drill bit | |
CN201679451U (en) | Cambered surface PDC (polycrystalline diamond compact) | |
CN214616369U (en) | A composite drilling tool | |
CN206158595U (en) | Double-layer spherical tooth percussion drill bit | |
CN115012851B (en) | Geological spiral drill stem with PDC reinforced blades | |
CN210217630U (en) | PDC drill bit suitable for hard formation creeps into fast | |
CN220955467U (en) | Stepped PDC drill bit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |