CN114500296B - Communication, storage and computing resource unified characterization method based on function expansion diagram - Google Patents
Communication, storage and computing resource unified characterization method based on function expansion diagram Download PDFInfo
- Publication number
- CN114500296B CN114500296B CN202210087697.5A CN202210087697A CN114500296B CN 114500296 B CN114500296 B CN 114500296B CN 202210087697 A CN202210087697 A CN 202210087697A CN 114500296 B CN114500296 B CN 114500296B
- Authority
- CN
- China
- Prior art keywords
- node
- virtual
- data
- nodes
- functional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004891 communication Methods 0.000 title claims abstract description 66
- 238000010586 diagram Methods 0.000 title claims abstract description 49
- 238000012512 characterization method Methods 0.000 title claims abstract description 5
- 230000006870 function Effects 0.000 claims abstract description 145
- 230000005540 biological transmission Effects 0.000 claims abstract description 96
- 238000007726 management method Methods 0.000 claims abstract description 7
- 238000004364 calculation method Methods 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 10
- 238000000354 decomposition reaction Methods 0.000 claims description 3
- 230000004931 aggregating effect Effects 0.000 claims 1
- 238000010295 mobile communication Methods 0.000 claims 1
- 238000000638 solvent extraction Methods 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims 1
- 238000004458 analytical method Methods 0.000 abstract description 3
- 230000008859 change Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 241000220225 Malus Species 0.000 description 1
- 235000015197 apple juice Nutrition 0.000 description 1
- 235000021016 apples Nutrition 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/14—Network analysis or design
- H04L41/145—Network analysis or design involving simulating, designing, planning or modelling of a network
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/12—Discovery or management of network topologies
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/14—Network analysis or design
- H04L41/142—Network analysis or design using statistical or mathematical methods
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Signal Processing (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mathematical Physics (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Analysis (AREA)
- Algebra (AREA)
- Data Mining & Analysis (AREA)
- Theoretical Computer Science (AREA)
- Probability & Statistics with Applications (AREA)
- Computational Mathematics (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
Description
技术领域technical field
本发明属于信息技术领域,特别涉及一种基于功能扩展图的通信、存储和计算资源统一表征方法,可以用于公共交通、通信、供应链这些时变网络的通信、存储和计算资源分析与管理。The invention belongs to the field of information technology, and in particular relates to a unified characterization method for communication, storage and computing resources based on a function extension graph, which can be used for analysis and management of communication, storage and computing resources in time-varying networks such as public transportation, communication, and supply chains .
背景技术Background technique
为了建模网络拓扑对数据传输的影响,Fulkerson等人提出了时间扩展图,通过引入存储链路将离散的时间快照连接起来,从而实现网络节点的通信资源和存储资源的联合表征。时间扩展图被广泛应用于表征随时间变化的动态网络,比如,多商品问题,疏散计划问题,空间信息网络以及通信网络等。然而,网络节点除了拥有通信功能和存储功能外,还拥有其他的计算处理功能。比如,对于通信网络,其网络节点可能拥有图像处理功能,则流入该节点的原始图像可能被压缩处理成压缩图像从该节点流出;对于数据流问题,网络节点可能拥有处理功能,其将流入的原始材料处理后转化成产品,如将苹果处理成苹果汁,从该节点流出。然而,这种时间扩展图却无法表征在动态网络中节点的计算处理功能。In order to model the impact of network topology on data transmission, Fulkerson et al. proposed a time expansion graph, which connects discrete time snapshots by introducing storage links, so as to realize the joint representation of communication resources and storage resources of network nodes. Time-expanded graphs are widely used to represent dynamic networks that change over time, such as multi-commodity problems, evacuation planning problems, spatial information networks, and communication networks. However, in addition to communication and storage functions, network nodes also have other computing and processing functions. For example, for a communication network, its network nodes may have image processing functions, and the original images flowing into the node may be compressed and processed into compressed images to flow out of the node; for data flow problems, the network nodes may have processing functions, which will Raw materials are processed and converted into products, such as processing apples into apple juice, that flow out of this node. However, such time-expanded graphs cannot characterize the computational processing functions of nodes in dynamic networks.
例如,Huiting Yang的文章“Maximum flow routing strategy for spaceinformation network with service function constraints”中,提出采用时间扩展图表征时变的空间信息网络网络,其通过引入存储链路将离散的时间快照连接起来,从而实现网络节点的通信资源和存储资源的联合表征。但是,在空间信息网络中的节点,如卫星除了拥有通信功能和存储功能外,还拥有其他的计算处理功能,如图像压缩。而时间扩展图未能将空间信息网络节点相应的计算资源考虑在内,因而导致无法用于空间信息网络中的通信、存储和计算的联合规划。For example, in Huiting Yang's article "Maximum flow routing strategy for space information network with service function constraints", it is proposed to use a time expansion graph to represent a time-varying spatial information network network, which connects discrete time snapshots by introducing storage links, thereby Realize the joint representation of communication resources and storage resources of network nodes. However, in addition to communication and storage functions, nodes in the space information network, such as satellites, also have other computing and processing functions, such as image compression. However, the time-expanded graph fails to take into account the corresponding computing resources of the spatial information network nodes, so it cannot be used for the joint planning of communication, storage and computing in the spatial information network.
发明内容Contents of the invention
本发明的目的在于针对上述现有技术无法对通信、存储和计算资源联合表征的不足,提出一种基于功能扩展图的通信、存储和计算资源统一表征方法,以构成统一功能图模型,刻画不同资源间的承接转化关系,实现对时变网络中的通信、存储和计算资源的分析和管理。The purpose of the present invention is to solve the problem that the above-mentioned prior art cannot jointly represent communication, storage and computing resources, and propose a unified representation method for communication, storage and computing resources based on function extension graphs, so as to form a unified functional graph model and describe different The inheritance and transformation relationship between resources realizes the analysis and management of communication, storage and computing resources in time-varying networks.
为实现上述目的,本发明的技术方案包括如下:To achieve the above object, technical solutions of the present invention include as follows:
(1)初始化网络节点集合为网络节点的个数为N;(1) Initialize the set of network nodes as The number of network nodes is N;
(2)对网络节点进行划分,即将把网络中不能提供任务计算功能只起到通信和存储作用的节点分为非功能节点,将络中不仅能提供通信和存储功能还能提供计算功能的分为功能节点;根据此划分将网络节点集合表示为:其中为非功能节点的集合,为功能节点的集合,表示第j个非功能节点,N1为非功能节点的个数,表示第i个功能节点,N2为功能节点的个数,N=N1+N2;(2) Divide the network nodes, that is, divide the nodes in the network that cannot provide task computing functions and only play the role of communication and storage into non-functional nodes, and divide the network nodes that can not only provide communication and storage functions but also provide computing functions. is a functional node; according to this division, the network nodes are aggregated Expressed as: in is a collection of non-functional nodes, is a collection of functional nodes, Indicates the jth non-functional node, N 1 is the number of non-functional nodes, Indicates the i-th function node, N 2 is the number of function nodes, N=N 1 +N 2 ;
(3)根据网络节点的功能对其进行分解:(3) Decompose the network nodes according to their functions:
若功能节点能够提供Mi个计算功能,则将节点其分解为一个虚拟子节点vi和Mi个虚拟计算节点以及两条虚拟传输链路和其中,Mi为功能节点能够提供计算功能的总数,表示的功能节点分解的第m个虚拟计算节点,表示的是从虚拟子节点vi到虚拟计算节点的有向线段,表示的是从虚拟计算节点到虚拟子节点vi的有向线段,m∈[1,Mi];If the function node can provide M i computing functions, then decompose the node into a virtual child node v i and M i virtual computing nodes and two virtual transmission links and Among them, M i is the function node can provide the total number of computing functions, Represents a function node The mth virtual compute node of the decomposition, Indicates from the virtual child node v i to the virtual computing node The directed line segment of Represents a slave virtual compute node The directed line segment to the virtual child node v i , m∈[1,M i ];
(4)根据网络节点的连通性,将网络规划周期划分为T个时间间隔其中且在时间间隔τq内网络拓扑保持不变,q∈[1,T];(4) According to the connectivity of network nodes, the network planning cycle Divided into T time intervals in And the network topology remains unchanged within the time interval τ q , q∈[1,T];
(5)构建功能扩展图:(5) Construct function expansion diagram:
(5a)初始化一张空白的T层有向图,其中第q层有向图的时间间隔为τq;(5a) Initialize a blank T-layer directed graph, wherein the time interval of the q-th layer directed graph is τ q ;
(5b)在有向图的每个时间间隔τq内分别添加网络中所有非功能节点、所有功能节点分解的虚拟子节点、所有功能节点分解的虚拟计算节点,构成功能节点图,并得到该功能节点图的三类节点集合:(5b) Add all non-functional nodes in the network, virtual child nodes decomposed by all functional nodes, and virtual computing nodes decomposed by all functional nodes in each time interval τ q of the directed graph to form a functional node graph, and obtain the Three types of node collections of functional node graphs:
其中,为功能节点图的非功能节点集合,为功能节点图的虚拟子节点集合,为功能节点图的虚拟计算节点集合,表示在时间间隔τq内网络非功能节点的副本,为虚拟子节点vi的副本,表示在时间间隔τq内网络虚拟计算节点的副本;in, is the set of non-functional nodes of the functional node graph, is the set of virtual child nodes of the functional node graph, is a collection of virtual computing nodes in the functional node graph, Indicates the non-functional nodes of the network within the time interval τ q a copy of, is a copy of the virtual child node v i , Indicates the network virtual computing node within the time interval τ q a copy of;
(5c)在功能节点图中添加链路:(5c) Add links in the function node graph:
(5c1)根据节点的连通性添加传输链路:(5c1) Add transmission links according to the connectivity of nodes:
若在时间间隔τq内,网络中第j个非功能节点能够给第k个非功能节点传输数据,则在功能节点图中的第j个非功能节点与第k个非功能节点之间添加一条有向线段 If within the time interval τ q , the jth non-functional node in the network able to give the kth non-functional node To transmit data, the jth non-functional node in the functional node graph with the kth non-functional node Add a directed line segment between
若在时间间隔τq内,第j个非功能节点能够给第i个功能节点传输数据,则在功能节点图中的第j个非功能节点与第i个虚拟子节点之间添加一条有向线段 If within the time interval τ q , the jth non-functional node can give the i-th function node To transmit data, the jth non-functional node in the functional node graph with the i-th virtual child node Add a directed line segment between
若在时间间隔τq内,第i个功能节点能够给第k个功能节点传输数据,则在功能节点图中的第i个虚拟子节点与第k个虚拟子节点之间添加一条有向线段 If within the time interval τ q , the i-th functional node Ability to give the kth functional node To transmit data, the i-th virtual child node in the function node graph with the kth virtual child node Add a directed line segment between
若在时间间隔τq内,第i个功能节点能够给第j个非功能节点传输数据,则在功能节点图中第i个虚拟子节点与第j个非功能节点之间添加一条有向线段 If within the time interval τ q , the i-th functional node able to give the jth non-functional node To transmit data, the i-th virtual child node in the function node graph with the jth non-functional node Add a directed line segment between
(5c2)添加存储链路:(5c2) Add storage link:
在功能节点图每个非功能节点的相邻时间间隔之间添加一条从节点到节点的有向线段 Add a slave node between adjacent time intervals of each non-functional node in the functional node graph to node The directed segment of
在功能节点图每个虚拟子节点的相邻时间间隔之间添加一条从节点到节点的有向线段 Add a slave node between adjacent time intervals of each virtual child node in the function node graph to node The directed segment of
(5c3)添加虚拟传输链路:在功能节点图每个虚拟子节点与其对应的虚拟子计算节点之间添加两条有向线段和至此得到功能扩展图;(5c3) Add a virtual transmission link: each virtual child node in the function node graph Its corresponding virtual child computing node add two directed line segments between and So far, the function expansion diagram is obtained;
(6)设置通信容量约束、存储容量约束、计算容量约束和流量守恒约束:(6) Set communication capacity constraints, storage capacity constraints, computing capacity constraints and flow conservation constraints:
所述通信容量约束,是限定所有数据流在传输链路或虚拟传输链路上传输的数据量总和不能超过其传输链路或虚拟传输链路的通信容量;The communication capacity constraint is to limit the total amount of data transmitted by all data streams on the transmission link or the virtual transmission link to not exceed the communication capacity of the transmission link or the virtual transmission link;
所述存储容量约束,是限定所有数据流在存储链路上存储的数据量总和不能超过其存储链路的存储容量;The storage capacity constraint is to limit the sum of the amount of data stored on the storage link of all data streams to not exceed the storage capacity of its storage link;
所述计算容量约束,是限定数据流流入虚拟计算节点所消耗的计算容量不能超过虚拟计算节点所提供的计算能力,其中为即将接收计算功能的数据流,m∈[1,Mi],表示的是通过传输链路和存储链路流入功能扩展图中的虚拟子节点的不同数据流的种类数;The computational capacity constraint is to limit the data flow Flow into virtual compute nodes The computing capacity consumed cannot exceed the virtual computing node Computing power provided, where Computational features for upcoming recipients data flow, m∈[1,M i ], Indicates the virtual sub-nodes in the functional expansion diagram flowing through transmission links and storage links The number of types of different data streams;
所述流量守恒约束,包括:限定每一种数据流流入非功能节点的数据量等于其流出非功能节点的数据量;限定每一种数据流流入虚拟子节点的数据量等于其流出虚拟子节点的数据量;限定即数据流流入虚拟计算节点的数据量乘于等于数据流流出虚拟计算节点的数据量,其中,为已接收计算功能的数据流;The flow conservation constraint includes: limiting the amount of data that each data flow flows into a non-functional node to be equal to the amount of data that flows out of a non-functional node; limiting the amount of data that each data flow flows into a virtual child node to be equal to the amount of data that flows out of a virtual child node The amount of data; the limit is the data flow Flow into virtual compute nodes The amount of data multiplied by equal to data flow Outgoing Virtual Compute Node The amount of data, where, Calculate function for received data flow;
(7)在上述设定的四个约束下,将通信、存储和计算资源联合管理问题转化为功能扩展图中的数据流问题,即用功能扩展图,统一表征随时间变化的动态网络通信、存储和计算资源。(7) Under the four constraints set above, the problem of joint management of communication, storage, and computing resources is transformed into a data flow problem in the function expansion graph, that is, the function expansion graph is used to uniformly represent the dynamic network communication that changes over time, storage and computing resources.
本发明与现有技术相比,具有如下优点:Compared with the prior art, the present invention has the following advantages:
1)本发明由于通过功能扩展图框架来统一表征通信、存储和计算能力,解决了传统的时间扩展图中无法表征一个节点内的多种计算功能的问题。具体而言,基于传统时间扩展图,对每个具有计算功能的节点进行虚拟分解为三个虚拟组件:子虚拟节点,虚拟计算节点和虚拟传输链路,其中子虚拟节点保持原始节点的通信和存储能力,而虚拟计算节点提供原始节点的计算能力,虚拟传输链路连接子虚拟节点和虚拟计算节点。同时本发明的功能扩展图能够表征在一个节点内的多个并行或多个连续的计算功能。1) The present invention solves the problem that the traditional time-expanded graph cannot represent various computing functions in a node because the communication, storage and computing capabilities are represented uniformly through the function-expanded graph framework. Specifically, based on the traditional time-expanded graph, each node with computing function is virtually decomposed into three virtual components: sub-virtual nodes, virtual computing nodes and virtual transmission links, where the sub-virtual nodes maintain the communication and Storage capacity, while the virtual computing node provides the computing power of the original node, and the virtual transmission link connects the child virtual node and the virtual computing node. At the same time, the function expansion diagram of the present invention can represent multiple parallel or multiple continuous computing functions in one node.
2)本发明由于在构造功能扩展图中,通过引入虚拟传输链路的方法解决传统时间扩展图中无法表征节点的计算功能单元处理数据过程的问题。本发明用功能扩展图中的传输链路、存储链路和虚拟传输链路表征时变网络中的通信、存储和计算资源,为联合通信、存储和计算资源提供了统一的表示,且功能扩展图中的不同链路之间的位置关系表征了不同资源间的承接转化关系。2) The present invention solves the problem of processing data by computing functional units that cannot represent nodes in traditional time-expanded diagrams by introducing virtual transmission links in constructing function-expanded diagrams. The present invention uses the transmission link, storage link and virtual transmission link in the function expansion diagram to represent the communication, storage and computing resources in the time-varying network, and provides a unified representation for the joint communication, storage and computing resources, and the function expansion The positional relationship between different links in the figure represents the succession and transformation relationship between different resources.
3)本发明由于在功能扩展图中设定了对数据流的通信容量约束、存储容量约束、计算容量约束和流量守恒约束,克服了对于一个具有多个并行计算功能或多个连续功能的节点,因数据流的类型和输入的数据流量与输出的数据流量的比例可能发生改变所造成难于量化流量守恒约束的问题,可通过功能扩展图,统一表征随时间变化的动态网络通信、存储和计算资源。3) The present invention overcomes the problem for a node with multiple parallel computing functions or multiple continuous functions due to setting communication capacity constraints, storage capacity constraints, computing capacity constraints and flow conservation constraints on the data flow in the function expansion diagram. , due to the possible changes in the type of data flow and the ratio of input data flow to output data flow, it is difficult to quantify the problem of flow conservation constraints. The function expansion diagram can be used to uniformly represent the dynamic network communication, storage and computing that changes over time resource.
附图说明Description of drawings
图1是本发明使用的场景示意图;Fig. 1 is a schematic diagram of a scene used in the present invention;
图2是本发明的实现总流程图;Fig. 2 is the realization overall flowchart of the present invention;
图3是本发明中在规划周期内网络的节点与节点之间的连通关系示意图;Fig. 3 is a schematic diagram of the connection relationship between nodes of the network in the planning period in the present invention;
图4是本发明中功能节点分解得到的不同节点和虚拟传输链路示意图;Fig. 4 is a schematic diagram of different nodes and virtual transmission links obtained by decomposing functional nodes in the present invention;
图5是本发明中初始化的空白有向图;Fig. 5 is a blank directed graph initialized in the present invention;
图6是本发明中构建的功能节点图。Fig. 6 is a functional node diagram constructed in the present invention.
图7是本发明中构建的功能扩展图。Fig. 7 is a function expansion diagram constructed in the present invention.
具体实施方式Detailed ways
以下结合附图和实例对本发明进行详细说明,实例仅用于说明本发明,并不构成对本发明的任何限制。The present invention will be described in detail below in conjunction with the accompanying drawings and examples. The examples are only used to illustrate the present invention and do not constitute any limitation to the present invention.
参照图1,本实例的网络场景由6个网络节点组成,其中网络节点和这三个节点不能提供任务计算功能只起到通信和存储作用,而和这三个网络节点不仅能提供通信和存储功能还分别能够提供M1,M2和M3个计算功能。网络的规划周期为在规划周期内节点与节点之间的连通性如图3所示,图3中每一个横纵坐标对应一对节点的连通关系,其中横坐标表示时间,纵坐标表示连通性,状态1表示连通,状态0表示断开。Referring to Figure 1, the network scenario of this example consists of 6 network nodes consists of network nodes and These three nodes cannot provide task computing functions and only play the role of communication and storage, while and These three network nodes can not only provide communication and storage functions but also provide M 1 , M 2 and M 3 computing functions respectively. The planning cycle of the network is The connectivity between nodes in the planning cycle is shown in Figure 3. In Figure 3, each abscissa and ordinate corresponds to the connectivity relationship of a pair of nodes, where the abscissa represents time, the ordinate represents connectivity, and
参照图2,本实例在上述场景条件下的具体实现步骤如下:Referring to Figure 2, the specific implementation steps of this example under the above scenario conditions are as follows:
步骤1,初始化网络参数并对网络节点进行划分。
初始化网络节点的个数为N,N=6,初始化网络节点集合为即该集合由六个网络节点组成,其中网络节点和这三个节点不能提供任务计算功能只起到通信和存储作用,而和这三个网络节点不仅能提供通信和存储功能还分别能够提供M1,M2和M3个计算功能。The number of initialized network nodes is N, N=6, and the set of initialized network nodes is That is, the collection consists of Composed of six network nodes, the network nodes and These three nodes cannot provide task computing functions and only play the role of communication and storage, while and These three network nodes can not only provide communication and storage functions but also provide M 1 , M 2 and M 3 computing functions respectively.
将把网络中不能提供任务计算功能只起到通信和存储作用的节点分为非功能节点,将络中不仅能提供通信和存储功能还能提供计算功能的分为功能节点;The nodes in the network that cannot provide task computing functions and only play the role of communication and storage will be divided into non-functional nodes, and those that can not only provide communication and storage functions but also computing functions in the network will be divided into functional nodes;
根据此划分将网络节点集合表示为:其中为非功能节点的集合,为功能节点的集合,表示第j个非功能节点,j∈[1,N1],N1=3为非功能节点的个数,表示第i个功能节点,i∈[1,N2],N2=3为功能节点的个数,N=N1+N2。According to this division, the network nodes are aggregated Expressed as: in is a collection of non-functional nodes, is a collection of functional nodes, Indicates the jth non-functional node, j∈[1,N 1 ], N 1 =3 is the number of non-functional nodes, Indicates the i-th functional node, i∈[1,N 2 ], N 2 =3 is the number of functional nodes, N=N 1 +N 2 .
步骤2,根据网络节点的功能对其进行分解。
若功能节点能够提供Mi个计算功能,则将节点其分解为一个虚拟子节点vi和Mi个虚拟计算节点以及两条虚拟传输链路和如图4所示,其中,Mi为功能节点能够提供计算功能的总数,表示的功能节点分解的第m个虚拟计算节点,表示的是从虚拟子节点vi到虚拟计算节点的有向线段,表示的是从虚拟计算节点到虚拟子节点vi的有向线段,m∈[1,Mi],虚拟子节点vi实现通信和存储功能,虚拟计算节点实现计算功能且数据流流入虚拟计算节点将被处理并被转化为新类型的数据流从该虚拟计算节点流出,其中,为即将接收计算功能的数据流,为已接收计算功能的数据流。If the function node can provide M i computing functions, then decompose the node into a virtual child node v i and M i virtual computing nodes and two virtual transmission links and As shown in Figure 4, where Mi is a function node can provide the total number of computing functions, Represents a function node The mth virtual compute node of the decomposition, Indicates from the virtual child node v i to the virtual computing node The directed line segment of Represents a slave virtual compute node Directed line segment to virtual child node v i , m∈[1,M i ], virtual child node v i implements communication and storage functions, virtual computing node Realize the calculation function and data flow Flow into virtual compute nodes will be processed and transformed into a new type of data stream From this virtual compute node flow out of which, Computational features for upcoming recipients data flow, Calculate function for received data flow.
步骤3,根据网络节点的连通性,将网络规划周期划分为T个连续不均等的时间间隔。
如图3所示,其包括三个时间间隔,即第一时间间隔τ1,第二时间间隔τ2,第三个时间间隔τ3,其中:As shown in Figure 3, it includes three time intervals, namely the first time interval τ 1 , the second time interval τ 2 , and the third time interval τ 3 , where:
第一时间间隔τ1内,第1个非功能节点可以给第1个功能节点传输数据,第1个功能节点可以给第2个功能节点传输数据,第2个非功能节点可以给第3个非功能节点传输数据;In the first time interval τ 1 , the first non-functional node Can be given to the first function node Transfer data, the first function node Can be given to the second function node Transmit data, 2nd non-functional node Can give the 3rd non-functional node transfer data;
第二个时间间隔τ2内,第1个非功能节点可以给第1个功能节点传输数据,第2个功能节点可以给第3个功能节点传输数据,第3个功能节点可以给第2个非功能节点传输数据;In the second time interval τ 2 , the first non-functional node Can be given to the first function node Transfer data, the second function node Can give the third function node Transfer data, the 3rd functional node Can be given to the second non-functional node transfer data;
第三个时间间隔τ3内,第1个功能节点可以给第2个功能节点传输数据,第2个功能节点可以给第3个功能节点传输数据,第3个功能节点可以给第2个非功能节点传输数据,第2个非功能节点可以给第3个非功能节点传输数据。In the third time interval τ 3 , the first function node Can be given to the second function node Transfer data, the second function node Can give the third function node Transfer data, the 3rd functional node Can be given to the second non-functional node Transmit data, 2nd non-functional node Can give the 3rd non-functional node transfer data.
根据上述6个网络节点的连通性,将网络规划周期划分为3个时间间隔{τ1,τ2,τ3},其中T=3,τq=[tq-1,tq)且在时间间隔τq内网络拓扑保持不变,q∈[1,T]。According to the connectivity of the above six network nodes, the network planning cycle Divided into 3 time intervals {τ 1 ,τ 2 ,τ 3 }, where T=3, τ q =[t q-1 ,t q ) and the network topology remains unchanged in the time interval τ q , q∈[ 1,T].
步骤4,构建功能扩展图。Step 4, build the function expansion diagram.
4.1)初始化一张空白的T=3层有向图,其中第q层有向图的时间间隔为τq,1≤q≤3,如图5所示;4.1) Initialize a blank T=3 layer directed graph, wherein the time interval of the qth layer directed graph is τ q , 1≤q≤3, as shown in Figure 5;
4.2)在有向图的每个时间间隔τq内分别添加网络中所有非功能节点、所有功能节点分解的虚拟子节点、所有功能节点分解的虚拟计算节点,构成功能节点图,如图6所示,其中:4.2) Add all non-functional nodes in the network, virtual child nodes decomposed by all functional nodes, and virtual computing nodes decomposed by all functional nodes in each time interval τ q of the directed graph to form a functional node graph, as shown in Figure 6 shown, where:
功能节点图的非功能节点集合为即该集合由九个非功能节点组成,如图6五边形节点所示,其中,表示第j个网络非功能节点在第q个时间间隔τq内的副本,1≤j≤N1,1≤q≤T,N1=3,T=3;The set of non-functional nodes in the functional node graph is That is, the collection consists of It consists of nine non-functional nodes, as shown in Figure 6 pentagonal nodes, where, Indicates the jth network non-functional node The replica within the qth time interval τ q , 1≤j≤N 1 , 1≤q≤T, N 1 =3, T=3;
功能节点图的虚拟子节点集合为即该集合由九个虚拟子节点组成,如图6圆节点所示,其中,表示第i个网络虚拟子节点vi在第q个时间间隔τq内的副本,1≤i≤N2,1≤q≤T,N2=3,T=3;The set of virtual child nodes of the functional node graph is That is, the collection consists of It consists of nine virtual sub-nodes, as shown in the circle nodes in Figure 6, where, Indicates the copy of the i-th network virtual child node v i in the q-th time interval τ q , 1≤i≤N 2 , 1≤q≤T, N 2 =3, T=3;
功能节点图的虚拟计算节点集合为该集合由三个时间间隔内的虚拟计算节点组成,如图6长方型节点所示,即,The set of virtual computing nodes in the function node graph is The set consists of virtual computing nodes in three time intervals, as shown in Figure 6 with rectangular nodes, namely,
在第一个时间间隔τ1内有 共M1+M2+M3个虚拟计算节点;In the first time interval τ 1 there are A total of M 1 +M 2 +M 3 virtual computing nodes;
在第二个时间间隔τ2内有 共M1+M2+M3个虚拟计算节点;In the second time interval τ 2 there are A total of M 1 +M 2 +M 3 virtual computing nodes;
在第三个时间间隔τ3内有 共M1+M2+M3个虚拟计算节点;其中,表示第i个网络虚拟计算节点在第q个时间间隔τq内的副本,1≤i≤N2,1≤m≤Mi,1≤q≤T,N2=3,T=3;In the third time interval τ 3 there are A total of M 1 +M 2 +M 3 virtual computing nodes; among them, Indicates the i-th network virtual computing node The replica within the qth time interval τ q , 1≤i≤N 2 , 1≤m≤M i , 1≤q≤T, N 2 =3, T=3;
4.3)在功能节点图中添加链路,如图7所示:4.3) Add links in the function node graph, as shown in Figure 7:
4.3.1)根据节点的连通性添加传输链路,如图7的实线所示:4.3.1) Add transmission links according to the connectivity of nodes, as shown in the solid line in Figure 7:
若在时间间隔τq内,网络中第j个非功能节点能够给第k个非功能节点传输数据,则在功能节点图中的第j个非功能节点与第k个非功能节点之间添加一条有向线段 If within the time interval τ q , the jth non-functional node in the network able to give the kth non-functional node To transmit data, the jth non-functional node in the functional node graph with the kth non-functional node Add a directed line segment between
若在时间间隔τq内,第j个非功能节点能够给第i个功能节点传输数据,则在功能节点图中的第j个非功能节点与第i个虚拟子节点之间添加一条有向线段 If within the time interval τ q , the jth non-functional node can give the i-th function node To transmit data, the jth non-functional node in the functional node graph with the i-th virtual child node Add a directed line segment between
若在时间间隔τq内,第i个功能节点能够给第k个功能节点传输数据,则在功能节点图中的第i个虚拟子节点与第k个虚拟子节点之间添加一条有向线段 If within the time interval τ q , the i-th functional node Ability to give the kth functional node To transmit data, the i-th virtual child node in the function node graph with the kth virtual child node Add a directed line segment between
若在时间间隔τq内,第i个功能节点能够给第j个非功能节点传输数据,则在功能节点图中第i个虚拟子节点与第j个非功能节点之间添加一条有向线段 If within the time interval τ q , the i-th functional node able to give the jth non-functional node To transmit data, the i-th virtual child node in the function node graph with the jth non-functional node Add a directed line segment between
4.3.2)添加存储链路如,图7的虚线所示:4.3.2) Add a storage link as shown in the dotted line in Figure 7:
在功能节点图每个非功能节点的相邻时间间隔之间添加一条从第q个时间间隔的节点到第q+1个时间间隔的节点的有向线段 Add a node from the qth time interval between adjacent time intervals of each non-functional node in the functional node graph to the node of the q+1th time interval The directed segment of
在功能节点图每个虚拟子节点的相邻时间间隔之间添加一条从第q个时间间隔的节点到第q个时间间隔的节点的有向线段 Add a node from the qth time interval between adjacent time intervals of each virtual child node in the function node graph to the node of the qth time interval The directed segment of
4.3.3)添加虚拟传输链路:在功能节点图每个虚拟子节点与其对应的虚拟子计算节点之间添加两条有向线段和如图7的点虚线所示,至此得到如图7所示的功能扩展图。4.3.3) Add a virtual transmission link: each virtual child node in the function node graph Its corresponding virtual child computing node add two directed line segments between and As shown by the dotted line in FIG. 7 , the function expansion diagram shown in FIG. 7 is obtained so far.
步骤5,设置通信容量约束、存储容量约束、计算容量约束和流量守恒约束。
5.1)设置通信容量约束,即限定所有数据流在传输链路或虚拟传输链路上传输的数据量总和不能超过其传输链路或虚拟传输链路的通信容量:5.1) Set communication capacity constraints, that is, limit the sum of the data volume transmitted by all data streams on the transmission link or virtual transmission link to not exceed the communication capacity of its transmission link or virtual transmission link:
5.1.1)对于传输链路,其通信容量约束所限定的所有数据流在传输链路上传输的数据量总和不能超过其传输链路的通信容量,公式表示如下:5.1.1) For a transmission link, the total amount of data transmitted by all data streams limited by its communication capacity constraints on the transmission link cannot exceed the communication capacity of its transmission link. The formula is expressed as follows:
其中,表示从第j个非功能节点到第k个非功能节点的传输链路上的数据流的种类数,表示从第j个非功能节点到第i个虚拟子节点的传输链路上的数据流的种类数,表示从第i个虚拟子节点到第k个虚拟子节点的传输链路上的数据流的种类数,表示从第i个虚拟子节点到第j个非功能节点的传输链路上的数据流的种类数, 和分别表示数据流ξn在传输链路 和上传输的数据量,和分别为传输链路和的通信容量,为功能扩展图中传输链路的集合;in, Indicates that starting from the jth non-functional node to the kth non-functional node transmission link The number of types of data streams on Indicates that starting from the jth non-functional node to the i-th virtual child node transmission link The number of types of data streams on Indicates that from the i-th virtual child node to the kth virtual child node transmission link The number of types of data streams on Indicates that from the i-th virtual child node to the jth non-functional node transmission link The number of types of data streams on and Respectively represent the data flow ξ n in the transmission link and The amount of data transferred on, and transmission link and communication capacity, is a collection of transmission links in the function expansion diagram;
5.1.2)对于虚拟传输链路,其通信容量约束中所限定的数据流在虚拟传输链路上传输的数据量总和不能超过其虚拟传输链路的通信容量,公式表示如下:5.1.2) For a virtual transmission link, the sum of the data volumes transmitted by the data flow defined in the communication capacity constraint on the virtual transmission link cannot exceed the communication capacity of the virtual transmission link. The formula is expressed as follows:
其中,为数据流ξn在虚拟传输链路上传输的数据量;in, For the data flow ξ n in the virtual transmission link the amount of data transferred;
为已接收计算功能转化而成的新类型的数据流ξn'在虚拟传输链路上传输的数据量; The new type of data stream ξ n ' transformed by the received computing function in the virtual transmission link the amount of data transferred;
为数据流ξn在虚拟传输链路的传输容量,其表示能够传输的最大数据量; For the data flow ξ n in the virtual transmission link The transmission capacity, which represents the maximum amount of data that can be transmitted;
为已接收计算功能转化而成的新类型的数据流ξn'在虚拟传输链路的传输容量; The new type of data stream ξ n ' transformed by the received computing function in the virtual transmission link transmission capacity;
为功能扩展图中从虚拟子节点到虚拟计算节点的虚拟传输链路的集合; is a collection of virtual transmission links from virtual child nodes to virtual computing nodes in the function expansion diagram;
为功能扩展图中从虚拟子计算节点到虚拟子节点的虚拟传输链路的集合。 is a collection of virtual transmission links from virtual sub-computing nodes to virtual sub-nodes in the function expansion diagram.
5.2)设置存储容量约束,即限定所有数据流在存储链路上存储的数据量总和不能超过其存储链路的存储容量,其公式表示如下:5.2) Set storage capacity constraints, that is, limit the sum of the data volumes stored in all data streams on storage links to not exceed the storage capacity of their storage links. The formula is expressed as follows:
其中,和分别表示数据流ξn在存储链路和上存储的数据量,和分别表示存储链路和的存储容量,表示通过传输链路和存储链路流入功能扩展图中的第j个非功能节点的不同数据流的种类数,表示通过传输链路、存储链路和虚拟传输链路流入功能扩展图中的第i个虚拟子节点的不同数据流的种类数,为功能扩展图中存储链路的集合。in, and Respectively represent the data flow ξ n in the storage link and the amount of data stored on the and storage link and storage capacity, Indicates the j-th non-functional node in the function expansion graph flowing through the transmission link and the storage link The number of different types of data streams, Indicates the i-th virtual child node in the function expansion diagram flowing through transmission links, storage links and virtual transmission links The number of different types of data streams, A collection of stored links in the function extension graph.
5.3)设置计算容量约束,即限定的即将接收计算功能的数据流流入虚拟计算节点所消耗的计算容量不能超过虚拟计算节点所提供的计算能力,其公式表示如下:5.3) Set the computing capacity constraint, that is, the limited receiving computing function data flow Flow into virtual compute nodes The computing capacity consumed cannot exceed the virtual computing node Provided computing power, its formula is expressed as follows:
其中,为即将接收计算功能的数据流,为已接收计算功能的数据流,为数据流在虚拟传输链路上传输的数据量,为计算因子,表示的是处理每单元的数据流并转化为数据流所需要消耗的计算能力,表示的是虚拟计算节点具有的计算能力。in, Computational features for upcoming recipients data flow, Calculate function for received data flow, for data flow in the virtual transmission link The amount of data transferred on, For the calculation factor, it means to process the data flow per unit and convert it into a data stream the computing power required to consume, Represents a virtual compute node have computing power.
5.4)设置流量守恒约束:5.4) Set flow conservation constraints:
此约束包括对非功能节点、虚拟子节点和虚拟计算节点这三个方面,具体实现如下:This constraint includes three aspects of non-functional nodes, virtual child nodes and virtual computing nodes. The specific implementation is as follows:
5.4.1)对于非功能节点,限定数据流ξn流入非功能节点的数据量等于其流出非功能节点的数据量,公式表示如下:5.4.1) For non-functional nodes, the amount of data flow ξ n flowing into non-functional nodes is equal to the amount of data flowing out of non-functional nodes, the formula is expressed as follows:
其中,和分别表示数据流ξn在传输链路和上传输的数据量,和分别表示数据流ξn在存储链路和上存储的数据量,为通过传输链路和存储链路流入非功能节点的不同数据流的集合,为功能扩展图中传输链路的集合。in, and Respectively represent the data flow ξ n in the transmission link and The amount of data transferred on, and Respectively represent the data flow ξ n in the storage link and the amount of data stored on the For inflow to non-functional nodes via transmission links and storage links A collection of different data streams, It is a collection of transmission links in the function expansion diagram.
5.4.2)对于虚拟子节点,限定数据流ξn流入虚拟子节点的数据量等于其流出虚拟子节点的数据量,公式表示如下:5.4.2) For a virtual child node, the amount of data flowing into the virtual child node of the limited data flow ξ n is equal to the amount of data flowing out of the virtual child node, and the formula is expressed as follows:
其中,和分别表示数据流ξn在传输链路和上传输的数据量,和分别表示数据流ξn在虚拟传输链路和上传输的数据量,和分别表示数据流ξn在存储链路和上存储的数据量,为通过传输链路、存储链路和虚拟传输链路流入第i个虚拟子节点的不同数据流的集合,为功能扩展图中传输链路的集合;in, and Respectively represent the data flow ξ n in the transmission link and The amount of data transferred on, and Respectively represent the data flow ξ n in the virtual transmission link and The amount of data transferred on, and Respectively represent the data flow ξ n in the storage link and the amount of data stored on the To flow into the i-th virtual child node through the transmission link, storage link and virtual transmission link A collection of different data streams, is a collection of transmission links in the function expansion diagram;
为功能扩展图中从虚拟子节点到虚拟计算节点的虚拟传输链路的集合; is a collection of virtual transmission links from virtual child nodes to virtual computing nodes in the function expansion diagram;
为功能扩展图中从虚拟子计算节点到虚拟子节点的虚拟传输链路的集合。 is a collection of virtual transmission links from virtual sub-computing nodes to virtual sub-nodes in the function expansion diagram.
5.4.3)对于虚拟计算节点,限定数据流流入虚拟计算节点的数据量乘于等于另一种类型的数据流流出虚拟计算节点的数据量,公式表示如下:5.4.3) For virtual computing nodes, limit data flow Flow into virtual compute nodes The amount of data multiplied by equal to another type of data stream Outgoing Virtual Compute Node The amount of data, the formula is as follows:
其中,为即将接收计算功能的数据流,为已接收计算功能的数据流;in, Computational features for upcoming recipients data flow, Calculate function for received data flow;
为即将接收计算功能的数据流在虚拟传输链路上传输的数据量; Computational features for upcoming recipients data flow in the virtual transmission link the amount of data transferred;
为已接收计算功能的数据流在虚拟传输链路上传输的数据量; Calculate function for received data flow in the virtual transmission link the amount of data transferred;
表示的是即将接收计算功能的数据流与已接收计算功能的数据流之间的比例因子。 Indicates that the computing function is about to be received data flow with the received compute function data flow scale factor between.
步骤6,用功能扩展图统一表征通信、存储和计算资源。Step 6, use the function expansion diagram to represent communication, storage and computing resources in a unified manner.
由于功能扩展图中的传输链路、存储链路和虚拟传输链路分别表征了时变网络中的通信、存储和计算资源,且功能扩展图中的不同链路之间的位置关系表征了不同资源间的承接转化关系,同时由于在步骤5设定的四个约束下,可使功能扩展图中的数据流满足网络中的通信资源约束、存储资源约束、计算约束以及各种数据流之间的转化关系,因而能将通信、存储和计算资源联合管理问题转化为功能扩展图中的数据流问题,即用功能扩展图,统一表征随时间变化的动态网络通信、存储和计算资源。用该功能扩展图可以对时变网络的通信、存储和计算资源进行统一分析与管理。Since the transmission link, storage link and virtual transmission link in the function expansion diagram respectively represent the communication, storage and computing resources in the time-varying network, and the positional relationship between different links in the function expansion diagram represents different The inheritance and conversion relationship between resources, and because of the four constraints set in
以上描述仅是本发明的一个具体实例,显然对于本领域的专业人员来说,在了解了本发明内容和原理后,都可能在不背离本发明原理、结构的情况下,进行形式和细节上的各种修正和改变,但是这些基于本发明思想的修正和改变仍在本发明的权利要求保护范围之内。The above description is only a specific example of the present invention. Obviously, for those skilled in the art, after understanding the content and principle of the present invention, it is possible to carry out the form and details without departing from the principle and structure of the present invention. Various amendments and changes, but these amendments and changes based on the idea of the present invention are still within the protection scope of the claims of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210087697.5A CN114500296B (en) | 2022-01-25 | 2022-01-25 | Communication, storage and computing resource unified characterization method based on function expansion diagram |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210087697.5A CN114500296B (en) | 2022-01-25 | 2022-01-25 | Communication, storage and computing resource unified characterization method based on function expansion diagram |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114500296A CN114500296A (en) | 2022-05-13 |
CN114500296B true CN114500296B (en) | 2023-02-07 |
Family
ID=81475438
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210087697.5A Active CN114500296B (en) | 2022-01-25 | 2022-01-25 | Communication, storage and computing resource unified characterization method based on function expansion diagram |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114500296B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114641029B (en) * | 2022-05-17 | 2022-08-02 | 亚太卫星宽带通信(深圳)有限公司 | Transmitting method and system based on satellite communication signal device |
CN115833899B (en) * | 2022-09-30 | 2024-08-16 | 西安电子科技大学 | Joint optimization method of virtual network function deployment and routing in spatial information network |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106877921A (en) * | 2017-03-14 | 2017-06-20 | 西安电子科技大学 | Integrated Representation Method of Multidimensional Resources in Spatial Information Network |
CN110636002A (en) * | 2019-10-15 | 2019-12-31 | 西安电子科技大学 | Time Division Based Maximum Flow Routing Method for Transceiver Constrained Spatial Information Networks |
CN113365355A (en) * | 2021-04-29 | 2021-09-07 | 西安交通大学 | Multidimensional resource management method and system under air-space-ground integrated network |
CN113438156A (en) * | 2021-06-29 | 2021-09-24 | 西安电子科技大学 | Time deterministic multi-path routing method based on time expansion diagram |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3007605A1 (en) * | 2013-06-25 | 2014-12-26 | France Telecom | ARCHITECTURE COOPERATIVE NETWORK |
CN108718251B (en) * | 2018-05-10 | 2021-01-29 | 西安电子科技大学 | Spatial information network connectivity analysis method based on resource time-varying graph |
US11418526B2 (en) * | 2019-12-20 | 2022-08-16 | Microsoft Technology Licensing, Llc | Detecting anomalous network activity |
US12106154B2 (en) * | 2021-06-12 | 2024-10-01 | Intel Corporation | Serverless computing architecture for artificial intelligence workloads on edge for dynamic reconfiguration of workloads and enhanced resource utilization |
-
2022
- 2022-01-25 CN CN202210087697.5A patent/CN114500296B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106877921A (en) * | 2017-03-14 | 2017-06-20 | 西安电子科技大学 | Integrated Representation Method of Multidimensional Resources in Spatial Information Network |
CN110636002A (en) * | 2019-10-15 | 2019-12-31 | 西安电子科技大学 | Time Division Based Maximum Flow Routing Method for Transceiver Constrained Spatial Information Networks |
CN113365355A (en) * | 2021-04-29 | 2021-09-07 | 西安交通大学 | Multidimensional resource management method and system under air-space-ground integrated network |
CN113438156A (en) * | 2021-06-29 | 2021-09-24 | 西安电子科技大学 | Time deterministic multi-path routing method based on time expansion diagram |
Also Published As
Publication number | Publication date |
---|---|
CN114500296A (en) | 2022-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114500296B (en) | Communication, storage and computing resource unified characterization method based on function expansion diagram | |
Leinonen et al. | Distributed joint resource and routing optimization in wireless sensor networks via alternating direction method of multipliers | |
Hua et al. | Optimal routing and data aggregation for maximizing lifetime of wireless sensor networks | |
WO2024032121A1 (en) | Deep learning model reasoning acceleration method based on cloud-edge-end collaboration | |
CN103596191A (en) | Intelligent configuration system and intelligent configuration method for wireless sensor network | |
CN116455768B (en) | Cloud edge end collaborative CNN reasoning method and system for global time delay optimization | |
CN115173923B (en) | A low-orbit satellite network energy efficiency-aware routing optimization method and system | |
CN106296425A (en) | Attributed graph clustering method based on Weight associating Non-negative Matrix Factorization and system | |
CN115392481A (en) | An efficient communication method for federated learning based on real-time equalization of response time | |
CN110928694A (en) | Computer system | |
CN106162798A (en) | The joint Power distribution of radio sensing network energy acquisition node cooperation transmission and relay selection method | |
CN114357676A (en) | Aggregation frequency control method for hierarchical model training framework | |
CN103581329B (en) | The construction method of peer-to-peer network flow medium live system topological structure based on sub-clustering | |
CN102946443B (en) | Multitask scheduling method for realizing large-scale data transmission | |
Rajoriya et al. | Deep compressive sensing and reconstruction algorithm in wireless Internet of Things | |
CN107454009A (en) | The offline scenario low bandwidth overhead flow scheduling scheme at data-oriented center | |
CN104168603B (en) | The building method of the data acquisition tree with high energy efficiency based on compressed sensing technology | |
CN114022731A (en) | Federal learning node selection method based on DRL | |
CN108934029B (en) | Accelerated Distributed Optimization Algorithm for Perceptual Big Data Reconstruction | |
CN104184642A (en) | Multistage star type switched network structure and optimizing method | |
CN118175645A (en) | Roadside crowd intelligence perception service resource allocation method, device, equipment and medium | |
CN107528731A (en) | Network applied to NS3 parallel artificials splits optimized algorithm | |
CN115630745A (en) | Multi-region water demand prediction method for urban graded collaborative water supply | |
CN104065580A (en) | M2M network topology control method and system | |
Xiong et al. | The rotation scheme of quantum states based on EPR pairs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |