CN114496337A - Multilayer Laue lens and design method thereof - Google Patents
Multilayer Laue lens and design method thereof Download PDFInfo
- Publication number
- CN114496337A CN114496337A CN202210063039.2A CN202210063039A CN114496337A CN 114496337 A CN114496337 A CN 114496337A CN 202210063039 A CN202210063039 A CN 202210063039A CN 114496337 A CN114496337 A CN 114496337A
- Authority
- CN
- China
- Prior art keywords
- layer
- lens
- actual
- electric field
- depth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005162 X-ray Laue diffraction Methods 0.000 title claims abstract description 65
- 238000000034 method Methods 0.000 title claims abstract description 17
- 238000013461 design Methods 0.000 title claims abstract description 8
- 230000005684 electric field Effects 0.000 claims abstract description 59
- 238000012986 modification Methods 0.000 claims abstract description 39
- 230000004048 modification Effects 0.000 claims abstract description 34
- 125000006850 spacer group Chemical group 0.000 claims abstract description 23
- 238000010521 absorption reaction Methods 0.000 claims abstract description 17
- 238000009826 distribution Methods 0.000 claims description 44
- 238000005530 etching Methods 0.000 claims description 15
- 230000000737 periodic effect Effects 0.000 claims description 10
- 239000000758 substrate Substances 0.000 claims description 6
- 239000006096 absorbing agent Substances 0.000 claims description 4
- 101100518501 Mus musculus Spp1 gene Proteins 0.000 claims 1
- 238000007493 shaping process Methods 0.000 claims 1
- 230000003287 optical effect Effects 0.000 abstract description 9
- 230000007423 decrease Effects 0.000 abstract description 4
- 238000004544 sputter deposition Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 6
- 238000007747 plating Methods 0.000 description 5
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 230000002068 genetic effect Effects 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 238000007431 microscopic evaluation Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000003963 x-ray microscopy Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K1/00—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
- G21K1/06—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
- G21K1/062—Devices having a multilayer structure
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0012—Optical design, e.g. procedures, algorithms, optimisation routines
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/18—Diffraction gratings
- G02B5/1838—Diffraction gratings for use with ultraviolet radiation or X-rays
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
Abstract
本申请公开了一种多层膜劳厄透镜及其设计方法,透镜包括基底层和设置在所述基底层上的衍射结构,所述衍射结构包括叠层设置的多个周期,每个所述周期均包括叠置的吸收层和间隔层,所述周期从靠近所述基底层向远离所述基底层的方向,厚度逐渐减小;每个所述吸收层和所述间隔层的截面深度为最佳截面深度*(1‑修形参数Q),其中,Q为0.4‑1之间的任意值。根据本申请实施例提供的技术方案,通过对多层膜劳厄透镜进行修形,通过修形来实现对在制备透镜过程中产生的结构误差的补偿,不需要其他辅助光学元件的情况下,缩小其与理想的多层膜劳厄透镜出射面电场之间的差异,从而改善实际制备所得的多层膜劳厄透镜的聚焦性能。
The present application discloses a multilayer film Laue lens and a design method thereof. The lens includes a base layer and a diffractive structure disposed on the base layer. Each period includes a superimposed absorption layer and a spacer layer, and the thickness of the period gradually decreases from the direction close to the base layer to the direction away from the base layer; the cross-sectional depth of each of the absorption layer and the spacer layer is Optimal section depth*(1‑modification parameter Q), where Q is any value between 0.4‑1. According to the technical solutions provided in the embodiments of the present application, by modifying the multilayer Laue lens, the compensation for the structural error generated in the process of preparing the lens is realized by the modification, and in the case that other auxiliary optical elements are not required, The difference between the electric field at the exit surface of the ideal multilayer Laue lens is narrowed, so as to improve the focusing performance of the actually prepared multilayer Laue lens.
Description
技术领域technical field
本发明一般涉及精密光学元件领域,具体涉及高分辨率X射线显微聚焦元件,尤其涉及多层膜劳厄透镜及其设计方法。The present invention generally relates to the field of precision optical elements, in particular to a high-resolution X-ray microfocusing element, in particular to a multilayer Laue lens and a design method thereof.
背景技术Background technique
X射线波段覆盖了大部分元素的共振线,具有很高的元素灵敏度,同时拥有波长短,穿透性强等特点,可以实现材料和生物细胞的无损伤测量,因此X射线显微是生物、医学、材料、物理与化学等研究领域重要的研究工具,X射线会聚光斑的大小直接关系到显微分析的分辨率和灵敏度。由于X射线的折射率n值接近1,衍射式聚焦元件相较于反射和折射式元件,实现X射线聚焦更为便捷。传统的波带片能将软X射线会聚到十几纳米,但在硬X射线波段,需要更大高宽比才能实现理想的聚焦,且随着X射线能量的增加,需要的高宽比更大,传统的光刻方法很难制作能够聚焦到更小光斑的波带片。The X-ray band covers the resonance lines of most elements, has high element sensitivity, and has the characteristics of short wavelength and strong penetrability, which can realize non-destructive measurement of materials and biological cells. Therefore, X-ray microscopy is a biological, It is an important research tool in the fields of medicine, materials, physics and chemistry. The size of the X-ray converging spot is directly related to the resolution and sensitivity of microscopic analysis. Since the refractive index n of X-rays is close to 1, diffractive focusing elements are more convenient for X-ray focusing than reflective and refractive elements. Traditional zone plates can focus soft X-rays to a range of tens of nanometers, but in the hard X-ray band, a larger aspect ratio is required to achieve ideal focusing, and with the increase of X-ray energy, the required aspect ratio is higher. Large, traditional photolithography methods are difficult to produce zone plates that can focus to smaller spots.
为了解决该问题,美国Argonne实验室在2004年提出了在平面基底上倒序镀制波带片结构的多层膜,再对其进行切片抛光至理想深度,它能获得任意的深宽比。这一新方法称为多层膜劳厄透镜(Multilayer Laue Lens,MLL),根据理论计算可以获得1nm以下的聚焦,是目前最有发展潜力的硬X射线纳米聚焦元件之一。2006年美国Argonne国家实验室采用WSi2/Si材料组合制备出了总厚度12.4微米的倾斜型多层膜劳埃透镜,在19.5KeV能点下聚焦效率44%,光斑大小为30nm,聚焦焦距为4.72mm;2012年美国Ray Conley等人在新建的高精度镀膜实验室完成了低误差的多层膜制作,并且开展了膜片的无应力微加工技术,实现了实用微型透镜的制备,一维聚焦光斑11nm,2015年Huang等人制备了孔径31μm,焦距3.2mm的楔形MLL,在美国APS光源14.6keV测试得到25.6nm的一维聚焦光斑,27%的衍射效率。In order to solve this problem, the Argonne laboratory in the United States proposed in 2004 that a multi-layer film with a zone plate structure was coated in reverse order on a flat substrate, and then sliced and polished to an ideal depth, which can obtain any aspect ratio. This new method, called Multilayer Laue Lens (MLL), can achieve focusing below 1 nm according to theoretical calculations, and is one of the most promising hard X-ray nanofocusing elements. In 2006, the Argonne National Laboratory in the United States used the WSi 2 /Si material combination to prepare a 12.4-micron slanted multi-layer film Laue lens with a focusing efficiency of 44% at a 19.5KeV energy point, a spot size of 30nm, and a focusing focal length of 4.72mm; in 2012, Ray Conley and others in the United States completed the production of low-error multilayer films in the newly built high-precision coating laboratory, and carried out the stress-free micromachining technology of the diaphragm, realizing the preparation of practical micro lenses, one-dimensional The focusing spot is 11 nm. In 2015, Huang et al. prepared a wedge-shaped MLL with an aperture of 31 μm and a focal length of 3.2 mm. The 14.6 keV APS light source in the United States obtained a one-dimensional focused spot of 25.6 nm with a diffraction efficiency of 27%.
然而在实际制备过程中,实际溅射速率与标定溅射速率之间由于系统随机误差存在有一定差别,并且长时间的镀制会带来溅射速率的有规律的漂移,两者都会给最终制备得到的多层膜劳厄透镜带来结构误差,使得其结构偏离理想结构,进而由于结构误差的影响,实际多层膜劳厄透镜在出射面上的电场与理想型多层膜劳厄透镜在出射面上的电场偏离较大,最终影响其光学性能,降低其衍射效率以及聚焦分辨率,通常情况下都需要使用额外的光学元件例如相移片来进行补偿,但是这会增加整个系统的调试工作,并且,不利于多层膜劳厄透镜在不同系统上应用。However, in the actual preparation process, there is a certain difference between the actual sputtering rate and the calibrated sputtering rate due to the random error of the system, and the long-term plating will bring about a regular drift of the sputtering rate, both of which will affect the final sputtering rate. The prepared multilayer Laue lens brings structural errors, which make its structure deviate from the ideal structure, and then due to the influence of structural errors, the electric field on the exit surface of the actual multilayer Laue lens is different from that of the ideal multilayer Laue lens. The large deviation of the electric field on the exit surface will eventually affect its optical performance, reducing its diffraction efficiency and focusing resolution. Usually, additional optical elements such as phase shifters are needed to compensate, but this will increase the overall system performance. Commissioning work, and, is not conducive to the application of multilayer Laue lenses on different systems.
发明内容SUMMARY OF THE INVENTION
鉴于现有技术中的上述缺陷或不足,期望提供一种多层膜劳厄透镜及其设计方法。In view of the above-mentioned defects or deficiencies in the prior art, it is desirable to provide a multilayer Laue lens and a design method thereof.
第一方面,提供一种多层膜劳厄透镜,包括基底层和设置在所述基底层上的衍射结构,所述衍射结构包括叠层设置的多个周期,每个所述周期均包括叠置的吸收层和间隔层,In a first aspect, there is provided a multi-layer Laue lens, comprising a base layer and a diffractive structure disposed on the base layer, the diffractive structure comprising a plurality of periods arranged in a stack, each of the periods comprising a stack. placed absorber and spacer layers,
所述周期从靠近所述基底层向远离所述基底层的方向,厚度逐渐减小;The thickness of the period gradually decreases from the direction close to the base layer to the direction away from the base layer;
每个所述吸收层和所述间隔层的截面深度为最佳截面深度*(1-修形参数Q),其中,Q为0.4-1之间的任意值。The cross-sectional depth of each of the absorbing layer and the spacer layer is the optimal cross-sectional depth*(1-modification parameter Q), where Q is any value between 0.4-1.
第二方面,提供一种上述多层膜劳厄透镜的设计方法,包括以下步骤:In a second aspect, a method for designing the above-mentioned multilayer Laue lens is provided, comprising the following steps:
确定衍射结构,所述衍射结构的深度为最佳截面深度,所述最佳截面深度对应有最佳电场分布;determining a diffractive structure, the depth of the diffractive structure is an optimal cross-sectional depth, and the optimal cross-sectional depth corresponds to an optimal electric field distribution;
在基底层上形成实际衍射结构,形成的所述实际衍射结构的电场分布为实际电场分布;forming an actual diffraction structure on the base layer, and the electric field distribution of the formed actual diffraction structure is the actual electric field distribution;
对所述衍射结构中的所述吸收层和所述间隔层进行修形,并计算修形后出射面的实际电场分布,直至实际电场分布与最佳电场分布之间的误差在设定范围之内,确定修形参数Q;Modify the absorbing layer and the spacer layer in the diffractive structure, and calculate the actual electric field distribution of the exit surface after modification, until the error between the actual electric field distribution and the optimal electric field distribution is within the set range. , determine the modification parameter Q;
根据所述修形参数Q对所述衍射结构的出射面进行刻蚀,刻蚀深度为最佳截面深度*修形参数Q。The exit surface of the diffractive structure is etched according to the modification parameter Q, and the etching depth is the optimum section depth*modification parameter Q.
根据本申请实施例提供的技术方案,通过对多层膜劳厄透镜进行修形,通过修形来实现对制备的透镜结构产生误差的补偿,不需要其他辅助光学元件的情况下,缩小其与理想的多层膜劳厄透镜出射面电场之间的差异,从而改善实际制备所得的多层膜劳厄透镜的聚焦性能。According to the technical solutions provided in the embodiments of the present application, the multi-layer Laue lens is modified to compensate for the error generated in the prepared lens structure by modifying the shape. In the case of no other auxiliary optical elements, the difference between the lens and the lens can be reduced. The difference between the electric field at the exit surface of the ideal multilayer Laue lens can improve the focusing performance of the actually prepared multilayer Laue lens.
附图说明Description of drawings
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:Other features, objects and advantages of the present application will become more apparent by reading the detailed description of non-limiting embodiments made with reference to the following drawings:
图1为现有技术中多层膜劳厄透镜结构示意图;1 is a schematic diagram of the structure of a multilayer Laue lens in the prior art;
图2为理想的多层膜劳厄透镜与实际制备的多层膜劳厄透镜结构示意图;FIG. 2 is a schematic structural diagram of an ideal multilayer Laue lens and an actually prepared multilayer Laue lens;
图3为本实施例中多层膜劳厄透镜结构示意图;3 is a schematic view of the structure of the multilayer Laue lens in this embodiment;
图4为本实施例中多层膜劳厄透镜在最佳截面深度处的出射电场;FIG. 4 is the outgoing electric field of the multilayer Laue lens at the optimum cross-sectional depth in this embodiment;
图5为本实施例中提供的多层膜劳厄透镜在实现聚焦时焦点附近的强度分布;其中图a为理想结构多层膜劳厄透镜,图b为含误差的实际结构多层膜劳厄透镜,图c为修形后实际结构多层膜劳厄透镜;Figure 5 shows the intensity distribution near the focal point of the multilayer Laue lens provided in this embodiment when focusing is achieved; Figure a is an ideal structure multilayer Laue lens, and Figure b is an actual structure multilayer Laue lens with errors Erlenmeyer lens, Figure c shows the actual structure of the multi-layer film Laue lens after modification;
图6为本实施例中的多层膜劳厄透镜的焦平面处归一化电场强度曲线与理想情况比较示意图;6 is a schematic diagram comparing the normalized electric field intensity curve at the focal plane of the multilayer Laue lens in the present embodiment and the ideal situation;
图7为本实施例中提供的多层膜劳厄透镜修形实施方式。FIG. 7 is a modified embodiment of the multilayer Laue lens provided in this example.
具体实施方式Detailed ways
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与发明相关的部分。The present application will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the related invention, but not to limit the invention. In addition, it should be noted that, for the convenience of description, only the parts related to the invention are shown in the drawings.
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。It should be noted that the embodiments in the present application and the features of the embodiments may be combined with each other in the case of no conflict. The present application will be described in detail below with reference to the accompanying drawings and in conjunction with the embodiments.
劳厄透镜是一种具有多层膜结构的线性波带片,现有的劳厄透镜一般由原子序数不同的两种材料在基底层的表面交替镀制形成,镀制形成的结构为衍射结构,具体如图1所示,高原子序数的材料形成吸收层,低原子序数的材料形成间隔层,一个吸收层和与其相邻一个间隔层作为一个膜层周期;在该劳厄透镜结构中形成一个坐标系,其中,形成的衍射结构具有入射面和出射面,该衍射结构沿Z轴的长度为截面深度,图中Dn所示的指代不同周期的厚度,X轴最大位置处的层为该衍射结构的最外层,该最外层结构的厚度为Drout,rn指示第n层膜层的位置半径,且每个透镜结构在制备时均具有理论计算的膜层数量,膜层厚度,以及膜层截面深度,理论计算的截面深度即为最佳截面深度。根据上述理论参数进行相应的多层膜劳厄透镜的制备,由于在实际制备过程中,实际溅射速率与标定溅射速率之间由于系统随机误差存在有一定差别,并且长时间的镀制会带来溅射速率的有规律的漂移,对制备的多层膜劳厄透镜产生结构上的误差,形成如图2所示的实际结构,该实际结构中会存在各个膜层并没有按照厚度逐渐减小的规律排列的情况,影响其光学性能。Laue lens is a linear zone plate with a multi-layer film structure. The existing Laue lens is generally formed by alternately plating two materials with different atomic numbers on the surface of the base layer, and the structure formed by plating is a diffraction structure. , as shown in Figure 1, the material with high atomic number forms the absorption layer, the material with low atomic number forms the spacer layer, and an absorption layer and a spacer layer adjacent to it are used as a film layer period; in this Laue lens structure is formed A coordinate system, in which the diffraction structure formed has an incident surface and an exit surface, the length of the diffraction structure along the Z axis is the depth of the section, and Dn shown in the figure refers to the thickness of different periods, and the layer at the maximum position of the X axis is The outermost layer of the diffractive structure, the thickness of the outermost structure is Drout, rn indicates the position radius of the nth film layer, and each lens structure has a theoretically calculated number of film layers during preparation, and the film thickness , and the cross-sectional depth of the film layer, the theoretically calculated cross-sectional depth is the optimal cross-sectional depth. According to the above theoretical parameters, the corresponding multilayer Laue lens is prepared. In the actual preparation process, there is a certain difference between the actual sputtering rate and the calibrated sputtering rate due to the random error of the system, and the long-term plating will It brings about the regular drift of the sputtering rate, and produces structural errors on the prepared multilayer Laue lens, forming an actual structure as shown in Figure 2. In the actual structure, there will be various film layers that are not gradually The reduced regular arrangement affects its optical performance.
请参考图3,本实施例提供一种多层膜劳厄透镜,包括基底层10和设置在所述基底层10上的衍射结构20,所述衍射结构20包括叠层设置的多个周期,每个所述周期均包括叠置的吸收层和间隔层,Referring to FIG. 3 , the present embodiment provides a multilayer Laue lens, which includes a
所述周期从靠近所述基底层10向远离所述基底层10的方向,厚度逐渐减小;The thickness of the period gradually decreases from the direction close to the
每个所述吸收层和所述间隔层的截面深度为最佳截面深度*(1-修形参数Q),其中,Q为0.4-1之间的任意值。The cross-sectional depth of each of the absorbing layer and the spacer layer is the optimal cross-sectional depth*(1-modification parameter Q), where Q is any value between 0.4-1.
本实施例提供的多层膜劳厄透镜,其中包括基底层10和设置在基底层10上的衍射结构20,该衍射结构20包括多层吸收层和间隔层,并且衍射结构20中周期厚度逐渐减小,该衍射结构20中的吸收层和间隔层的截面深度,即该衍射结构20在Z轴上的长度,为最佳截面深度*(1-修形参数Q),其中Q为对当前层结构进行刻蚀的程度,Q一般为0.4-1之间的任意值,1为完全不刻蚀;通过对相应的吸收层和间隔层进行修形,将其截面深度进行调整,来实现对制备的透镜结构产生误差的补偿,不需要其他辅助光学元件的情况下,缩小其与理想的多层膜劳厄透镜出射面2电场之间的差异,从而改善实际制备所得的多层膜劳厄透镜的聚焦性能。The multilayer Laue lens provided in this embodiment includes a
进一步的,所述最佳截面深度为所述多层膜劳厄透镜衍射效率最大值所对应的衍射结构20深度。Further, the optimal cross-sectional depth is the depth of the
上述实施例中所说的最佳截面深度是该透镜衍射效率最大值时对应的衍射结构20深度,具体的可以根据负一级衍射效率随深度变化的效率曲线,选取效率最大的最佳截面深度Zopt,具体的步骤下面会详细说明。The optimal cross-sectional depth mentioned in the above-mentioned embodiment is the depth of the
首先,根据所述透镜的应用要求确定所述透镜的膜层总厚度、最外层膜层的周期厚度Drout和总膜层数;First, determine the total film thickness of the lens, the periodic thickness Drout of the outermost film layer and the total number of film layers according to the application requirements of the lens;
确定各膜层在入射面1处的周期厚度;Determine the periodic thickness of each film layer at the
根据入射光的波长λ,所述透镜-1级次衍射光的焦距f和膜层数量计算-1级衍射效率随截面深度Z变化的曲线η-1(Z),获取最佳截面深度Zopt;According to the wavelength λ of the incident light, the focal length f of the -1st-order diffracted light of the lens and the number of film layers, the curve η-1(Z) of the -1st-order diffraction efficiency changing with the section depth Z is calculated to obtain the optimal section depth Zopt;
其中,涉及到的各膜层的厚度通过如下公式计算:Among them, the thickness of each film layer involved is calculated by the following formula:
Dn=fλ/rn;D n = fλ /rn ;
其中,Dn为第n层膜层的周期厚度,f为所述透镜-1级次衍射光的焦距,λ为入射光的波长;Wherein, D n is the periodic thickness of the nth film layer, f is the focal length of the lens-1 order diffracted light, and λ is the wavelength of the incident light;
其中,第n层膜层的位置半径rn通过如下公式计算:Among them, the position radius r n of the nth film layer is calculated by the following formula:
rn=nfλ+n2λ2/4。rn =nfλ+ n 2 λ 2 /4.
进一步的,每个所述周期内的所述吸收层和所述间隔层厚度相同。Further, the thicknesses of the absorption layer and the spacer layer in each of the periods are the same.
上述衍射结构20中包括多个周期,在每个膜层周期内,两种层结构的厚度相同,其中,吸收层的材料可以是WSi2或Nb,间隔层的材料可以是Si或者Al,其中材料中吸收系数大的作为吸收层,相对的间隔层的吸收系数小于吸收层的吸收系数。The above-mentioned
进一步的,所述衍射结构20包括相对设置的入射面1和出射面2,多个所述吸收层和所述间隔层在所述入射面1处的端面位于同一平面上。Further, the
进一步的,所述多层膜劳厄透镜出射面2的实际电场分布与最佳电场分布之间的误差在设定范围之内。Further, the error between the actual electric field distribution of the
如图3所示,本实施例中提供的透镜结构其出射面2的各个层结构不在一个平面上,其主要是为了实现该多层劳厄透镜出射面2的实际电场分布于最佳电场分布之间的误差较小,将误差调整到可以接受的范围内,因此,只需要调整透镜结构的出射面2,因此,形成最终如图2所示的结构,该透镜结构的入射面1的端面位于同一平面上,并且通常该端面与基底层10垂直,由于不同层结构的截面深度不尽相同,因此,出射面2的端面也不在同一平面上,保证该出射面2的实际电场分布与最佳电场分布之间的误差在设定范围之内。As shown in FIG. 3 , in the lens structure provided in this embodiment, each layer structure of the
本实施例还提供一种多层膜劳厄透镜的设计方法,包括以下步骤:This embodiment also provides a method for designing a multilayer Laue lens, comprising the following steps:
确定衍射结构,所述衍射结构的深度为最佳截面深度,所述最佳截面深度对应有最佳电场分布;determining a diffractive structure, the depth of the diffractive structure is an optimal cross-sectional depth, and the optimal cross-sectional depth corresponds to an optimal electric field distribution;
在基底层10上形成实际衍射结构,形成的所述实际衍射结构的电场分布为实际电场分布;An actual diffraction structure is formed on the
对所述实际衍射结构中的所述吸收层和所述间隔层进行修形,并计算修形后出射面2的实际电场分布,直至实际电场分布与最佳电场分布之间的误差在设定范围之内,确定修形参数Q;Modify the absorption layer and the spacer layer in the actual diffraction structure, and calculate the actual electric field distribution of the
根据所述修形参数Q对所述实际衍射结构的出射面2进行刻蚀,刻蚀深度为最佳截面深度*修形参数Q。The
本实施例中提供的制备方法首先确定相应的衍射结构,该确定的衍射机构具有最佳截面深度,相应的最佳截面深度对应的出射面电场分布为最佳电场分布,是制备的透镜结构需要达到的理论目标;The preparation method provided in this embodiment first determines the corresponding diffraction structure, the determined diffraction mechanism has an optimal cross-sectional depth, and the electric field distribution of the exit surface corresponding to the corresponding optimal cross-sectional depth is the optimal electric field distribution, which is required for the prepared lens structure. the theoretical goals to be achieved;
根据理论确定的衍射结构在基底层10上进行相应实际衍射结构的制备,制备形成的透镜结构由于实际溅射速率与标定溅射速率之间有一定系统随机偏差,并且长时间的镀制会带来溅射速率的有规律的漂移,最终实际制备得到的多层膜劳厄透镜会存在一定的误差,参见图4所示,图4为多层膜劳厄透镜在最佳截面深度处的出射电场,其中黑色线为理想型情况,灰色线为实际结构下的情况,因此,需要对实际制备的透镜结构进行测量,将测量得到的实际电场分布图与理论的电场分布,也就是最佳电场分布图进行比较,通过调节制备的透镜结构来缩小实际电场分布与理论电场分布之间的差距。According to the theoretically determined diffraction structure, the corresponding actual diffraction structure is prepared on the
可选的,对所述实际衍射结构中的所述吸收层和所述间隔层进行修形,包括:Optionally, modifying the absorption layer and the spacer layer in the actual diffraction structure includes:
将所述实际衍射结构分成等间距或者等膜层数量的N份,每份所述实际衍射结构对应一个所述修形参数Q;Divide the actual diffractive structure into N parts with equal spacing or the same number of film layers, and each part of the actual diffractive structure corresponds to one of the modification parameters Q;
对N个修形参数同时进行优化。Simultaneously optimize the N modification parameters.
对实际制备得到的多层膜劳厄透镜沿图2中的X方向以等间距或者等膜层的方式进行细分,划分为N份,对每份结构设置一个修形参数Q,该修形参数的变化范围为0.4-1,由于不同层结构间存在较强的电场耦合作用,人为简单的优化单个子结构时,无法考虑齐全所有耦合因素,会给相邻的子结构的出射电场引入一些预料外的变化,并不能达到最理想的效果,因此使用遗传算法对N个修形参数同时进行优化,最终使得修形后的多层膜劳厄透镜在zopt处出射电场与理想型多层膜劳厄透镜在在最佳深度Zopt处出射电场近似相同。The actually prepared multilayer Laue lens is subdivided into N parts along the X direction in Figure 2 with equal spacing or equal film layers, and a modification parameter Q is set for each part of the structure. The variation range of the parameters is 0.4-1. Due to the strong electric field coupling between different layer structures, it is impossible to consider all coupling factors when simply optimizing a single sub-structure, and it will introduce some outgoing electric fields to adjacent sub-structures. Unexpected changes cannot achieve the most ideal effect. Therefore, the genetic algorithm is used to optimize the N modification parameters at the same time, and finally the modified multilayer Laue lens has the output electric field at zopt and the ideal multilayer film. The Laue lens exits the electric field approximately the same at the optimum depth Zopt.
其中,所述N为膜层数量的65%-70%。该多层膜劳厄透镜中对于聚焦效果贡献较大的膜层为厚度较小的膜层内,因此,为了节省修形的工艺步骤,只对作用较大的膜层结构进行修形,一般膜层数量的65%-70%,优选的从透镜最外层膜层开始算,设置70%膜层数量的N即可;其中,N可以是等间距的设置,也可以是等膜层数量的设置,优选的可以等膜层设置,每个膜层作为一份,进行计算和修形;Wherein, the N is 65%-70% of the number of film layers. In the multilayer Laue lens, the film layer that contributes more to the focusing effect is in the film layer with the smaller thickness. Therefore, in order to save the process steps of modification, only the structure of the film layer with the larger effect is modified. 65%-70% of the number of film layers, preferably starting from the outermost film layer of the lens, and setting N of 70% of the number of film layers; where N can be set at equal intervals, or it can be equal to the number of film layers The setting of the film can preferably be set as the film layer, and each film layer is used as a copy for calculation and modification;
上述采用遗传算法对N个修形参数同时进行优化后,确定修形参数Q,确定修形后的实际电场分布与最佳电场分布之间的误差在设定范围之内,由于现有技术中刻蚀的精度一般在50纳米,根据刻蚀精度优选的设定实际电场分布与最佳电场分布之间的误差为±0.1π,根据刻蚀精度的发展,实际电场分布与最佳电场分布之间的误差可以进一步的缩小;After the genetic algorithm is used to optimize the N modification parameters at the same time, the modification parameter Q is determined, and the error between the actual electric field distribution after modification and the optimal electric field distribution is determined to be within the set range. The etching accuracy is generally 50 nanometers. According to the etching accuracy, the error between the actual electric field distribution and the optimal electric field distribution is preferably set to ±0.1π. According to the development of the etching accuracy, the difference between the actual electric field distribution and the optimal electric field distribution is The error between can be further reduced;
随后,根据遗传算法计算出的修形参数对实际衍射结构的出射面2进行刻蚀,包括:Then, the
根据所述实际衍射结构的份数N,和与N对应的修形参数Q逐份对所述实际衍射结构的出射面2进行刻蚀。The
对实际衍射结构进行的刻蚀与上述对实际衍射结构进行分开的份数相关,每一份实际衍射结构对应一个修形参数Q,相应的在实际衍射结构的出射面2对相应份数的膜层进行刻蚀,刻蚀的深度最佳截面深度*修形参数Q。The etching of the actual diffraction structure is related to the fraction of the actual diffraction structure. The layer is etched, and the depth of the etching is optimal cross-section depth * modification parameter Q.
至此,上述完成刻蚀的多膜层劳厄透镜在不需要其他辅助光学元件的情况下,对其结构误差引起的出射面2电场变化进行补偿,从而改善实际制备所得多层膜劳厄透镜的聚焦性能。So far, the above etched multi-layer Laue lens can compensate for the electric field change of the
可选的,所述确定衍射结构包括如下步骤:Optionally, the determining of the diffraction structure includes the following steps:
根据所述透镜的应用要求确定所述透镜的膜层总厚度、最外层膜层的周期厚度Drout和总膜层数;Determine the total film thickness of the lens, the periodic thickness Drout of the outermost film layer and the total number of film layers according to the application requirements of the lens;
确定各膜层在入射面1处的周期厚度;Determine the periodic thickness of each film layer at the
根据入射光的波长λ,所述透镜-1级次衍射光的焦距f和膜层数量计算-1级衍射效率随截面深度Z变化的曲线η-1(Z),获取最佳截面深度Zopt。According to the wavelength λ of the incident light, the focal length f of the -1st-order diffracted light of the lens and the number of film layers, the curve η-1(Z) of the -1st-order diffraction efficiency changing with the section depth Z is calculated to obtain the optimal section depth Zopt.
上述步骤中,首先需要确定的是衍射结构,根据所述透镜的应用要求确定所述透镜的膜层总厚度、最外层膜层的周期厚度Drout和总膜层数;In the above steps, the first thing that needs to be determined is the diffraction structure, and the total film thickness of the lens, the periodic thickness Drout of the outermost film layer and the total number of film layers are determined according to the application requirements of the lens;
通过如下公式确定最外层厚度:The outermost layer thickness is determined by the following formula:
Δ=1.22Drout,其中,Δ为通过透镜所需要达到的空间分辨率;Δ=1.22Drout, where Δ is the spatial resolution required by the lens;
通过如下公式确定总膜层数:The total number of film layers is determined by the following formula:
Nmax=fλ/(4*Drout2);N max =fλ/(4*Drout 2 );
通过总层数即可得到总厚度;The total thickness can be obtained by the total number of layers;
随后确定各膜层在入射面1处的周期厚度包括如下步骤:Then determining the periodic thickness of each film layer at the
通过如下公式获得第n层膜层的位置半径rn:The position radius rn of the nth film layer is obtained by the following formula:
rn=nfλ+n2λ2/4;r n =nfλ+n 2 λ 2 /4;
其中,n为从所述基体向外的膜层数,f为所述透镜-1级次衍射光的焦距,λ为入射光的波长;Wherein, n is the number of film layers outward from the substrate, f is the focal length of the -1 order diffracted light of the lens, and λ is the wavelength of the incident light;
基于所述第n层膜层的位置半径获得第n层膜层的周期厚度Dn:The periodic thickness D n of the n-th film layer is obtained based on the position radius of the n-th film layer:
Dn=fλ/rn;D n = fλ /rn ;
随后用衍射动力学中的Takagi-Taupin理论,计算-1级衍射效率随深度Z变化的曲线η-1;根据计算得到的效率曲线η-1,选取效率最大的最佳截面深度Zopt,同时计算理想型多层膜劳厄透镜在最佳截面深度Zopt处的出射电场Eopt;随后根据最佳截面深度值Zopt进行实际透镜的制备。Then, using the Takagi-Taupin theory in diffraction dynamics, the curve η-1 of the -1st-order diffraction efficiency changing with the depth Z was calculated; The outgoing electric field Eopt of the ideal multilayer Laue lens at the optimal cross-sectional depth Zopt; then the actual lens is fabricated according to the optimal cross-sectional depth value Zopt.
本实施例中优选的给出一个具体的实施方式,假定入射光能量E=20keV,要求的聚焦分辨率为25nm,选定焦距为3mm,此时的总膜厚应为10μm,根据镀膜能力以及分辨率要求,选择最外层厚度为10nm,根据计算,总膜层数为500层。A specific implementation is preferably given in this embodiment, assuming that the incident light energy E=20keV, the required focusing resolution is 25nm, the selected focal length is 3mm, and the total film thickness at this time should be 10μm. According to the resolution requirements, the thickness of the outermost layer is selected to be 10nm. According to the calculation, the total number of film layers is 500 layers.
根据上述步骤中的公司,确定衍射结构;Determine the diffractive structure according to the company in the above steps;
利用Takagi-Taupin理论,计算负1级衍射效率随深度z变化的曲线η-1(z);Using the Takagi-Taupin theory, calculate the curve η-1(z) of the negative first-order diffraction efficiency as a function of depth z;
根据衍射曲线η-1(z)选取效率最大的最佳深度Zopt=6μm;According to the diffraction curve η-1(z), select the optimal depth Zopt=6μm with the maximum efficiency;
根据最佳深度Zopt,计算理想结构多层膜Laue透镜出射面2的电场分布,记为Eopt;根据实际所测得结构按照同样方法,计算实际结构多层膜劳厄透镜出射面2的电场分布,记为Eopt'。According to the optimal depth Zopt, calculate the electric field distribution of the
将实际结构的多层膜Laue透镜沿X方向细分为一定数量的子结构,细分数设为350,按照每层结构进行细分,并在Z方向对其进行刻蚀;The multi-layer Laue lens of the actual structure is subdivided into a certain number of substructures along the X direction, the subdivision number is set to 350, and each layer is subdivided and etched in the Z direction;
设修形参数为Q,变化范围为0.4-1,其中1为完全刻蚀。由于不同子结构间存在较强的电场耦合作用,人为简单的优化单个子结构时,无法考虑齐全所有耦合因素,会给相邻的子结构的出射电场引入一些预料外的变化,并不能达到最理想的效果,因此使用遗传算法对N个修形参数同时进行优化,优化结果优选的如图7所示,其中表明了每一层结构需要进行修形的参数,横坐标为层数,纵坐标为修形参数。Let the modification parameter be Q, and the variation range is 0.4-1, where 1 is the complete etching. Due to the strong electric field coupling between different substructures, it is impossible to consider all coupling factors when simply optimizing a single substructure, which will introduce some unexpected changes to the outgoing electric field of adjacent substructures, which cannot achieve the best possible results. Therefore, the genetic algorithm is used to optimize the N modification parameters at the same time. The optimal optimization result is shown in Figure 7, which indicates the parameters that need to be modified for each layer structure. The abscissa is the number of layers, and the ordinate is the number of layers. is the modification parameter.
优化结束后,利用基尔霍夫-菲涅尔衍射积分,得到像面上的光强分布,获得修形后所述透镜的聚焦分辨率为26nm,理想型聚焦分辨率为25nm,实际结构下聚焦分辨率为39nm,参见图5和图6所示,图6中三条焦平面处电场强度归一化分布曲线分别为理论理想情况下、根据计算参数实际制备的、以及实际劳厄透镜结构经过修形刻蚀之后的结构,其中,修形刻蚀之后即上述实施例中提供的结构与理论理想情况下的曲线较为接近;After the optimization, Kirchhoff-Fresnel diffraction integration is used to obtain the light intensity distribution on the image plane. After the modification is obtained, the focusing resolution of the lens is 26 nm, and the ideal focusing resolution is 25 nm. The focusing resolution is 39 nm, as shown in Figure 5 and Figure 6. The normalized distribution curves of the electric field intensity at the three focal planes in Figure 6 are the theoretical ideal case, the actual preparation according to the calculated parameters, and the actual Laue lens structure after The structure after modification and etching, wherein, the structure provided in the above-mentioned embodiment after modification and etching is relatively close to the curve under the theoretical ideal situation;
其中,本申请的劳厄透镜经过修形后,聚焦分辨率与理想型近似相同,远优于实际结构下劳厄透镜得聚焦分辨率,说明本申请的单级次衍射劳厄透镜能够在不借助任何附加光学元件得情况下,可以有效补偿实际情况下结构误差带来的出射面2上的电场得差异。Among them, after the Laue lens of the present application is modified, the focusing resolution is approximately the same as that of the ideal type, which is far better than the focusing resolution of the Laue lens under the actual structure, indicating that the single-order diffraction Laue lens of the present application can be With the help of any additional optical elements, the difference of the electric field on the
需要理解的是,上文如有涉及术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制;方位词“内、外”是指相对于各部件本身的轮廓的内外。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。It should be understood that the terms "center", "portrait", "horizontal", "top", "bottom", "front", "rear", "left", "right", "vertical" "," "horizontal", "top", "bottom", "inside", "outside", etc. indicate the orientation or positional relationship based on the orientation or positional relationship shown in the accompanying drawings, which are only for the convenience of describing the present invention and simplifying the description , rather than indicating or implying that the referred device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be construed as a limitation to the present invention; the orientation terms "inside and outside" refer to the The inside and outside of the silhouette. In addition, the terms "first" and "second" are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as "first" or "second" may expressly or implicitly include one or more of that feature.
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位旋转90度或处于其他方位,并且对这里所使用的空间相对描述作出相应解释。For ease of description, spatially relative terms, such as "on", "over", "on the surface", "above", etc., may be used herein to describe what is shown in the figures. The spatial positional relationship of one device or feature shown to other devices or features. It should be understood that spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as "above" or "over" other devices or features would then be oriented "below" or "over" the other devices or features under other devices or constructions". Thus, the exemplary term "above" can encompass both an orientation of "above" and "below." The device may also be otherwise oriented, rotated 90 degrees or at other orientations, and the spatially relative descriptions used herein interpreted accordingly.
需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。It should be noted that, unless otherwise expressly specified and limited, the terms "installed", "connected" and "connected" should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integral connection; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal communication between the two elements or the interaction relationship between the two elements. For those of ordinary skill in the art, the specific meanings of the above terms in this application can be understood according to specific situations.
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。The above description is only a preferred embodiment of the present application and an illustration of the applied technical principles. Those skilled in the art should understand that the scope of the invention involved in this application is not limited to the technical solution formed by the specific combination of the above technical features, and should also cover the above technical features without departing from the inventive concept. Other technical solutions formed by any combination of its equivalent features. For example, a technical solution is formed by replacing the above-mentioned features with the technical features disclosed in this application (but not limited to) with similar functions.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210063039.2A CN114496337A (en) | 2022-01-19 | 2022-01-19 | Multilayer Laue lens and design method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210063039.2A CN114496337A (en) | 2022-01-19 | 2022-01-19 | Multilayer Laue lens and design method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114496337A true CN114496337A (en) | 2022-05-13 |
Family
ID=81472002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210063039.2A Pending CN114496337A (en) | 2022-01-19 | 2022-01-19 | Multilayer Laue lens and design method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114496337A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117575901A (en) * | 2024-01-11 | 2024-02-20 | 浙江大学杭州国际科创中心 | X-ray phase contrast micro-splicing method and system based on multilayer film Laue lens |
-
2022
- 2022-01-19 CN CN202210063039.2A patent/CN114496337A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117575901A (en) * | 2024-01-11 | 2024-02-20 | 浙江大学杭州国际科创中心 | X-ray phase contrast micro-splicing method and system based on multilayer film Laue lens |
CN117575901B (en) * | 2024-01-11 | 2024-05-07 | 浙江大学杭州国际科创中心 | X-ray phase contrast micro-splicing method and system based on multilayer film Laue lens |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109061780B (en) | Dual-wavelength coaxial independent focusing super-surface lens | |
CN101793993B (en) | Optical elements, optical arrangement and system | |
CN104932043B (en) | Reflective off-axis lens based on metal micro-nanostructure antenna array | |
KR20200141443A (en) | Diffraction grating containing a dual material structure | |
EP2521136B1 (en) | Mirror device for controlling shape of reflective surface, and method for producing mirror for controlling shape of reflective surface | |
Senf et al. | Highly efficient blazed grating with multilayer coating for tender X-ray energies | |
CN110488420B (en) | Multifocal fiber lens based on all-dielectric metasurface | |
CN114496337A (en) | Multilayer Laue lens and design method thereof | |
CN100547440C (en) | A three-dimensional super-resolution diffractive optical device for two-photon microfabrication and its design method | |
CN102466980A (en) | Method for fabricating multilayer blazed gratings based on electron beam lithography and X-ray exposure | |
CN113687465B (en) | Surface plasmon near-field focusing lens based on all-dielectric super surface | |
US11933939B2 (en) | Metalens with artificial focus pattern | |
Huang et al. | Generation of plasmonic vortex with linearly polarized light | |
Akhsakhalyan et al. | Multilayer mirror systems to form hard X-ray beams | |
Jiang et al. | Multilayer Kirkpatrick-Baez focusing mirrors with phase compensation for sub-20 nm focusing at the hard X-ray nanoprobe beamline of SSRF | |
CN112034545B (en) | Two-dimensional hole array grating and grating ruler displacement measurement system | |
CN116130140A (en) | Multilayer film luer lens | |
CN113903488A (en) | Single-order diffraction Laue lens and manufacturing method thereof | |
CN111048226B (en) | Super-reflector | |
CN113972023A (en) | X-ray piezoelectric deformable mirror with composite surface | |
CN113640330B (en) | Offline characterization method of multilayer film Laue lens | |
Charalambous | Developments in the fabrication of zone plates and other nanostructures | |
JP7587318B2 (en) | DEFORMABLE MIRROR AND X-RAY DEVICE | |
CN117761810A (en) | Extreme ultraviolet superlens based on nanopore structure | |
Sun et al. | Fabrication of deep-etched fused silica grating with high depth-to-width ratio by holograph and ion-beam etching |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |