CN114494460A - Calibration method, multi-camera probe device and flying probe tester - Google Patents
Calibration method, multi-camera probe device and flying probe tester Download PDFInfo
- Publication number
- CN114494460A CN114494460A CN202210088304.2A CN202210088304A CN114494460A CN 114494460 A CN114494460 A CN 114494460A CN 202210088304 A CN202210088304 A CN 202210088304A CN 114494460 A CN114494460 A CN 114494460A
- Authority
- CN
- China
- Prior art keywords
- camera
- coordinate system
- calibration
- xyz
- probe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000523 sample Substances 0.000 title claims abstract description 152
- 238000000034 method Methods 0.000 title claims abstract description 52
- 238000012360 testing method Methods 0.000 claims abstract description 61
- 230000009466 transformation Effects 0.000 claims description 32
- 239000011159 matrix material Substances 0.000 claims description 25
- 238000006243 chemical reaction Methods 0.000 claims description 11
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 claims description 4
- 238000004590 computer program Methods 0.000 claims description 4
- 238000013519 translation Methods 0.000 claims description 3
- 230000008569 process Effects 0.000 abstract description 7
- 230000000007 visual effect Effects 0.000 abstract description 2
- 230000007246 mechanism Effects 0.000 description 26
- 238000012546 transfer Methods 0.000 description 14
- 238000005259 measurement Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 241001416181 Axis axis Species 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/80—Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
- G06T7/85—Stereo camera calibration
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/16—Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
- G06T7/73—Determining position or orientation of objects or cameras using feature-based methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30244—Camera pose
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Data Mining & Analysis (AREA)
- Computational Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Computing Systems (AREA)
- Algebra (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
技术领域technical field
本发明是关于机器视觉技术领域,特别是关于一种标定方法、多相机探针装置及飞针测试机。The invention relates to the technical field of machine vision, in particular to a calibration method, a multi-camera probe device and a flying probe tester.
背景技术Background technique
相机标定是指用相机系统拍摄标定板的图像,利用标定板中已知特征点的三维坐标及图像上对应的图像坐标,解算相机参数的过程。在机器视觉和影像测量领域,完成测量及定位任务的主要设备为相机,为确定空间物体表面某点的三维几何位置与其在图像中对应点之间的相互关系,必须建立相机成像的几何模型,并对其参数进行准确标定。无论是在图像测量或者机器视觉应用中,相机参数的标定都是非常关键的环节,其标定结果的精度、算法的稳定性直接影响相机工作产生结果的准确性。Camera calibration refers to the process of using the camera system to capture the image of the calibration plate, and using the three-dimensional coordinates of the known feature points in the calibration plate and the corresponding image coordinates on the image to calculate the camera parameters. In the field of machine vision and image measurement, the main equipment for completing measurement and positioning tasks is the camera. In order to determine the relationship between the three-dimensional geometric position of a point on the surface of a space object and its corresponding point in the image, a geometric model of camera imaging must be established. and accurately calibrate its parameters. Whether in image measurement or machine vision applications, the calibration of camera parameters is a very critical link. The accuracy of the calibration results and the stability of the algorithm directly affect the accuracy of the results produced by the camera work.
目前,对于标定相机外执行部件,如探针、切割刀头、激光喷墨头等,一般都采用多次手动示教实际位置,然后用相机拍照的方式进行标定,标定费时费力,且精度很低,无法满足高精度的定位应用场景。At present, for the calibration of the external components of the camera, such as probes, cutting heads, laser inkjet heads, etc., it is generally used to manually teach the actual position multiple times, and then use the camera to take pictures for calibration. The calibration is time-consuming and labor-intensive, and the accuracy is very low. , which cannot meet the high-precision positioning application scenarios.
因此,针对上述技术问题,有必要提供一种新的标定方法。Therefore, in view of the above technical problems, it is necessary to provide a new calibration method.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种标定方法、多相机探针装置及飞针测试机,该标定方法标定实施过程简单、标定精度高。The purpose of the present invention is to provide a calibration method, a multi-camera probe device and a flying probe tester, the calibration method has a simple calibration implementation process and high calibration accuracy.
为实现上述目的,本发明提供的技术方案如下:For achieving the above object, the technical scheme provided by the invention is as follows:
第一方面,本发明提供了一种多相机标定方法,其包括以下步骤:In a first aspect, the present invention provides a multi-camera calibration method, which includes the following steps:
建立第一相机的图像坐标系XYZp1和机械坐标系XYZm1,第二相机的图像坐标系XYZp2和机械坐标系XYZm2,及第三相机的图像坐标系XYZp3;establishing the image coordinate system XYZ p1 and the mechanical coordinate system XYZ m1 of the first camera, the image coordinate system XYZ p2 and the mechanical coordinate system XYZ m2 of the second camera, and the image coordinate system XYZ p3 of the third camera;
以标定板上预设点为原点建立标定板的物理坐标系XYZmb,根据标定板上预设点和标定点的实际物理距离,计算得到标定点的物理坐标[xmb,ymb]T;The physical coordinate system XYZ mb of the calibration board is established with the preset point on the calibration board as the origin, and the physical coordinates [x mb , y mb ] T of the calibration point are calculated according to the actual physical distance between the preset point and the calibration point on the calibration board;
通过第一相机、第二相机和第三相机拍摄标定板的图像,确定标定点在坐标系XYZp1、XYZp2及XYZp3中的图像坐标[xp1,yp1]T、[xp2,yp2]T及[xp3,yp3]T;The images of the calibration plate are captured by the first camera, the second camera and the third camera, and the image coordinates [x p1 , y p1 ] T , [x p2 , y of the calibration point in the coordinate systems XYZ p1 , XYZ p2 and XYZ p3 are determined p2 ] T and [x p3 , y p3 ] T ;
根据标定点的物理坐标[xmb,ymb]T及标定点的图像坐标[xp1,yp1]T、[xp2,yp2]T、[xp3,yp3]T,通过齐次变换,得到坐标系XYZmb到坐标系XYZp1、XYZp2及XYZp3的变换矩阵Mmb→p1、Mmb→p2及Mmb→p3;According to the physical coordinates [x mb , y mb ] T of the calibration point and the image coordinates of the calibration point [x p1 , y p1 ] T , [x p2 , y p2 ] T , [x p3 , y p3 ] T , through the homogeneous Transform to obtain the transformation matrix M mb→p1 , M mb→p2 and M mb→p3 from the coordinate system XYZ mb to the coordinate system XYZ p1 , XYZ p2 and XYZ p3 ;
根据标定点的图像坐标[xp1,yp1]T、[xp2,yp2]T,获取标定点在坐标系XYZm1和XYZm2中的机械坐标,通过仿射变换,得到坐标系XYZp1到坐标系XYZm1的变换矩阵Mp1→m1、及坐标系XYZp2到坐标系XYZm2的变换矩阵Mp2→m2;According to the image coordinates [x p1 , y p1 ] T , [x p2 , y p2 ] T of the calibration point, obtain the mechanical coordinates of the calibration point in the coordinate systems XYZ m1 and XYZ m2 , and obtain the coordinate system XYZ p1 through affine transformation to the transformation matrix M p1→m1 of the coordinate system XYZ m1 , and the transformation matrix M p2→m2 of the coordinate system XYZ p2 to the coordinate system XYZ m2 ;
根据变换矩阵Mmb→p1、Mmb→p2、Mmb→p3、Mp1→m1及Mp2→m2,得到第一相机的机械坐标系XYZm1、第二相机的机械坐标系XYZm2及第三相机的图像坐标系XYZp3之间的转换关系。According to the transformation matrices M mb→p1 , M mb→p2 , M mb→p3 , M p1→m1 and M p2→m2 , the mechanical coordinate system XYZ m1 of the first camera, the mechanical coordinate system XYZ m2 of the second camera, and the third The transformation relationship between the image coordinate systems XYZ p3 of the three cameras.
在一个或多个实施方式中,所述坐标系XYZp1的原点为第一相机拍摄的图像的图像中心,所述坐标系XYZp2的原点为第二相机拍摄的图像的图像中心,所述坐标系XYZp3的原点为第三相机拍摄的图像的图像中心。In one or more embodiments, the origin of the coordinate system XYZ p1 is the image center of the image captured by the first camera, the origin of the coordinate system XYZ p2 is the image center of the image captured by the second camera, and the coordinates The origin of the system XYZ p3 is the image center of the image captured by the third camera.
在一个或多个实施方式中,所述坐标系XYZm1的原点为第一相机拍摄标定板时第一相机所处的机械位置,所述坐标系XYZm2的原点为第二相机拍摄标定板时第二相机所处的机械位置。In one or more embodiments, the origin of the coordinate system XYZ m1 is the mechanical position where the first camera is located when the first camera shoots the calibration plate, and the origin of the coordinate system XYZ m2 is when the second camera shoots the calibration board The mechanical position where the second camera is located.
在一个或多个实施方式中,所述通过第一相机、第二相机和第三相机拍摄标定板的图像,确定标定点在坐标系XYZp1、XYZp2及XYZp3中的图像坐标[xp1,yp1]T、[xp2,yp2]T及[xp3,yp3]T,包括:In one or more embodiments, the first camera, the second camera and the third camera capture images of the calibration plate, and determine the image coordinates of the calibration point in the coordinate systems XYZ p1 , XYZ p2 and XYZ p3 [x p1 ,y p1 ] T , [x p2 ,y p2 ] T and [x p3 ,y p3 ] T , including:
通过第一相机、第二相机和第三相机拍摄标定板,获取标定板的第一图像、第二图像和第三图像,根据标定点在第一图像、第二图像和第三图像中的像素位置,确定标定点在坐标系XYZp1、XYZp2及XYZp3中的图像坐标[xp1,yp1]T、[xp2,yp2]T及[xp3,yp3]T。The calibration plate is photographed by the first camera, the second camera and the third camera, the first image, the second image and the third image of the calibration plate are obtained, and the pixels in the first image, the second image and the third image according to the calibration point Position, determine the image coordinates [x p1 , y p1 ] T , [x p2 , y p2 ] T and [x p3 , y p3 ] T of the calibration point in the coordinate systems XYZ p1 , XYZ p2 and XYZ p3 .
在一个或多个实施方式中,所述齐次变换公式为:In one or more embodiments, the homogeneous transformation formula is:
其中,Zc为标定板的标定平面到相机的图像坐标系平面的垂直高度,(u,v)为相机获取的标定板图像内的点,dX×dY为单个像素的物理尺寸,(u0,v0)为相机获取的标定板图像左上角到相机图像坐标系原点的平移量,f为相机镜头的焦距,(Xw,Yw,Zw)为物理空间中的点坐标,M为标定板物理坐标系和相机图像坐标系之间的变换矩阵。Among them, Z c is the vertical height from the calibration plane of the calibration plate to the plane of the image coordinate system of the camera, (u, v) is the point in the image of the calibration plate obtained by the camera, dX×dY is the physical size of a single pixel, (u 0 , v 0 ) is the translation amount from the upper left corner of the calibration plate image obtained by the camera to the origin of the camera image coordinate system, f is the focal length of the camera lens, (X w , Y w , Z w ) is the point coordinate in the physical space, M is the The transformation matrix between the physical coordinate system of the calibration board and the camera image coordinate system.
在一个或多个实施方式中,所述根据标定点的图像坐标[xp1,yp1]T、[xp2,yp2]T,获取标定点在坐标系XYZm1和XYZm2中的机械坐标,包括:In one or more embodiments, the mechanical coordinates of the calibration point in the coordinate systems XYZ m1 and XYZ m2 are obtained according to the image coordinates [x p1 , y p1 ] T , [x p2 , y p2 ] T of the calibration point ,include:
根据标定点的图像坐标[xp1,yp1]T、[xp2,yp2]T,计算标定点与图像中心的像素距离,通过像素单量得到标定点与第一相机和第二相机中心的物理距离,根据第一相机中心在坐标系XYZm1中的机械坐标及第二相机中心在坐标系XYZm2中的机械坐标,获取标定点在坐标系XYZm1和XYZm2中的机械坐标。According to the image coordinates [x p1 , y p1 ] T , [x p2 , y p2 ] T of the calibration point, calculate the pixel distance between the calibration point and the center of the image, and obtain the calibration point and the center of the first camera and the second camera through a single pixel According to the mechanical coordinates of the center of the first camera in the coordinate system XYZ m1 and the mechanical coordinates of the center of the second camera in the coordinate system XYZ m2 , the mechanical coordinates of the calibration point in the coordinate systems XYZ m1 and XYZ m2 are obtained.
在一个或多个实施方式中,所述根据变换矩阵Mmb→p1、Mmb→p2、Mmb→p3、Mp1→m1及Mp2→m2,得到第一相机的机械坐标系XYZm1、第二相机的机械坐标系XYZm2及第三相机的图像坐标系XYZp3之间的转换关系,包括:In one or more embodiments, the mechanical coordinate system XYZ m1 of the first camera is obtained according to transformation matrices M mb→p1 , M mb→p2 , M mb→p3 , M p1→m1 and M p2→m2 . The transformation relationship between the mechanical coordinate system XYZ m2 of the second camera and the image coordinate system XYZ p3 of the third camera includes:
设坐标系XYZmb中一点为(xmb1,ymb1),其在坐标系XYZm1中的坐标为(xm11,ym11),其在坐标系XYZm2中的坐标为(xm21,ym21),其在坐标系XYZp3中的坐标为(xp31,yp31),则有Let a point in the coordinate system XYZ mb be (x mb1 , y mb1 ), its coordinates in the coordinate system XYZ m1 are (x m11 , y m11 ), and its coordinates in the coordinate system XYZ m2 are (x m21 , y m21 ), its coordinates in the coordinate system XYZ p3 are (x p31 , y p31 ), then there are
根据式(1)可得,坐标系XYZm2到坐标系XYZm1的投影矩阵为Mmb→p1·Mp1→m1·Mp2→m2 -1·Mmb→p2 -1;坐标系XYZm1到坐标系XYZm2的投影矩阵为Mmb→p2·Mp2→m2·Mp1→m1 -1·Mmb→p1 -1;坐标系XYZp3到坐标系XYZm1的投影矩阵为Mmb→p1·Mp1→m1·Mmb→p3 -1;坐标系XYZp3到坐标系XYZm2的投影矩阵为Mmb→p2·Mp2→m2·Mmb→p3 -1。According to formula (1), the projection matrix of coordinate system XYZ m2 to coordinate system XYZ m1 is M mb→p1 ·M p1→m1 ·M p2→m2 -1 ·M mb→p2 -1 ; coordinate system XYZ m1 to The projection matrix of the coordinate system XYZ m2 is M mb→p2 ·M p2→m2 ·M p1→m1 -1 ·M mb→p1 -1 ; the projection matrix of the coordinate system XYZ p3 to the coordinate system XYZ m1 is M mb→p1 · M p1→m1 ·M mb→p3 -1 ; the projection matrix of the coordinate system XYZ p3 to the coordinate system XYZ m2 is M mb→p2 ·M p2→m2 ·M mb→p3 -1 .
在一个或多个实施方式中,所述标定板上的预设点和标定点被设置成双面可见,所述第一相机和所述第二相机通过所述标定板的第一面拍摄所述预设点和所述标定点,所述第三相机通过所述标定板的第二面拍摄所述预设点和所述标定点。In one or more embodiments, the preset point and the calibration point on the calibration plate are set to be visible on both sides, and the first camera and the second camera take pictures of the first surface of the calibration plate. the preset point and the calibration point, and the third camera shoots the preset point and the calibration point through the second surface of the calibration plate.
在一个或多个实施方式中,所述标定板上设有用于确定所述预设点的位置及用于确定所述标定板的物理坐标系XYZmb的方向的标识。In one or more embodiments, the calibration plate is provided with a mark for determining the position of the preset point and for determining the direction of the physical coordinate system XYZ mb of the calibration plate.
第二方面,本发明提供了一种探针标定方法,应用于飞针测试机,该飞针测试机包括第一测试轴、第二测试轴和第三相机,所述第一测试轴上设有第一相机和第一探针,所述第二测试轴上设有第二相机和第二探针,所述探针标定方法包括以下步骤:In a second aspect, the present invention provides a probe calibration method, which is applied to a flying probe testing machine. The flying probe testing machine includes a first testing axis, a second testing axis, and a third camera. The first testing axis is provided with a There is a first camera and a first probe, the second test shaft is provided with a second camera and a second probe, and the probe calibration method includes the following steps:
基于如前所述的多相机标定方法,完成对第一相机、第二相机及第三相机的标定;Based on the multi-camera calibration method described above, the calibration of the first camera, the second camera and the third camera is completed;
将第一探针移动至第三相机的视野范围内,通过第三相机拍摄第一探针的图像,得到第一探针针尖在坐标系XYZp3中的坐标(xp1针,yp1针,1),根据坐标系XYZp3和坐标系XYZm1之间的转换关系,得到第一探针针尖在坐标系XYZm1中的坐标(xm1针,ym1针,1)T;Move the first probe into the field of view of the third camera, take an image of the first probe through the third camera, and obtain the coordinates of the first probe tip in the coordinate system XYZ p3 (x p1 needle , y p1 needle , 1), according to the conversion relationship between the coordinate system XYZ p3 and the coordinate system XYZ m1 , obtain the coordinates of the first probe tip in the coordinate system XYZ m1 (x m1 needle , y m1 needle , 1) T ;
根据第一相机拍摄标定板时第一测试轴所处的机械位置(xm1c,ym1c),及第三相机拍摄第一探针时第一测试轴所处的机械位置(x1针,y1针,z1针),得到第一探针针尖到第一相机中心的实际偏移量(Δx1,Δy1),完成第一探针对第一相机的标定;According to the mechanical position of the first test axis (x m1c , y m1c ) when the first camera shoots the calibration board, and the mechanical position of the first test axis when the third camera shoots the first probe (x 1 pin , y 1 pin , z 1 pin ), obtain the actual offset (Δx 1 , Δy 1 ) from the tip of the first probe to the center of the first camera, and complete the calibration of the first camera by the first probe;
将第二探针移动至第三相机的视野范围内,通过第三相机拍摄第二探针的图像,得到第二探针针尖在坐标系XYZp3中的坐标(xp2针,yp2针,1),根据坐标系XYZp3和坐标系XYZm2之间的转换关系,得到第二探针针尖在坐标系XYZm2中的坐标(xm2针,ym2针,1)T;Move the second probe into the field of view of the third camera, take an image of the second probe through the third camera, and obtain the coordinates of the second probe tip in the coordinate system XYZ p3 (x p2 needle , y p2 needle , 1), according to the conversion relationship between the coordinate system XYZ p3 and the coordinate system XYZ m2 , obtain the coordinates of the second probe tip in the coordinate system XYZ m2 (x m2 needle , y m2 needle , 1) T ;
根据第二相机拍摄标定板时第二测试轴所处的机械位置(xm2c,ym2c),及第三相机拍摄第二探针时第二测试轴所处的机械位置(x2针,y2针,z2针),得到第二探针针尖到第二相机中心的实际偏移量(Δx2,Δy2),完成第二探针对第二相机的标定。According to the mechanical position of the second test axis (x m2c , y m2c ) when the second camera shoots the calibration board, and the mechanical position of the second test axis when the third camera shoots the second probe (x 2 pins , y 2 needles , z 2 needles ) to obtain the actual offset (Δx 2 , Δy 2 ) from the second probe tip to the center of the second camera, and complete the calibration of the second probe to the second camera.
在一个或多个实施方式中,所述第一探针针尖在坐标系XYZm1中的坐标(xm1针,ym1针,1)T为:In one or more embodiments, the coordinates (x m1 needle , y m1 needle , 1) T of the first probe tip in the coordinate system XYZ m1 are:
(xm1针,ym1针,1)T=Mmb→p1·Mp1→m1·Mmb→p3 -1·(xp1针,yp1针,1)T。(x m1 pin , y m1 pin , 1) T = M mb → p1 · M p1 → m1 · M mb → p3 -1 · (x p1 pin , y p1 pin , 1) T .
在一个或多个实施方式中,所述第一探针针尖到第一相机中心的实际偏移量(Δx1,Δy1)为:In one or more embodiments, the actual offset (Δx 1 , Δy 1 ) of the first probe tip to the center of the first camera is:
(Δx1,Δy1)=(x1针-xm1c+xm1针,y1针-ym1c+ym1针)。(Δx 1 ,Δy 1 )=(x 1 pin- x m1c +x m1 pin , y 1 pin -y m1c +y m1 pin ).
在一个或多个实施方式中,所述第二探针针尖在坐标系XYZm2中的坐标(xm2针,ym2针,1)T为:In one or more embodiments, the coordinate (x m2 needle , y m2 needle , 1) T of the second probe tip in the coordinate system XYZ m2 is:
(xm2针,ym2针,1)T=Mmb→p2·Mp2→m2·Mmb→p3 -1·(xp2针,yp2针,1)T。(x m2 pin , y m2 pin , 1) T = M mb → p2 · M p2 → m2 · M mb → p3 -1 · (x p2 pin , y p2 pin , 1) T .
在一个或多个实施方式中,所述第二探针针尖到第二相机中心的实际偏移量(Δx2,Δy2)为:In one or more embodiments, the actual offset (Δx 2 , Δy 2 ) of the second probe tip to the center of the second camera is:
(Δx2,Δy2)=(x2针-xm2c+xm2针,y2针-ym2c+ym2针)。(Δx 2 , Δy 2 ) = (x 2 stitches - x m2c + x m2 stitches , y 2 stitches - y m2c + y m2 stitches ).
第三方面,本发明提供了一种用于前述探针标定方法的多相机探针装置,其包括:基架、第一驱动模组、第二驱动模组、第一测试轴、第二测试轴和第三相机;所述第一驱动模组和所述第二驱动模组设于所述基架上,所述第一测试轴安装于所述第一驱动模组上,所述第二测试轴安装于所述第二驱动模组上;所述第一测试轴包括第一支架、第一相机和第一探针,所述第一支架安装于所述第一驱动模组上,所述第一相机和所述第一探针安装于所述第一支架上;所述第二测试轴包括第二支架、第二相机和第二探针,所述第二支架安装于所述第二驱动模组上,所述第二相机和所述第二探针安装于所述第二支架上。In a third aspect, the present invention provides a multi-camera probe device for the aforementioned probe calibration method, comprising: a base frame, a first driving module, a second driving module, a first test axis, a second test axis axis and a third camera; the first drive module and the second drive module are arranged on the base frame, the first test shaft is mounted on the first drive module, the second The test shaft is installed on the second drive module; the first test shaft includes a first bracket, a first camera and a first probe, and the first bracket is installed on the first drive module, so The first camera and the first probe are installed on the first bracket; the second test shaft includes a second bracket, a second camera and a second probe, and the second bracket is installed on the first bracket On the two drive modules, the second camera and the second probe are mounted on the second bracket.
在一个或多个实施方式中,所述基架上还设有标定板固定件,所述第三相机固定于所述标定板固定件下方。In one or more embodiments, a calibration plate fixing member is further provided on the base frame, and the third camera is fixed under the calibration plate fixing member.
第四方面,本发明提供了一种飞针测试机,其包括存储器、处理器及前述的多相机探针装置,所述存储器中存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行权利要求7所述的探针标定方法的步骤。In a fourth aspect, the present invention provides a flying probe tester, which includes a memory, a processor and the aforementioned multi-camera probe device, wherein a computer program is stored in the memory, and when the computer program is executed by the processor , so that the processor performs the steps of the probe calibration method of claim 7 .
与现有技术相比,本发明提供的标定方法、多相机探针装置及飞针测试机,其对相机系统的标定过程简单、标定精度高,且在完成相机系统的标定后,可实现对探针的一键标定,而无需多次手动示教实际位置;更换探针后,也不需要再次手动示教探针位置,通过视觉拍照,可直接在之前标定前提下,确定新探针在系统中的实际位置。该标定方法对相机的标定精度可达0.7μm以下,对探针的标定精度可达3.5μm以下。Compared with the prior art, the calibration method, the multi-camera probe device and the flying probe tester provided by the present invention have simple calibration process for the camera system, high calibration accuracy, and can realize the calibration after the calibration of the camera system is completed. One-key calibration of the probe without the need to manually teach the actual position multiple times; after replacing the probe, there is no need to manually teach the probe position again. actual location in the system. The calibration accuracy of the calibration method for the camera can reach below 0.7 μm, and the calibration accuracy for the probe can reach below 3.5 μm.
附图说明Description of drawings
图1是本发明一实施方式中多相机探针装置的立体结构示意图;FIG. 1 is a schematic three-dimensional structure diagram of a multi-camera probe device according to an embodiment of the present invention;
图2是本发明一实施方式中多相机标定方法的流程图;2 is a flowchart of a multi-camera calibration method in an embodiment of the present invention;
图3是本发明一实施方式中探针标定方法的流程图;3 is a flowchart of a probe calibration method in an embodiment of the present invention;
图4是本发明一实施方式中飞针测试机的结构框图。FIG. 4 is a structural block diagram of a flying probe tester in an embodiment of the present invention.
主要附图标记说明:Description of main reference signs:
1-多相机探针装置,11-基架,12-第一驱动模组,13-第二驱动模组,14-第一测试轴,15-第二测试轴,16-第三相机,17-标定板固定件,121-第一移动轴机构,122-第一移载机构,131-第二移动轴机构,132-第二移载机构,141-第一支架,142-第一相机,143-第一探针,151-第二支架,152-第二相机,153-第二探针。1-Multi-camera probe device, 11-Base frame, 12-First drive module, 13-Second drive module, 14-First test axis, 15-Second test axis, 16-Third camera, 17 -Calibration plate fixing member, 121-first moving axis mechanism, 122-first transfer mechanism, 131-second moving axis mechanism, 132-second transfer mechanism, 141-first bracket, 142-first camera, 143-first probe, 151-second bracket, 152-second camera, 153-second probe.
具体实施方式Detailed ways
下面结合附图,对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。The specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings, but it should be understood that the protection scope of the present invention is not limited by the specific embodiments.
除非另有其它明确表示,否则在整个说明书和权利要求书中,术语“包括”或其变换如“包含”或“包括有”等等将被理解为包括所陈述的元件或组成部分,而并未排除其它元件或其它组成部分。Unless expressly stated otherwise, throughout the specification and claims, the term "comprising" or its conjugations such as "comprising" or "comprising" and the like will be understood to include the stated elements or components, and Other elements or other components are not excluded.
请参照图1所示,本发明一实施方式中的多相机探针装置1,其可应用于飞针测试机,该多相机探针装置1包括:基架11、第一驱动模组12、第二驱动模组13、第一测试轴14、第二测试轴15和第三相机16。Referring to FIG. 1 , a multi-camera probe device 1 in an embodiment of the present invention can be applied to a flying probe tester. The multi-camera probe device 1 includes: a
一示例性的实施例中,基架11被构造成大体呈长方体状,第一驱动模组12和第二驱动模组13安装于基架11的顶部上。第一测试轴14安装于第一驱动模组12上,第一测试轴14可在第一驱动模组12的驱动下移动。第二测试轴15安装于第二驱动模组13上,第二测试轴15可在第二驱动模组13的驱动下移动。In an exemplary embodiment, the
具体地,第一驱动模组12包括沿x轴方向设置的第一移动轴机构121和沿y轴方向设置的第一移载机构122。其中,第一移动轴机构121安装于基架11的顶部上,第一移载机构122安装于第一移动轴机构121,第一测试轴14安装于第一移载机构122上;且第一移载机构122能够在第一移动轴机构121的驱动下沿x轴方向移动,第一测试轴14机构能够在第一移载机构122的驱动下沿y轴方向移动。Specifically, the
具体地,第二驱动模组13包括沿x轴方向设置的第二移动轴机构131和沿y轴方向设置的第二移载机构132。其中,第二移动轴机构131安装于基架11的顶部上,第二移载机构132安装于第二移动轴机构131,第二测试轴15安装于第二移载机构132上;且第二移载机构132能够在第二移动轴机构131的驱动下沿x轴方向移动,第二测试轴15机构能够在第二移载机构132的驱动下沿y轴方向移动。Specifically, the
第一驱动模组12和第二驱动模组13相互独立,第一测试轴14和第二测试轴15可在第一驱动模组12和第二驱动模组13的驱动下分别独立进行移动。The
具体地,第一测试轴14包括第一支架141、第一相机142和第一探针143。其中,第一支架141安装于第一驱动模组12的第一移载机构122上,第一相机142和第一探针143安装于第一支架141上。在第一驱动模组12的驱动下,第一相机142和第一探针143可以同步移动。Specifically, the
具体地,第二测试轴15包括第二支架151、第人相机和第而探针。其中,第二支架151安装于第二驱动模组13的第一移载机构122上,第二相机152和第人探针安装于第二支架151上。在第二驱动模组13的驱动下,第二相机152和第二探针153可以同步移动。Specifically, the
一示例性的实施例中,基架11上还设有标定板固定件17。在进行相机标定时,可将标定板固定于该标定板固定件17上,以便于相机对标定板进行拍摄,获取标定板的图像信息。In an exemplary embodiment, the
具体地,第三相机16固定于标定板固定件17下方。在多相机探针装置1中,第三相机16是固定设置的,因此在标定过程中,第三相机16的相机中心是固定的,即基于第三相机16建立的图像坐标系也是固定的,不存在位置偏移。Specifically, the
具体地,第一相机142、第二相机152和第三相机16上还设有光源,该光源能够在第一相机142、第二相机152和第三相机16拍摄图像是提供光照,以使得相机能够拍摄到更清晰的图像。Specifically, the
请参照图2所示,为本发明一实施方式中的多相机标定方法的流程图,该方法可用于前述的多相机探针装置1。该多相机标定方法包括以下步骤:Please refer to FIG. 2 , which is a flowchart of a multi-camera calibration method according to an embodiment of the present invention, which can be used in the aforementioned multi-camera probe device 1 . The multi-camera calibration method includes the following steps:
S101:建立第一相机142的图像坐标系XYZp1和机械坐标系XYZm1,第二相机152的图像坐标系XYZp2和机械坐标系XYZm2,及第三相机16的图像坐标系XYZp3。S101 : Establish the image coordinate system XYZ p1 and the mechanical coordinate system XYZ m1 of the
具体地,第一相机142的图像坐标系XYZp1,是基于第一相机142拍摄的图像所建立的坐标系,该坐标系XYZp1的原点为第一相机142拍摄的图像的图像中心。例如,可以以垂直于第一相机142的拍摄方向(镜头朝向),且经过第一相机142的中心的平面为坐标系XYZp1的XY平面;此时,第一相机142的中心即为第一相机142拍摄的图像的图像中心,即坐标系XYZp1的原点。Specifically, the image coordinate system XYZ p1 of the
第二相机152的图像坐标系XYZp2,是基于第二相机152拍摄的图像所建立的坐标系,该坐标系XYZp2的原点为第二相机152拍摄的图像的图像中心。例如,可以以垂直于第二相机152的拍摄方向(镜头朝向),且经过第二相机152的中心的平面为坐标系XYZp2的XY平面;此时,第二相机152的中心即为第而相机拍摄的图像的图像中心,即坐标系XYZp2的原点。The image coordinate system XYZ p2 of the
第三相机16的图像坐标系XYZp3,是基于第三相机16拍摄的图像所建立的坐标系,该坐标系XYZp3的原点为第三相机16拍摄的图像的图像中心。例如,可以以垂直于第三相机16的拍摄方向(镜头朝向),且经过第三相机16的中心的平面为坐标系XYZp3的XY平面;此时,第三相机16的中心即为第三相机16拍摄的图像的图像中心,即坐标系XYZp3的原点。The image coordinate system XYZ p3 of the
在其他实施方式中,坐标系XYZp1、XYZp2及XYZp3的原点,也可以选取图像上其他的点,可根据实际需要进行设定。In other embodiments, the origins of the coordinate systems XYZ p1 , XYZ p2 and XYZ p3 may also be selected from other points on the image, and may be set according to actual needs.
具体地,第一相机142的机械坐标系XYZm1的原点为第一相机142拍摄标定板时第一相机142所处的机械位置,该机械位置可通过第一测试轴14在第一驱动模组12上的位置(xm1c,ym1c)来确定。Specifically, the origin of the mechanical coordinate system XYZ m1 of the
第二相机152的机械坐标系XYZm2的原点为第二相机152拍摄标定板时第二相机152所处的机械位置,该机械位置可通过第二测试轴15在第二驱动模组13上的位置(xm2c,ym2c)来确定。The origin of the mechanical coordinate system XYZ m2 of the
S102:以标定板上预设点为原点建立标定板的物理坐标系XYZmb,根据标定板上预设点和标定点的实际物理距离,计算得到标定点的物理坐标[xmb,ymb]T。S102: The physical coordinate system XYZ mb of the calibration board is established with the preset point on the calibration board as the origin, and the physical coordinates [x mb , y mb ] of the calibration point are calculated according to the actual physical distance between the preset point and the calibration point on the calibration board T.
在建立标定板的物理坐标系XYZmb前,需先将标定板定位于多相机探针装置1的标定板固定件17上。Before establishing the physical coordinate system XYZ mb of the calibration plate, the calibration plate needs to be positioned on the calibration
具体地,标定板的物理坐标系XYZmb可从被相机捕获的标定点中构建,可从相机获取的视野中任选一预设点作为坐标系XYZmb的原点,而标定板的标定平面则可作为坐标系XYZmb的XY平面。Specifically, the physical coordinate system XYZ mb of the calibration plate can be constructed from the calibration points captured by the camera, and a preset point can be selected from the field of view acquired by the camera as the origin of the coordinate system XYZ mb , while the calibration plane of the calibration plate is Can be used as the XY plane of the coordinate system XYZ mb .
预设点和标定点均处于坐标系XYZmb的XY平面上,可根据预设点和标定点的实际物理距离,计算得到标定点在坐标系XYZmb中的物理坐标[xmb,ymb]T。Both the preset point and the calibration point are located on the XY plane of the coordinate system XYZ mb . According to the actual physical distance between the preset point and the calibration point, the physical coordinates of the calibration point in the coordinate system XYZ mb can be calculated [x mb ,y mb ] T.
S103:通过第一相机142、第二相机152和第三相机16拍摄标定板的图像,确定标定点在坐标系XYZp1、XYZp2及XYZp3中的图像坐标[xp1,yp1]T、[xp2,yp2]T及[xp3,yp3]T。S103: The
具体地,通过第一相机142、第二相机152和第三相机16拍摄标定板,获取标定板的基于第一相机142拍摄的第一图像、基于第而相机拍摄的第二图像和基于第三相机16拍摄的第三图像,根据标定点在第一图像、第二图像和第三图像中的像素位置,计算标定点在第一图像、第二图像和第三图像中相对于各图像中心(各相机的图像坐标系的原点)的像素位置关系,以确定标定点坐标系XYZp1、XYZp2及XYZp3中的图像坐标[xp1,yp1]T、[xp2,yp2]T及[xp3,yp3]T。Specifically, the calibration plate is captured by the
具体地,标定板上的预设点和标定点被设置成双面可见,第一相机142和第二相机152可通过标定板的第一面(顶面)拍摄标定板的预设点和标定点,第三相机16可通过标定板的第二面(底面)拍摄标定板的预设点和标定点。在标定板上还设有用于确定预设点的位置及用于确定标定板的物理坐标系XYZmb的方向的标识。通过该标识结合图像分析,第一相机142、第二相机152和第三相机16可自动识别预设点的位置及坐标系XYZmb的方向,从而将标定板上同一标定点在第一图像、第二图像和第三图像中进行对应。Specifically, the preset points and calibration points on the calibration plate are set to be visible on both sides, and the
S104:根据标定点的物理坐标[xmb,ymb]T及标定点的图像坐标[xp1,yp1]T、[xp2,yp2]T、[xp3,yp3]T,通过齐次变换,得到坐标系XYZmb到坐标系XYZp1、XYZp2及XYZp3的变换矩阵Mmb→p1、Mmb→p2及Mmb→p3。S104: According to the physical coordinates [x mb , y mb ] T of the calibration point and the image coordinates [x p1 , y p1 ] T , [x p2 , y p2 ] T , [x p3 , y p3 ] T of the calibration point, pass Homogeneous transformation to obtain transformation matrices M mb→p1 , M mb→p2 and M mb→p3 from the coordinate system XYZ mb to the coordinate systems XYZ p1 , XYZ p2 and XYZ p3 .
具体地,齐次变换公式为:Specifically, the homogeneous transformation formula is:
其中,Zc为标定板的标定平面(坐标系XYZmb的XY平面)到相机的图像坐标系平面(坐标系XYZp1、XYZp2及XYZp3的XY平面)的垂直高度,(u,v)为相机获取的标定板图像内的点,dX×dY为单个像素的物理尺寸,(u0,v0)为相机获取的标定板图像左上角到相机图像坐标系原点(相机中心)的平移量,f为相机镜头的焦距,(Xw,Yw,Zw)为物理空间中的点坐标,M为标定板物理坐标系和相机图像坐标系之间的变换矩阵。Among them, Z c is the vertical height from the calibration plane of the calibration plate (XY plane of the coordinate system XYZ mb ) to the image coordinate system plane of the camera (XY plane of the coordinate system XYZ p1 , XYZ p2 and XYZ p3 ), (u, v) is the point in the calibration plate image obtained by the camera, dX×dY is the physical size of a single pixel, (u 0 , v 0 ) is the translation amount from the upper left corner of the calibration plate image obtained by the camera to the origin of the camera image coordinate system (camera center) , f is the focal length of the camera lens, (X w , Y w , Z w ) are the point coordinates in the physical space, and M is the transformation matrix between the physical coordinate system of the calibration board and the camera image coordinate system.
S105:根据标定点的图像坐标[xp1,yp1]T、[xp2,yp2]T,获取标定点在坐标系XYZm1和XYZm2中的机械坐标,通过仿射变换,得到坐标系XYZp1到坐标系XYZm1的变换矩阵Mp1→m1、及坐标系XYZp2到坐标系XYZm2的变换矩阵Mp2→m2。S105: According to the image coordinates [x p1 , y p1 ] T , [x p2 , y p2 ] T of the calibration point, obtain the mechanical coordinates of the calibration point in the coordinate systems XYZ m1 and XYZ m2 , and obtain the coordinate system through affine transformation A transformation matrix M p1→m1 from XYZ p1 to coordinate system XYZ m1 , and a transformation matrix M p2→m2 from coordinate system XYZ p2 to coordinate system XYZ m2 .
具体地,根据标定点的图像坐标[xp1,yp1]T、[xp2,yp2]T,计算标定点与图像中心(与相机中心对应)的像素距离,通过像素单量得到标定点与第一相机142和第二相机152中心的物理距离,根据第一相机142中心在坐标系XYZm1中的机械坐标及第二相机152中心在坐标系XYZm2中的机械坐标,可获取标定点在坐标系XYZm1和XYZm2中的机械坐标。Specifically, according to the image coordinates [x p1 , y p1 ] T , [x p2 , y p2 ] T of the calibration point, the pixel distance between the calibration point and the image center (corresponding to the camera center) is calculated, and the calibration point is obtained by a single pixel quantity The physical distance from the center of the
基于标定点的图像坐标[xp1,yp1]T和[xp2,yp2]T,及标定点在坐标系XYZm1和XYZm2中的机械坐标,通过仿射变换,可得到坐标系XYZp1到坐标系XYZm1的变换矩阵Mp1→m1、及坐标系XYZp2到坐标系XYZm2的变换矩阵Mp2→m2。Based on the image coordinates [x p1 , y p1 ] T and [x p2 , y p2 ] T of the calibration point, and the mechanical coordinates of the calibration point in the coordinate systems XYZ m1 and XYZ m2 , through affine transformation, the coordinate system XYZ can be obtained The transformation matrix M p1→m1 from p1 to the coordinate system XYZ m1 , and the transformation matrix M p2→m2 from the coordinate system XYZ p2 to the coordinate system XYZ m2 .
S106:根据变换矩阵Mmb→p1、Mmb→p2、Mmb→p3、Mp1→m1及Mp2→m2,得到第一相机142的机械坐标系XYZm1、第二相机152的机械坐标系XYZm2及第三相机16的图像坐标系XYZp3之间的转换关系。S106 : According to the transformation matrices M mb→p1 , M mb→p2 , M mb→p3 , M p1→m1 and M p2→m2 , obtain the mechanical coordinate system XYZ m1 of the
具体地,得到变换矩阵Mmb→p1、Mmb→p2、Mmb→p3、Mp1→m1及Mp2→m2后,可以通过各变换矩阵之间共有的坐标系,得到第一相机142的机械坐标系XYZm1、第二相机152的机械坐标系XYZm2及第三相机16的图像坐标系XYZp3之间的转换关系。过程如下:Specifically, after the transformation matrices M mb→p1 , M mb→p2 , M mb→p3 , M p1→m1 and M p2→m2 are obtained, the coordinate system of the
设坐标系XYZmb中一点为(xmb1,ymb1),其在坐标系XYZm1中的坐标为(xm11,ym11),其在坐标系XYZm2中的坐标为(xm21,ym21),其在坐标系XYZp3中的坐标为(xp31,yp31),则有Let a point in the coordinate system XYZ mb be (x mb1 , y mb1 ), its coordinates in the coordinate system XYZ m1 are (x m11 , y m11 ), and its coordinates in the coordinate system XYZ m2 are (x m21 , y m21 ), its coordinates in the coordinate system XYZ p3 are (x p31 , y p31 ), then there are
从上式可得坐标系XYZm2到坐标系XYZm1的投影矩阵为Mmb→p1·Mp1→m1·Mp2→m2 -1·Mmb→p2 -1;坐标系XYZm1到坐标系XYZm2的投影矩阵为Mmb→p2·Mp2→m2·Mp1→m1 -1·Mmb→p1 -1;坐标系XYZp3到坐标系XYZm1的投影矩阵为Mmb→p1·Mp1→m1·Mmb→p3 -1;坐标系XYZp3到坐标系XYZm2的投影矩阵为Mmb→p2·Mp2→m2·Mmb→p3 -1,即完成对相机系统的标定。From the above formula, the projection matrix of coordinate system XYZ m2 to coordinate system XYZ m1 can be obtained as M mb→p1 ·M p1→m1 ·M p2→m2 -1 ·M mb→p2 -1 ; coordinate system XYZ m1 to coordinate system XYZ The projection matrix of m2 is M mb→p2 ·M p2→m2 ·M p1→m1 -1 ·M mb→p1 -1 ; the projection matrix of coordinate system XYZ p3 to coordinate system XYZ m1 is M mb→p1 ·M p1→ m1 ·M mb→p3 -1 ; the projection matrix of the coordinate system XYZ p3 to the coordinate system XYZ m2 is M mb→p2 ·M p2→m2 ·M mb→p3 -1 , that is, the calibration of the camera system is completed.
基于前述的多相机标定方法,本发明还提供了一种探针标定方法。请参照图3所示,为本发明一实施方式中的探针标定方法的流程图。该探针标定方法可应用于飞针测试机,该飞针测试机具有前述的多相机探针装置1。该多相机标定方法包括以下步骤:Based on the aforementioned multi-camera calibration method, the present invention also provides a probe calibration method. Please refer to FIG. 3 , which is a flowchart of a probe calibration method in an embodiment of the present invention. The probe calibration method can be applied to a flying probe tester having the aforementioned multi-camera probe device 1 . The multi-camera calibration method includes the following steps:
S201:基于多相机标定方法,完成对第一相机142、第二相机152及第三相机16的标定。S201 : Complete the calibration of the
具体地,完成对相机的标定后,需移除定位于标定板固定件17上的标定板,以避免标定板影响后续第三相机16对探针的拍摄。Specifically, after the calibration of the camera is completed, the calibration plate positioned on the calibration
S202:将第一探针143移动至第三相机16的视野范围内,通过第三相机16拍摄第一探针143的图像,得到第一探针143针尖在坐标系XYZp3中的坐标,根据坐标系XYZp3和坐标系XYZm1之间的转换关系,得到第一探针143针尖在坐标系XYZm1中的坐标。S202: Move the
具体地,第三相机16获取第一探针143的图像后,可通过BLOB分析,得到第一探针143针尖在坐标系XYZp3中的坐标(xp1针,yp1针,1)。Specifically, after the
根据坐标系XYZp3和坐标系XYZm1之间的转换关系,得到第一探针143针尖在坐标系XYZm1中的坐标(xm1针,ym1针,1)T。具体为:According to the conversion relationship between the coordinate system XYZ p3 and the coordinate system XYZ m1 , the coordinates (x m1 needle , y m1 needle , 1) T of the needle tip of the
(xm1针,ym1针,1)T=Mmb→p1·Mp1→m1·Mmb→p3 -1·(xp1针,yp1针,1)T。(x m1 pin , y m1 pin , 1) T = M mb → p1 · M p1 → m1 · M mb → p3 -1 · (x p1 pin , y p1 pin , 1) T .
S203:根据第一相机142拍摄标定板时第一测试轴14所处的机械位置,及第三相机16拍摄第一探针143时第一测试轴14所处的机械位置,得到第一探针143针尖到第一相机142中心的实际偏移量,完成第一探针143对第一相机142的标定。S203: Obtain the first probe according to the mechanical position of the
具体地,第一相机142拍摄标定板时第一测试轴14所处的机械位置为(xm1c,ym1c),第三相机16拍摄第一探针143时第一测试轴14所处的机械位置为(x1针,y1针,z1针),则第一探针143的标定位置和第一相机142的标定位置的偏差为(x1针-xm1c,y1针-ym1c)。Specifically, the mechanical position of the
再根据第一探针143针尖在坐标系XYZm1中的坐标(xm1针,ym1针,1)T,可得第一探针143针尖到第一相机142中心的实际偏移量(Δx1,Δy1)=(x1针-xm1c+xm1针,y1针-ym1c+ym1针),即完成第一探针143到第一相机142中心的标定。Then according to the coordinates of the needle tip of the
S204:将第二探针153移动至第三相机16的视野范围内,通过第三相机16拍摄第二探针153的图像,得到第二探针153针尖在坐标系XYZp3中的坐标,根据坐标系XYZp3和坐标系XYZm2之间的转换关系,得到第二探针153针尖在坐标系XYZm2中的坐标。S204: Move the
具体地,第三相机16获取第二探针153的图像后,可通过BLOB分析,得到第二探针153针尖在坐标系XYZp3中的坐标(xp2针,yp2针,1)。Specifically, after the
根据坐标系XYZp3和坐标系XYZm2之间的转换关系,得到第一探针143针尖在坐标系XYZm2中的坐标(xm2针,ym2针,1)T。具体为:According to the conversion relationship between the coordinate system XYZ p3 and the coordinate system XYZ m2 , the coordinates (x m2 needle , y m2 needle , 1) T of the needle tip of the
(xm2针,ym2针,1)T=Mmb→p2·Mp2→m2·Mmb→p3 -1·(xp2针,yp2针,1)T。(x m2 pin , y m2 pin , 1) T = M mb → p2 · M p2 → m2 · M mb → p3 -1 · (x p2 pin , y p2 pin , 1) T .
S205:根据第二相机152拍摄标定板时第二测试轴15所处的机械位置,及第三相机16拍摄第二探针153时第二测试轴15所处的机械位置,得到第二探针153针尖到第二相机152中心的实际偏移量,完成第二探针153对第二相机152的标定。S205: Obtain the second probe according to the mechanical position of the
具体地,第二相机152拍摄标定板时第二测试轴15所处的机械位置为(xm2c,ym2c),第三相机16拍摄第二探针153时第二测试轴所处的机械位置为(x2针,y2针,z2针),则第二探针153的标定位置和第二相机152的标定位置的偏差为(x2针-xm2c,y2针-ym2c)。Specifically, the mechanical position of the
再根据第二探针153针尖在坐标系XYZm2中的坐标(xm2针,ym2针,1)T,可得第二探针153针尖到第二相机152中心的实际偏移量(Δx2,Δy2)=(x2针-xm2c+xm2针,y2针-ym2c+ym2针),即完成第二探针153到第二相机152中心的标定。Then according to the coordinates of the needle tip of the
如图4所示,本发明一实施方式还提供了一种飞针测试机2,该飞针测试机2包括处理器21、存储器22(例如非易失性存储器)、内存23、通信接口24和如前所述的多相机探针装置1,并且处理器21、存储器22、内存23和通信接口24经由总线25连接在一起。处理器21用于调用在存储器22中存储或编码的至少一个程序指令,以使得处理器21执行本说明书的各个实施方式中所描述的探针标定方法的各种操作步骤和功能。处理器21执行本说明书的各个实施方式中所描述的探针标定方法时,能够通过多相机探针装置1实现具体地操作步骤。As shown in FIG. 4 , an embodiment of the present invention further provides a flying probe testing machine 2 . The flying probe testing machine 2 includes a processor 21 , a memory 22 (for example, a non-volatile memory), a memory 23 , and a communication interface 24 and the multi-camera probe device 1 as previously described, and the processor 21 , the memory 22 , the memory 23 and the communication interface 24 are connected together via the bus 25 . The processor 21 is configured to invoke at least one program instruction stored or encoded in the memory 22, so that the processor 21 performs various operation steps and functions of the probe calibration method described in the various embodiments of this specification. When the processor 21 executes the probe calibration method described in the various embodiments of this specification, specific operation steps can be implemented by the multi-camera probe device 1 .
所述存储器22可以是计算机能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD)等)。The memory 22 may be any available medium or data storage device that can be accessed by a computer, including, but not limited to, magnetic memory (eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical memory (eg, CD, DVD, BD, etc.) , HVD, etc.), and semiconductor memory (eg, ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state disk (SSD), etc.).
综上所述,本发明提供的标定方法、多相机探针装置及飞针测试机,其对相机系统的标定过程简单、标定精度高,且在完成相机系统的标定后,可实现对探针的一键标定,而无需多次手动示教实际位置;更换探针后,也不需要再次手动示教探针位置,通过视觉拍照,可直接在之前标定前提下,确定新探针在系统中的实际位置。该标定方法对相机的标定精度可达0.7μm以下,对探针的标定精度可达3.5μm以下。To sum up, the calibration method, the multi-camera probe device and the flying probe tester provided by the present invention have a simple process of calibrating the camera system, high calibration accuracy, and can realize the calibration of the probe after the calibration of the camera system is completed. One-key calibration without the need to manually teach the actual position multiple times; after replacing the probe, there is no need to manually teach the probe position again. By taking a visual photo, you can directly determine that the new probe is in the system under the premise of the previous calibration. actual location. The calibration accuracy of the calibration method for the camera can reach below 0.7 μm, and the calibration accuracy for the probe can reach below 3.5 μm.
前述对本发明的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本发明限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本发明的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本发明的各种不同的示例性实施方案以及各种不同的选择和改变。本发明的范围意在由权利要求书及其等同形式所限定。The foregoing descriptions of specific exemplary embodiments of the present invention have been presented for purposes of illustration and description. These descriptions are not intended to limit the invention to the precise form disclosed, and obviously many changes and modifications are possible in light of the above teachings. The exemplary embodiments were chosen and described for the purpose of explaining certain principles of the invention and their practical applications, to thereby enable one skilled in the art to make and utilize various exemplary embodiments and various different aspects of the invention. Choose and change. The scope of the invention is intended to be defined by the claims and their equivalents.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210088304.2A CN114494460B (en) | 2022-01-25 | 2022-01-25 | Calibration method, multi-camera probe device and flying probe tester |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210088304.2A CN114494460B (en) | 2022-01-25 | 2022-01-25 | Calibration method, multi-camera probe device and flying probe tester |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114494460A true CN114494460A (en) | 2022-05-13 |
CN114494460B CN114494460B (en) | 2024-11-15 |
Family
ID=81474010
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210088304.2A Active CN114494460B (en) | 2022-01-25 | 2022-01-25 | Calibration method, multi-camera probe device and flying probe tester |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114494460B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115932555A (en) * | 2023-02-23 | 2023-04-07 | 长春光华微电子设备工程中心有限公司 | Probe position obtaining method and probe station |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107146254A (en) * | 2017-04-05 | 2017-09-08 | 西安电子科技大学 | Camera Extrinsic Parameter Calibration Method for Multi-camera System |
CN110736910A (en) * | 2018-07-18 | 2020-01-31 | 大族激光科技产业集团股份有限公司 | Flying probe test method, test device, test equipment and storage medium of PCB |
WO2021138856A1 (en) * | 2020-01-08 | 2021-07-15 | 深圳市大疆创新科技有限公司 | Camera control method, device, and computer readable storage medium |
CN113433631A (en) * | 2021-07-23 | 2021-09-24 | 苏州格拉尼视觉科技有限公司 | Progressive mode search coupling method based on visual guidance and active mode |
-
2022
- 2022-01-25 CN CN202210088304.2A patent/CN114494460B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107146254A (en) * | 2017-04-05 | 2017-09-08 | 西安电子科技大学 | Camera Extrinsic Parameter Calibration Method for Multi-camera System |
CN110736910A (en) * | 2018-07-18 | 2020-01-31 | 大族激光科技产业集团股份有限公司 | Flying probe test method, test device, test equipment and storage medium of PCB |
WO2021138856A1 (en) * | 2020-01-08 | 2021-07-15 | 深圳市大疆创新科技有限公司 | Camera control method, device, and computer readable storage medium |
CN113433631A (en) * | 2021-07-23 | 2021-09-24 | 苏州格拉尼视觉科技有限公司 | Progressive mode search coupling method based on visual guidance and active mode |
Non-Patent Citations (1)
Title |
---|
罗毅, 刘宏建, 刘允才: "一种新的探针定位方法", 光学精密工程, no. 06, 25 December 2004 (2004-12-25) * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115932555A (en) * | 2023-02-23 | 2023-04-07 | 长春光华微电子设备工程中心有限公司 | Probe position obtaining method and probe station |
Also Published As
Publication number | Publication date |
---|---|
CN114494460B (en) | 2024-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI408037B (en) | A position method and a calibrating method for the robot arm | |
WO2022052404A1 (en) | Memory alignment and insertion method and system based on machine vision, device, and storage medium | |
WO2021212978A1 (en) | Calibration method, calibration apparatus, and non-volatile computer-readable storage medium | |
CN109615661A (en) | Device and method for calibrating internal parameters of light field camera | |
JP2013122434A (en) | Three-dimensional shape position measuring device by monocular camera using laser, method for measuring three-dimensional shape position, and three-dimensional shape position measuring program | |
CN107972065B (en) | Mechanical arm positioning method and system applying same | |
US20190149788A1 (en) | Calibration method of depth image capturing device | |
CN109348129A (en) | A kind of the clarity detection method and system of cameras with fixed focus | |
US12058468B2 (en) | Image capturing apparatus, image processing apparatus, image processing method, image capturing apparatus calibration method, robot apparatus, method for manufacturing article using robot apparatus, and recording medium | |
WO2017107534A1 (en) | Method and device for measuring angle, and method and device for adjusting angle | |
KR20190130407A (en) | Apparatus and method for omni-directional camera calibration | |
CN107685007A (en) | Double-camera lens alignment method, alignment gluing method and substrate alignment method | |
CN114494460A (en) | Calibration method, multi-camera probe device and flying probe tester | |
CN114792344B (en) | Multi-camera position calibration method, device, system and storage medium | |
CN102589529A (en) | Scanning close-range photogrammetry method | |
CN107702787A (en) | Visual vibrating displacement four-dimension measuring method based on common picture pick-up device | |
WO2024109403A1 (en) | 3d camera calibration method, point cloud image acquisition method, and camera calibration system | |
CN115866383B (en) | Side chip active alignment assembly method and device, electronic equipment and medium | |
Wang et al. | Distance measurement using single non-metric CCD camera | |
CN112884847B (en) | Dual-camera calibration method and system | |
JP7336814B1 (en) | Inspection device, mounting device, inspection method, and program | |
CN114222115B (en) | Optical image stabilization calibration method, device, equipment and medium | |
WO2021120911A1 (en) | Three-dimensional coordinate calibration method for plate-like workpiece | |
TW202324543A (en) | Mounting apparatus, mounting method, and computer-readable recording medium | |
CN113365045B (en) | Camera module detection method, device and system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |