CN114492142A - Device and method for testing fire impact resistance of spacecraft component - Google Patents
Device and method for testing fire impact resistance of spacecraft component Download PDFInfo
- Publication number
- CN114492142A CN114492142A CN202210179197.4A CN202210179197A CN114492142A CN 114492142 A CN114492142 A CN 114492142A CN 202210179197 A CN202210179197 A CN 202210179197A CN 114492142 A CN114492142 A CN 114492142A
- Authority
- CN
- China
- Prior art keywords
- laser
- spacecraft
- spacecraft component
- shock
- testing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 106
- 238000000034 method Methods 0.000 title claims abstract description 41
- 230000004044 response Effects 0.000 claims abstract description 100
- 238000009434 installation Methods 0.000 claims abstract description 41
- 238000004088 simulation Methods 0.000 claims abstract description 20
- 230000035939 shock Effects 0.000 claims description 142
- 238000001228 spectrum Methods 0.000 claims description 36
- 230000001133 acceleration Effects 0.000 claims description 34
- 239000011248 coating agent Substances 0.000 claims description 19
- 238000000576 coating method Methods 0.000 claims description 19
- 238000010521 absorption reaction Methods 0.000 claims description 16
- 230000003287 optical effect Effects 0.000 claims description 13
- 230000009471 action Effects 0.000 claims description 8
- 239000010410 layer Substances 0.000 claims 5
- 239000011247 coating layer Substances 0.000 claims 2
- 238000010586 diagram Methods 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 239000012153 distilled water Substances 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 8
- 238000004880 explosion Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000000926 separation method Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000002360 explosive Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000003721 gunpowder Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000003058 plasma substitute Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/15—Vehicle, aircraft or watercraft design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/23—Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/10—Numerical modelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/14—Force analysis or force optimisation, e.g. static or dynamic forces
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Geometry (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Aviation & Aerospace Engineering (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Computational Mathematics (AREA)
- Automation & Control Theory (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
Description
技术领域technical field
本发明涉及航天器元器件火工冲击环境模拟及抗火工冲击能力测试技术领域,主要涉及一种用于测试航天器元器件抗火工冲击能力的装置及方法。The invention relates to the technical field of pyrotechnic impact environment simulation and pyrotechnic impact resistance testing of spacecraft components, and mainly relates to a device and method for testing the pyrotechnic impact resistance capabilities of spacecraft components.
背景技术Background technique
航天火工冲击环境是在星箭分离、整流罩分离、级间分离、部件展开等工作过程中由于火工品爆炸分离而导致的结构冲击响应。航天火工冲击环境具有高频、瞬态、高量级的特点,极易对航天器上的精密电子元器件以及其他仪器设备造成损坏。航天火工冲击环境是航天器在整个生命周期内经历的最苛刻的力学环境之一,在航天器的研制过程中,需要提前在地面进行火工冲击模拟试验,即对航天器元件的抗火工冲击能力进行考核和检验。截止目前为止,抗火工冲击能力模拟实验方法主要分为火工爆炸式和非火工爆炸式两种。The aerospace pyrotechnic shock environment is the structural shock response caused by the explosive separation of pyrotechnics in the process of star-rocket separation, fairing separation, inter-stage separation, and component deployment. The aerospace pyrotechnic shock environment has the characteristics of high frequency, transient state and high magnitude, which can easily cause damage to the precise electronic components and other instruments and equipment on the spacecraft. The aerospace pyrotechnic shock environment is one of the most severe mechanical environments experienced by the spacecraft during the entire life cycle. During the development of the spacecraft, it is necessary to conduct a pyrotechnic shock simulation test on the ground in advance, that is, the fire resistance of the spacecraft components. Work impact ability is assessed and tested. Up to now, the simulation experiment methods for the resistance to pyrotechnic shock are mainly divided into two types: pyrotechnic explosion type and non-pyrotechnic explosion type.
前者直接采用火药或雷管,以一定的方式加载在不同类型的谐振装置上,通过引爆火药或雷管获得火工冲击响应。该模拟方式属于破坏性激励试验,可操作性和结果可重复性较差,在正式试验前往往需要进行多次试错才可获得相对精度较高的冲击响应试验结果,试验成本较高,安全性较差,易对试验人员及试验装置造成较大损害。后者主要包括机械振动式与振动台式两种,分别以摆锤、气枪或振动台本身作为冲击发生器,并通过谐振板、谐振杆等结构作用谐振装置获得其振动响应,以模拟航天器元件在真实条件下的火工冲击响应。The former directly uses gunpowder or detonator, which is loaded on different types of resonance devices in a certain way, and obtains the pyrotechnic impact response by detonating the gunpowder or detonator. This simulation method is a destructive excitation test, which has poor operability and repeatability of results. Before the formal test, many trials and errors are often required to obtain shock response test results with relatively high relative accuracy. The test cost is high, and the safety The performance is poor, and it is easy to cause great damage to the test personnel and the test equipment. The latter mainly includes two types of mechanical vibration type and vibrating table. The pendulum, air gun or vibration table itself is used as the impact generator, and its vibration response is obtained through the resonance device such as the resonance plate and the resonance rod to simulate the spacecraft components. Pyrotechnical shock response under real conditions.
非火工爆炸式试验方法可操作性和重复性较好,试验成本较低,但其频谱范围较窄(振动台式频谱范围仅能达到3000Hz左右),高频响应振幅较小,无法模拟火工冲击的高频响应特点(其主要频率在100Hz-100Khz之间)。The non-fire explosive test method has good operability and repeatability, and the test cost is low, but its frequency spectrum is narrow (the frequency spectrum of the vibration table can only reach about 3000Hz), the high frequency response amplitude is small, and it cannot simulate fire The high frequency response characteristics of the shock (its main frequency is between 100Hz-100Khz).
发明内容SUMMARY OF THE INVENTION
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明的一个目的在于提出一种用于测试航天器元器件抗火工冲击能力的装置,能够模拟航天器火工冲击环境,并可测试航天器元器件的抗火工冲击能力。The present invention aims to solve at least one of the technical problems existing in the prior art. Therefore, an object of the present invention is to provide a device for testing the pyrotechnic impact resistance of spacecraft components, which can simulate the spacecraft pyrotechnic impact environment and test the pyrotechnic impact resistance of spacecraft components.
根据本发明第一方面实施例的用于测试航天器元器件抗火工冲击能力的装置,包括:The device for testing the pyrotechnic impact resistance of spacecraft components according to the embodiment of the first aspect of the present invention includes:
测试支架;test stand;
承载件,所述承载件自由悬挂于所述测试支架上,用于承载待测试的航天器元器件;a carrier, which is freely suspended on the test bracket and used to carry the spacecraft components to be tested;
冲击源,所述冲击源用于提供激光,以在所述承载件面向激光的一面产生激光冲击,所述激光冲击冲击经由所述承载件传递至设置于所述承载件另一表面上的航天器元器件的安装位置处,实现对航天器元器件真实火工冲击环境的模拟;an impact source, the impact source is used for providing laser light to generate laser shock on the side of the carrier facing the laser, the laser shock is transmitted to the aerospace aircraft disposed on the other surface of the carrier via the carrier At the installation position of the spacecraft components, the simulation of the real pyrotechnic impact environment of the spacecraft components is realized;
采集系统,所述采集系统与所述承载件相连,用于采集航天器元器件所处安装位置附件一点在受到所述激光冲击作用后振动响应的物理参数。A collection system, which is connected to the carrier, is used to collect the physical parameters of the vibration response of an attachment point at the installation position of the spacecraft component after being impacted by the laser.
根据本发明第一方面实施例的用于测试航天器元器件抗火工冲击能力的装置,结构简单,操作方法简便,可以很好地表征高频火工冲击特性,实现航天器元器件真实火工冲击环境的模拟,以便对对航天器元器件的抗火工冲击能力进行测试。The device for testing the pyrotechnic impact resistance of spacecraft components according to the embodiment of the first aspect of the present invention has a simple structure and simple operation method, can well characterize the high-frequency pyrotechnic impact characteristics, and realize the real fire impact of spacecraft components. Simulation of the industrial shock environment in order to test the thermal shock resistance of spacecraft components.
在一些实施例中,还包括光路控制系统,所述光路控制系统设置于所述冲击源和所述承载件之间,用于激光传导光路的控制。In some embodiments, an optical path control system is further included, the optical path control system is arranged between the impact source and the carrier, and is used for controlling the optical path of the laser light transmission.
在一些实施例中,所述光路控制系统包括反射镜和聚焦透镜,所述冲击源发出的所述激光经所述反射镜反射给所述聚焦透镜后,由所述聚焦透镜聚焦照射于所述承载件上。In some embodiments, the optical path control system includes a reflecting mirror and a focusing lens, and after the laser light emitted by the impact source is reflected by the reflecting mirror to the focusing lens, the focusing lens focuses and irradiates the laser light on the focusing lens. on the carrier.
在一些实施例中,所述聚焦透镜的焦距设置成可调整的。In some embodiments, the focal length of the focusing lens is set to be adjustable.
在一些实施例中,所述承载件包括基底层、设置在所述基底层面向所述激光一侧上的吸收涂层以及设置在所述吸收涂层上的透明约束层;In some embodiments, the carrier includes a base layer, an absorbing coating disposed on a side of the base layer facing the laser, and a transparent confinement layer disposed on the absorbing coating;
当所述激光透过所述透明约束层后到达所述吸收涂层,所述吸收涂层吸收所述激光的能量并产生等离子体,等离子体在所述透明约束层的约束作用下吸收所述激光的剩余能量迅速膨胀(即等离子爆炸现象),产生冲击波经由所述承载件传递至固定于所述承载件的另一表面上的待测试的航天器元器件安装位置处,从而实现对航天器元器件火工冲击环境的模拟。When the laser passes through the transparent confinement layer and reaches the absorption coating, the absorption coating absorbs the energy of the laser and generates plasma, and the plasma absorbs the laser under the confinement of the transparent confinement layer. The remaining energy of the laser expands rapidly (that is, the phenomenon of plasma explosion), and the shock wave is transmitted through the carrier to the installation position of the spacecraft component to be tested fixed on the other surface of the carrier, so as to realize the detection of the spacecraft. Simulation of component pyrotechnic shock environments.
在一些实施例中,还包括柔性件,所述柔性件的一端固定于所述测试支架,另一端固定于所述承载件,从而使得所述承载件自由悬挂于所述测试支架上。In some embodiments, a flexible member is further included, one end of the flexible member is fixed to the test bracket, and the other end of the flexible member is fixed to the bearing member, so that the bearing member is freely suspended on the test bracket.
在一些实施例中,所述激光相对于所述承载件的入射角设置成可调整的预定角度。In some embodiments, the incident angle of the laser light relative to the carrier is set to an adjustable predetermined angle.
在一些实施例中,所述采集系统包括加速度传感器,所述加速度传感器贴附于所述承载件航天器元器件安装位置附近,但不应与航天器元器件发生相互干扰现象。In some embodiments, the acquisition system includes an acceleration sensor, and the acceleration sensor is attached near the installation position of the carrier spacecraft components, but should not interfere with the spacecraft components.
本发明第二方面还提出了一种用于测试航天器元器件抗火工冲击能力的方法。The second aspect of the present invention also provides a method for testing the pyrotechnic impact resistance of spacecraft components.
根据本发明第二方面实施例的用于测试航天器元器件抗火工冲击能力的方法,采用根据本发明第一方面任意一个实施例所述的用于测试航天器元器件抗火工冲击能力的装置,包括如下步骤:According to the method for testing the pyrotechnic shock resistance of a spacecraft component according to an embodiment of the second aspect of the present invention, the method for testing the pyrotechnic impact resistance of a spacecraft component according to any one of the embodiments of the first aspect of the present invention is adopted. The device includes the following steps:
S1:将待测试的航天器元器件以粘贴的方式安装在所述承载件上规定的安装位置处;S1: Install the spacecraft components to be tested at the specified installation position on the carrier by pasting;
S2:启动所述冲击源,根据实际需求对所述承载件进行一次或多次激光冲击;S2: start the shock source, and perform one or more laser shocks on the carrier according to actual needs;
S3:利用所述采集系统采集航天器元器件所处安装位置附近一点在受到所述激光冲击作用后振动响应的物理参数,确定待测试航天器元器件所承受激光冲击强度;S3: utilize the acquisition system to collect the physical parameters of the vibration response after being subjected to the laser shock effect at a point near the installation position of the spacecraft components, and determine the laser shock intensity suffered by the spacecraft components to be tested;
S4:如激光冲击强度不满足实际火工冲击环境测试要求,调整所述冲击源的输出能量及航天器元器件的安装位置;随后重复执行步骤S1至S4,使激光冲击强度最终满足航天器元器件实际火工冲击环境测试要求;S4: If the laser shock strength does not meet the actual pyrotechnic shock environment test requirements, adjust the output energy of the shock source and the installation position of the spacecraft components; then repeat steps S1 to S4 to make the laser shock strength finally meet the requirements of the spacecraft components The actual pyrotechnic shock environment test requirements of the device;
S5:对航天器元器件在所述激光冲击后的正常使用性能进行检验,从而实现对所述待测试航天器元器件的抗火工冲击能力的测试。S5: Inspect the normal use performance of the spacecraft components after the laser shock, so as to test the pyrotechnic shock resistance of the spacecraft components to be tested.
综上所述,步骤S1至步骤S4为所述待测试航天器元器件真实火工冲击环境的模拟过程;步骤S5为在步骤S1至步骤S4所确定火工冲击环境下,对所述航天器元器件抗火工冲击能力的测试。To sum up, steps S1 to S4 are the simulation process of the actual pyrotechnic impact environment of the components of the spacecraft to be tested; Test of components' resistance to pyrotechnic shock.
根据本发明第二方面实施例的用于测试航天器元器件抗火工冲击能力的方法,操作方法简便,通过对航天器元器件真实火工冲击环境进行模拟,实现了对航天器元器件抗火工冲击能力的测试。According to the method for testing the pyrotechnic shock resistance of spacecraft components according to the embodiment of the second aspect of the present invention, the operation method is simple and convenient. Test of pyrotechnic impact capability.
在一些实施例中,所述物理参数包括所述航天器元器件所处安装位置附近一点在受到所述激光冲击作用后的加速度时域响应信号。In some embodiments, the physical parameter includes an acceleration time domain response signal of a point near the installation position of the spacecraft component after being subjected to the laser shock.
在一些实施例中,还包括如下步骤:In some embodiments, the following steps are also included:
对所述加速度时域响应信号进行分析,绘制冲击响应谱;analyzing the acceleration time-domain response signal, and drawing an impact response spectrum;
以所述加速度时域响应信号的响应时域峰值作为预定频率的所述冲击响应谱的冲击响应谱幅值。Taking the response time-domain peak value of the acceleration time-domain response signal as the shock-response spectrum amplitude of the shock-response spectrum at a predetermined frequency.
在一些实施例中,还包括如下步骤:采用相同的所述冲击源,对试验结果的可重复性及可控性进行检验。In some embodiments, the following step is further included: using the same shock source to test the repeatability and controllability of the test results.
在一些实施例中,采集多次测试的激光冲击加速度时域响应信号;In some embodiments, collecting laser shock acceleration time-domain response signals for multiple tests;
将所述多次测试的激光冲击加速度时域响应信号按时间序列分解为单次激光冲击加速度时域响应信号;Decomposing the laser shock acceleration time-domain response signal of the multiple tests into a single laser shock acceleration time-domain response signal according to a time series;
将所述单次激光冲击加速度时域响应信号绘制成所述冲击响应谱;drawing the single-shot laser shock acceleration time-domain response signal into the shock response spectrum;
将所述冲击响应谱转换成以像素值代表冲击频率的图像;converting the shock response spectrum into an image representing shock frequencies in pixel values;
将所述图像转换成冲击响应谱图。Convert the image to an impulse response spectrogram.
在一些实施例中,还包括如下步骤:建立航天器元器件激光冲击有限元模型;对所述航天器元器件受到的冲击响应进行动力学数值模拟。In some embodiments, the method further includes the following steps: establishing a laser shock finite element model of a spacecraft component; and performing a dynamic numerical simulation on the impact response of the spacecraft component.
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。Additional aspects and advantages of the present invention will be set forth, in part, from the following description, and in part will be apparent from the following description, or may be learned by practice of the invention.
附图说明Description of drawings
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present invention will become apparent and readily understood from the following description of embodiments taken in conjunction with the accompanying drawings, wherein:
图1为本发明第一方面实施例的用于测试航天器元器件抗火工冲击能力的装置的示意图。FIG. 1 is a schematic diagram of an apparatus for testing the pyrotechnic shock resistance of a spacecraft component according to an embodiment of the first aspect of the present invention.
图2为图1承载件区域的局部放大图。FIG. 2 is a partial enlarged view of the carrier area of FIG. 1 .
图3为本发明第一方面实施例的另一用于测试航天器元器件抗火工冲击能力的装置的示意图。FIG. 3 is a schematic diagram of another apparatus for testing the pyrotechnic shock resistance of spacecraft components according to an embodiment of the first aspect of the present invention.
图4为图3承载件区域的局部放大图。FIG. 4 is a partial enlarged view of the carrier area of FIG. 3 .
图5为本发明第二方面实施例的用于测试航天器元器件抗火工冲击能力的方法的示意图。FIG. 5 is a schematic diagram of a method for testing the pyrotechnic shock resistance of a spacecraft component according to an embodiment of the second aspect of the present invention.
图6a至图6c为本发明第二方面实施例的用于测试航天器元器件抗火工冲击能力的方法中承载件旋转不同夹角的示意图。6a to 6c are schematic diagrams of different included angles of the rotation of the carrier in the method for testing the thermal shock resistance of a spacecraft component according to an embodiment of the second aspect of the present invention.
图7为本发明第二方面实施例的用于测试航天器元器件抗火工冲击能力的方法中,本发明第一方面实施例的用于测试航天器元器件抗火工冲击能力的装置在激光冲击下所获得的火工冲击环境冲击响应谱示意图。FIG. 7 is a method for testing the pyrotechnic shock resistance of a spacecraft component according to an embodiment of the second aspect of the present invention. The apparatus for testing the pyrotechnic impact resistance of a spacecraft component according to the first aspect of the present invention is shown in FIG. Schematic diagram of the shock response spectrum of the pyrotechnic shock environment obtained under laser shock.
图8为合成图6所示冲击响应谱所需单自由度质量-弹簧-阻尼系统动力学模型示意图。FIG. 8 is a schematic diagram of the dynamic model of the single-degree-of-freedom mass-spring-damper system required to synthesize the shock response spectrum shown in FIG. 6 .
图9为由图1所示装置所测得的冲击响应谱。FIG. 9 is an impulse response spectrum measured by the device shown in FIG. 1 .
图10为图1所示装置所测得激光能量密度对冲击响应谱幅值相对系数影响关系。Fig. 10 shows the relationship between the laser energy density measured by the device shown in Fig. 1 and the relative coefficient of the impulse response spectrum amplitude.
图11为本发明第二方面实施例的用于测试航天器元器件抗火工冲击能力的方法中的有限元模型正面示意图。FIG. 11 is a schematic front view of the finite element model in the method for testing the pyrotechnic shock resistance of a spacecraft component according to an embodiment of the second aspect of the present invention.
图12为本发明第二方面实施例的用于测试航天器元器件抗火工冲击能力的方法中的有限元模型侧面示意图。12 is a schematic side view of a finite element model in the method for testing the pyrotechnic impact resistance of a spacecraft component according to an embodiment of the second aspect of the present invention.
图13为图11承载件区域载荷加载区域的局部放大图。FIG. 13 is a partial enlarged view of the load-carrying region of the bearing member region of FIG. 11 .
图14为承载件有限元模型载荷加载部位的压强载荷示意图。Figure 14 is a schematic diagram of the pressure load at the load-loading part of the finite element model of the bearing member.
附图标记:Reference number:
用于测试航天器元器件抗火工冲击能力的装置1000
测试支架1
承载件2 基底层201 吸收涂层202 透明约束层203
冲击源3 激光301Shock
采集系统4 加速度传感器401
光路控制系统5 反射镜501 聚焦透镜502Optical
航天器元器件6 柔性件7 工作台8
承载件有限元模型901Carrier
航天器元器件有限元模型902Spacecraft Components
承载件有限元模型载荷加载部位903Bearing part finite element model
具体实施方式Detailed ways
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。The following describes in detail the embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein the same or similar reference numerals refer to the same or similar elements or elements having the same or similar functions throughout. The embodiments described below with reference to the accompanying drawings are exemplary, only used to explain the present invention, and should not be construed as a limitation of the present invention.
下面结合图1至图14来描述本发明实施例的用于测试航天器元器件抗火工冲击能力的装置1000及方法。The following describes an
如图1至图4所示,根据本发明第一方面实施例的用于测试航天器元器件抗火工冲击能力的装置1000,能够模拟航天器火工冲击的环境,并测试航天器元器件6的抗火工冲击能力。As shown in FIGS. 1 to 4 , the
根据本发明第一方面实施例的用于测试航天器元器件抗火工冲击能力的装置1000,包括测试支架1、承载件2、冲击源3和采集系统4。其中,承载件2自由悬挂于测试支架1上,承载件2用于承载待测试的航天器元器件6;冲击源3用于提供激光301,以在承载件2面向激光一面产生激光冲击,该激光冲击经由承载件2传递至设定于承载件2另一表面上的航天器元器件6的安装位置处,实现对航天器元器件6真实火工冲击环境的模拟;采集系统4与承载件2相连,用于采集航天器元器件6的安装位置附近一点在受到激光301冲击作用后振动响应的物理参数。The
具体地,测试支架1为一支架结构,以方便自由悬挂固定承载件2,使得承载件2处于悬空状态(例如如图1和图2所示),以便于实验的进行。Specifically, the
承载件2自由悬挂于测试支架1上,承载件2用于承载待测试的航天器元器件6;也就是说,承载件2一方面通过自由悬挂方式使得承载件2处于悬空状态地固定在测试支架1上,另一方面用于与待测试的航天器元器件6进行固定,实现对航天器元器件火工冲击的自由边界的模拟。The
冲击源3用于提供激光301,以在承载件2面向激光一面产生激光冲击,该激光冲击经由承载件2传递至固定于承载件2另一表面上的航天器元器件6的安装位置处,实现对航天器元器件6真实火工冲击环境的模拟。具体地,冲击源3可以是激光发生器,激光发生器的结构包括电源系统、激光发生器以及冷却系统等,优选激光发生器为固体激光发生器,固体激光发生器能够产生高能量密度、窄脉宽的激光301;当冲击源3提供的激光301作用于承载件2面向激光的一表面上时,承载件2的该表面(即面向激光的一表面)将发生等离子体爆炸现象,并产生冲击波经由承载件2传递至固定于承载件2的另一表面(该表面为背向激光的表面)上的航天器元器件6安装位置,使得航天器元器件6产生与真实火工冲击条件下十分相近的高频振动响应,从而实现对航天器元器件6所处真实火工冲击环境的模拟。The
采集系统4与承载件2相连,用于采集航天器元器件6所处安装位置附近一点在受到激光301冲击作用后振动响应的物理参数。由于航天器元器件6安装位置处已安装有设备,无法直接进行物理参数的测量,在实际测量过程中,通常用航天器元器件6所处安装位置附近一点进行近似代替。通过对物理参数的分析和处理,可以得到航天器元器件6所处火工冲击环境强度的情况,并通过对航天器元器件6在激光冲击后的正常使用性能进行检验实现了对航天器元器件6的抗火工冲击能力的测试。The
当采用本发明第一方面实施例的用于测试航天器元器件抗火工冲击能力的装置1000对航天器元器件6进行测试时,冲击源3可以放置于工作台8上,冲击源3的一侧设有测试支架1;将待测试的航天器元器件6固定在承载件2上规定的安装位置处;启动冲击源3,对承载件2进行一次或多次激光冲击;利用采集系统4采集航天器元器件6所处安装位置附近一点在受到激光冲击作用后振动响应的物理参数;对待测试的航天器元器件6在激光冲击后的正常使用性能进行检验。When the
根据本发明第一方面实施例的用于测试航天器元器件抗火工冲击能力的装置1000,结构简单,操作方法简便,可以很好地表征高频火工冲击特性,实现了对航天器元器件真实火工冲击环境的模拟,以便对航天器元器件抗火工冲击能力进行测试。The
在一些实施例中,如图1和图3所示,还包括光路控制系统5,光路控制系统5设置于冲击源3和承载件2之间,用于激光传导光路的控制。也就是说,通过设置光路控制系统5,使得冲击源3发出的激光301聚焦后,使得激光301能量更加集中,可以有效地保证聚焦后的激光301作用于承载件2时可产生实验所需量级的冲击波。需要说明的是,光路控制系统5一般放置在工作台8上,但不受此限制,可根据实际情况进行调整。In some embodiments, as shown in FIG. 1 and FIG. 3 , an optical
在一些实施例中,如图3所示,光路控制系统5包括反射镜501和聚焦透镜502,冲击源3发出的激光301经反射镜501反射给聚焦透镜502后,由聚焦透镜502聚焦照射于承载件2上。其中,反射镜501的作用是改变冲击源3发出的激光301的传播路线,聚焦透镜502的作用是对冲击源3发出的激光301进行光斑直径的调整。In some embodiments, as shown in FIG. 3 , the optical
在一些实施例中,聚焦透镜502的焦距设置成可调整的。这样,可以根据实验的需求对聚焦透镜502的焦距进行设置,以调节光斑的大小。In some embodiments, the focal length of focusing
在一些实施例中,如图2和图4所示,承载件2包括基底层201、设置在基底层201面向激光301一侧上的吸收涂层202以及设置在吸收涂层202上的透明约束层203;当激光301透过透明约束层203后到达吸收涂层202,吸收涂层202吸收激光301的能量并产生等离子体,等离子体在透明约束层203的约束作用下吸收激光301的剩余能量迅速膨胀(即等离子体爆炸现象),产生冲击波并经由承载件2传递至固定于承载件2的另一表面上的航天器元器件6。In some embodiments, as shown in FIGS. 2 and 4 , the
具体地,基底层201的面向激光301一侧上设置有吸收涂层202和透明约束层203,其中,吸收涂层202位于基底层201和透明约束层203之间,基底层201的另一侧可以固定待测试的航天器元器件6。设置透明约束层203和吸收涂层202能够有效增强激光301冲击冲击压强以及延长激光301冲击的持续时间。冲击源3发出的激光301通过光路控制系统5聚焦后,首先经过透明约束层203,由于透明约束层203对激光301透明,激光301可透过透明约束层203后到达吸收涂层202。吸收涂层202在高能量密度激光301电离作用下,会吸收激光301的能量并产生等离子体,等离子体在透明约束层203的约束作用下,吸收激光301的剩余能量并迅速膨胀(即等离子体爆炸现象),产生冲击波并经由承载件2传递至固定于承载件2的另一表面上航天器元器件6。其中,航天器元器件6安装位置通常位于承载件2背向激光301一面,且靠近激光301入射位置,以提高激光冲击量级,但并不以此为限,可根据实际需求进行调整。Specifically, an
可选的,基底层201可以由铝合金、钛合金或者不锈钢等材料制成,但并不以此为限,可根据实际需求进行调整。Optionally, the
吸收涂层202可以为铝箔或黑色胶带,其位置设置在基底层201面向激光301一侧。同时,吸收涂层202的厚度设置成很薄,厚度可以是0.1mm,但并不以此为限,可根据实际需求进行调整。The
透明约束层203可以为蒸馏水或透明玻璃。其中,蒸馏水增强激光301冲击效果相比透明玻璃较差,但蒸馏水作为透明约束层203具有使用方便、实验结果重复性好等优点。因此,优选透明约束层203材料为蒸馏水,其结构示意图参见图1。此外,当透明约束层203材料为蒸馏水时,测试装置还包括外接水源的喷水管,蒸馏水从喷水管喷出,可在承载件2形成一定厚度透明的约束层203。此外,值得注意的是,当透明约束层203为蒸馏水时,靠近吸收涂层202的部分蒸馏水亦会在激光301作用下发生电离。The transparent constraining
在一些实施例中,如图1所示,还包括柔性件7,柔性件7的一端固定于测试支架1上,另一端固定于承载件2,从而使得承载件2自由悬挂于测试支架1。由此,采用柔性件7将承载件2固定在测试支架1上,组装操作非常简便,并可进行承载件位置的调整。例如,如图1所示,承载件2通过四个柔性件7能够自由悬挂于测试支架1,此时可通过改变柔性件7的长度调整承载件2所处高度。此外,值得说明的是,柔性件7的使用个数并不限于四个,可以根据实际需求进行选择。In some embodiments, as shown in FIG. 1 , a
在一些实施例中,激光301相对于承载件2的入射角设置成可调整的预定角度。此时,入射角可以理解为激光301与承载件2之间的夹角。由于改变激光301与承载件2的夹角会影响激光301的光斑形状以及激光301的能量分布,进而影响激光301冲击波冲击压强。因此,本发明还将通过激光301与承载件2的夹角设置成不同预定角度,采集不同预定角度下(如图6a至图6c所示)待测试的航天器元器件安装位置受到的激光301冲击作用后振动响应的物理参数,定量化确定激光301与承载件2的夹角对航天器元器件6所设置安装位置火工冲击环境的影响规律,以精确调整待测试的航天器元器件6的火工冲击环境。其中,通过旋转承载件2的角度(如图6a至图6c所示),能够实现激光301与承载件2夹角的调整,使其设定为不同的预定角度。In some embodiments, the incident angle of the
在一些实施例中,如图2和图3所示,采集系统4包括加速度传感器401,加速度传感器401贴附于承载件2背面的航天器元器件6安装位置附近,以使得采集位置与航天器元器件6安装位置的振动响应物理参数足够接近,但不应与航天器元器件发生碰撞等相互干扰现象,以影响加速度传感器401的正常测量。In some embodiments, as shown in FIGS. 2 and 3 , the
本发明第二方面还提出了一种用于测试航天器元器件抗火工冲击能力的方法,通过该方法可定量化描述航天器元器件火工冲击环境强度,其步骤示意图如图5所示。The second aspect of the present invention also proposes a method for testing the pyrotechnic impact resistance of spacecraft components, through which the pyrotechnic impact environmental strength of spacecraft components can be quantitatively described, and a schematic diagram of the steps is shown in FIG. 5 . .
根据本发明第二方面实施例的用于测试航天器元器件抗火工冲击能力的方法,采用本发明第一方面任意一个实施例的用于测试航天器元器件抗火工冲击能力的装置1000。该方法包括如下步骤:According to the method for testing the pyrotechnic shock resistance of a spacecraft component according to the embodiment of the second aspect of the present invention, the
S1:将待测试的航天器元器件6以粘贴的方式安装在承载件2上规定的安装位置处;值得注意的是,航天器元器件6安装位置通常位于承载件2背向激光301的另一表面,且靠近承载件2上的激光301入射位置处,以提高激光冲击量级,但不应以次为限,可根据实际情况进行位置的调整;在承载件2表面激光301入射位置处添加有吸收涂层202及透明约束层203;S1: Install the
S2:启动冲击源3,根据实际需求对承载件2进行一次或多次激光冲击;S2: Start the
S3:利用采集系统4采集航天器元器件6所处安装位置附近一点在受到激光301冲击作用后振动响应的物理参数,确定待测试航天器元器件6所承受激光301冲击强度;此时,采集系统4采集位置应与航天器元器件安装位置距离应尽量接近,以使得采集位置与航天器元器件6安装位置的振动响应物理参数足够接近;S3: Use the
S4:如激光冲击强度不满足实际火工冲击环境测试要求,可调整冲击源3输出能量及航天器元器件6的安装位置,随后重复执行步骤S1至S4,使激光冲击强度最终满足航天器元器件实际火工冲击环境测试要求;S4: If the laser shock strength does not meet the actual pyrotechnic shock environment test requirements, the output energy of the
S5:对待测试航天器元器件在激光冲击后的正常使用性能进行检验,从而实现对待测试航天器元器件的抗火工冲击能力的测试。S5: Inspect the normal use performance of the spacecraft components to be tested after laser shock, so as to test the pyrotechnic impact resistance of the spacecraft components to be tested.
综上,步骤S1至步骤S4为待测试航天器元器件真实火工冲击环境的模拟过程;步骤S5为在步骤S1至步骤S4所确定火工冲击环境下,对航天器元器件6抗火工冲击能力的测试。To sum up, steps S1 to S4 are the simulation process of the actual pyrotechnic impact environment of the spacecraft components to be tested; Impact capability test.
根据本发明第二方面实施例的用于测试航天器元器件抗火工冲击能力的方法,操作方法简便,通过航天器元器件真实火工冲击环境进行模拟,实现了对航天器元器件6抗火工冲击能力的测试。According to the method for testing the pyrotechnic impact resistance of spacecraft components according to the embodiment of the second aspect of the present invention, the operation method is simple and convenient. Test of pyrotechnic impact capability.
在一些实施例中,物理参数包括航天器元器件6所处安装位置附近一点受到冲击波冲击之后的加速度时域响应信号;在获得加速度时域响应信号之后,将对加速度时域响应信号进行分析,绘制冲击响应谱;其中,冲击响应谱是将航天器元器件6所处安装位置附近一点的加速度时域响应信号作用于一系列具有不同固有频率的单自由度质量-弹簧-阻尼系统,然后将各单自由度质量-弹簧-阻尼系统响应的最大值作为不同频率所对应的函数值而绘制得到的频域曲线。在该实施例中,以加速度时域响应信号的响应时域峰值作为预定频率的冲击响应谱的冲击响应幅值,然后按照预定倍数对固有频率进行取值,最终得到该加速度信号响应条件下的冲击响应谱。In some embodiments, the physical parameters include an acceleration time domain response signal after a point near the installation position of the
在一些实施例中,还包括:采用相同的冲击源3,对承载件2进行多次重复性的实验,测量航天器元器件6所处安装位置附近一点振动响应,用于探究多次测试实验的可重复性能以及可控性能。In some embodiments, the method further includes: using the
其中,在上述多次重复性的测试实验中,包括以下步骤:采集多次测试的激光301冲击加速度时域响应信号;将多次测试的激光301冲击加速度时域响应信号按时间序列分解为单次激光301冲击加速度时域响应信号;将单次激光301冲击加速度时域响应信号绘制成冲击响应谱;将冲击响应谱转换成以像素值代表冲击频率的图像;将图像转换成冲击响应谱图;对比不同冲击次数下冲击响应谱异同,确定试验结果的可重复性及可控性。其中,冲击响应谱是将冲击源3的冲击施加于一系列线性、单自由度质量-弹簧-阻尼系统时,将各单自由度系统响应运动中的最大加速度时域响应值,作为对应于系统固有频率的函数而绘制的曲线,其示意图如图7所示。单自由度系统运动模型参见图8,其运动微分方程如下:Among them, in the above-mentioned repeated test experiment, the following steps are included: collecting the time-domain response signal of the
其中,x为单自由度系统质量块位移,y为基础位移。Among them, x is the mass displacement of the single-degree-of-freedom system, and y is the base displacement.
定义相对位移z为:The relative displacement z is defined as:
z=x-y (2)z=x-y (2)
则公式(1)可表示为:Then formula (1) can be expressed as:
为方便分析,做如下变换:For the convenience of analysis, the following transformations are made:
其中,ζ为阻尼系数,通常利用放大因子Q求得,通常Q取10,wn为固有频率。Among them, ζ is the damping coefficient, usually obtained by the amplification factor Q, usually Q is 10, and wn is the natural frequency.
将公式(4)与公式(5)带入公式(3),可得方程如下:Substituting formula (4) and formula (5) into formula (3), the following equation can be obtained:
采用卷积积分方法对其进行求解,可得质量块加速度时域响应如下:Using the convolution integration method to solve it, the acceleration time domain response of the mass block can be obtained as follows:
取该加速度时域响应时域峰值作为对应频率wn的冲击响应谱幅值,按照1/12倍频程对固有频率进行取值,最终可得该响应的冲击响应谱。为了进一步评价激光301冲击的衰减特性以及各参数对冲击响应的影响规律,本实例采用了冲击响应谱的归一化相对均值Er和相对最大值Mr,分别表示为:Taking the time-domain peak value of the acceleration time-domain response as the amplitude of the shock response spectrum of the corresponding frequency wn , and taking the value of the natural frequency according to the 1/12 octave frequency band, the shock response spectrum of the response can be finally obtained. In order to further evaluate the attenuation characteristics of the
其中,f0和fN是频率分析范围的下限和上限,SRSa(f)是被分析冲击响应谱,SRSb(f)是参考冲击响应谱。图9为本发明用于测试航天器元器件抗火工冲击能力的装置1000所测得冲击响应谱在同一工况下三次重复试验数据,此时激光301能量为1.5J。由图9可知,本发明所获得的冲击响应谱典型试验数据具有较好的重复性和可控性。此外,由图9亦可看出,在102~104Hz频段内,冲击响应幅值随频率的增加而增大,几乎没有出现拐点,证实了激光301冲击响应具有极好的高频特性,此时激光301冲击响应谱量级达到了200g级别,已满足部分航天器元器件中、远场火工冲击试验要求。图10为激光301能量影响规律示意图,可看出激光301能量密度对冲击响应谱幅值影响为一近似线性关系。由图10冲击响应谱相对系数随激光301能量变化趋势可以判断,当激光301单脉冲能量达到几十J时,其产生的冲击响应量级即可达到绝大多数火工冲击响应近场的量级,即8000g以上,亦可说明本发明具有极大的发展潜力。此外,值得注意的是,考虑到实验过程中可能存在的航天器元器件6的意外损坏及相关保密要求,本实验均未安装实际航天器元器件。where f 0 and f N are the lower and upper limits of the frequency analysis range, SRS a (f) is the analyzed impulse response spectrum, and SRS b (f) is the reference impulse response spectrum. FIG. 9 is the data of three repetitions of the shock response spectrum measured by the
在一些实施例中,还包括如下步骤:对待测试的航天器元器件6受到的冲击响应进行动力学数值模拟。其中,动力学数值模拟进一步包括:建立在激光301冲击作用下航天元器件6的有限元模型;分析不同条件下激光301的能量损耗以及激光301冲击压强随时间的变化关系;模拟航天器元器件6在激光301冲击作用下的瞬态响应。图11和图12分别为本发明所构造的有限元模型正面及侧面示意图。图13为图11承载件2区域载荷加载区域的局部放大图。在本实例中,有限元模型处于自由状态,用于模拟自由悬挂条件;承载件2有限元模型与航天器元器件有限元模型902采取绑定约束,用于模拟航天器元器件实际连接状态;承载件2有限元模型载荷加载部位903所加载压强载荷可简化为一作用时间为激光301脉冲时间两到三倍的三角波,其示意图参见图14;在图14中,上升曲线部分和下降曲线部分分别对应着激光301作用下等离子体扩张过程与冷却过程,曲线峰值压强可表示为:In some embodiments, the following step is further included: performing a dynamic numerical simulation on the impact response of the
其中,P为峰值压强;α为承载件2对激光301的能量吸收系数;Z为承载件2与约束层之间的阻抗系数;I0则为入射激光301能量密度;td为激光301脉冲时间;tl为激光301所产生等离子体冷却结束时间。Among them, P is the peak pressure; α is the energy absorption coefficient of the
根据本发明第二方面实施例的用于测试航天器元器件抗火工冲击能力的方法,操作方法简便,可对航天器元器件真实火工冲击环境进行模拟,并能够对航天器元器件6的抗火工冲击能力的进行测试;通过获得航天器元器件在激光冲击条件下振动响应的物理参数,可获知待测试的航天器元器件6的抗火工冲击能力。According to the method for testing the pyrotechnic impact resistance of spacecraft components according to the embodiment of the second aspect of the present invention, the operation method is simple, the real pyrotechnic impact environment of the spacecraft components can be simulated, and the
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。In the description of this specification, reference to the terms "one embodiment," "some embodiments," "exemplary embodiment," "example," "specific example," or "some examples", etc., is meant to incorporate the embodiments A particular feature, structure, or characteristic described by an example or example is included in at least one embodiment or example of the present invention. In this specification, schematic representations of the above terms do not necessarily refer to the same embodiment or example. Furthermore, the particular features, structures, or characteristics described may be combined in a suitable manner in any one or more embodiments or examples.
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。Although embodiments of the present invention have been shown and described, it will be understood by those of ordinary skill in the art that various changes, modifications, substitutions and alterations can be made in these embodiments without departing from the principles and spirit of the invention, The scope of the invention is defined by the claims and their equivalents.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210179197.4A CN114492142B (en) | 2022-02-25 | 2022-02-25 | Device and method for testing fire impact resistance of spacecraft component |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210179197.4A CN114492142B (en) | 2022-02-25 | 2022-02-25 | Device and method for testing fire impact resistance of spacecraft component |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114492142A true CN114492142A (en) | 2022-05-13 |
CN114492142B CN114492142B (en) | 2023-03-28 |
Family
ID=81483398
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210179197.4A Active CN114492142B (en) | 2022-02-25 | 2022-02-25 | Device and method for testing fire impact resistance of spacecraft component |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114492142B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117405342A (en) * | 2023-10-08 | 2024-01-16 | 清华大学 | Initiating explosive device impact simulation system and method |
CN117516852A (en) * | 2023-10-08 | 2024-02-06 | 清华大学 | Initiating explosive device impact simulation device, testing method and estimation method |
CN117405342B (en) * | 2023-10-08 | 2025-02-25 | 清华大学 | Explosive impact simulation system and method |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105787182A (en) * | 2016-03-01 | 2016-07-20 | 北京空间飞行器总体设计部 | Method for correcting near field test peak value of explosive impulse source function of spacecraft |
CN106644779A (en) * | 2016-11-29 | 2017-05-10 | 航天东方红卫星有限公司 | Equivalent method for on-board initiating explosive device explosion shock spectra |
US20170133954A1 (en) * | 2007-07-10 | 2017-05-11 | Omnitek Partners Llc | Manually Operated Piezoelectric Energy Harvesting Electronic Circuitry |
CN109387347A (en) * | 2018-11-29 | 2019-02-26 | 清华大学 | Laser pumping formula firer impacts ground simulation test device |
CN109443682A (en) * | 2018-11-29 | 2019-03-08 | 清华大学 | Laser pumping formula firer's shock simulation device |
CN109506864A (en) * | 2018-12-12 | 2019-03-22 | 上海卫星装备研究所 | Spacecraft shock environment analogue means |
US20190118302A1 (en) * | 2017-10-25 | 2019-04-25 | Airbus Operations Gmbh | Method, Use, System And Mobile Laser Shock Treatment Station For Laser Shock Peening Of A Component |
WO2020102865A1 (en) * | 2018-11-23 | 2020-05-28 | Br2W Solucões Ltda | Method for monitoring axial loads in structures by identifying natural frequencies |
CN111666700A (en) * | 2020-05-12 | 2020-09-15 | 清华大学 | Laser excitation and fire impact equivalent method |
-
2022
- 2022-02-25 CN CN202210179197.4A patent/CN114492142B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170133954A1 (en) * | 2007-07-10 | 2017-05-11 | Omnitek Partners Llc | Manually Operated Piezoelectric Energy Harvesting Electronic Circuitry |
CN105787182A (en) * | 2016-03-01 | 2016-07-20 | 北京空间飞行器总体设计部 | Method for correcting near field test peak value of explosive impulse source function of spacecraft |
CN106644779A (en) * | 2016-11-29 | 2017-05-10 | 航天东方红卫星有限公司 | Equivalent method for on-board initiating explosive device explosion shock spectra |
US20190118302A1 (en) * | 2017-10-25 | 2019-04-25 | Airbus Operations Gmbh | Method, Use, System And Mobile Laser Shock Treatment Station For Laser Shock Peening Of A Component |
WO2020102865A1 (en) * | 2018-11-23 | 2020-05-28 | Br2W Solucões Ltda | Method for monitoring axial loads in structures by identifying natural frequencies |
CN109387347A (en) * | 2018-11-29 | 2019-02-26 | 清华大学 | Laser pumping formula firer impacts ground simulation test device |
CN109443682A (en) * | 2018-11-29 | 2019-03-08 | 清华大学 | Laser pumping formula firer's shock simulation device |
CN109506864A (en) * | 2018-12-12 | 2019-03-22 | 上海卫星装备研究所 | Spacecraft shock environment analogue means |
CN111666700A (en) * | 2020-05-12 | 2020-09-15 | 清华大学 | Laser excitation and fire impact equivalent method |
Non-Patent Citations (1)
Title |
---|
赵欣等: "航天器火工冲击模拟试验及响应预示方法研究综述", 《爆炸与冲击》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117405342A (en) * | 2023-10-08 | 2024-01-16 | 清华大学 | Initiating explosive device impact simulation system and method |
CN117516852A (en) * | 2023-10-08 | 2024-02-06 | 清华大学 | Initiating explosive device impact simulation device, testing method and estimation method |
CN117405342B (en) * | 2023-10-08 | 2025-02-25 | 清华大学 | Explosive impact simulation system and method |
Also Published As
Publication number | Publication date |
---|---|
CN114492142B (en) | 2023-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5616865A (en) | Acoustic wave generating apparatus | |
Hosoya et al. | Vibration testing based on impulse response excited by pulsed-laser ablation: Measurement of frequency response function with detection-free input | |
US8429975B2 (en) | System and method for simulating high-intensity pyrotechnic shock | |
WO2011158503A1 (en) | Method for measurement of vibration property of structure, and vibration property measurement device | |
US20120047989A1 (en) | Shock simulation method and apparatus | |
Hosoya et al. | Nano-second laser-induced plasma shock wave in air for non-contact vibration tests | |
Jang et al. | Nondestructive prediction of point source pyroshock response spectra based on experimental conditioning of laser-induced shocks | |
CN114492142B (en) | Device and method for testing fire impact resistance of spacecraft component | |
Hwang et al. | Development of a miniature point source pyroshock simulator | |
US8935963B2 (en) | Gas gun fixture to evaluate blast wave on target sample | |
Yan et al. | Dynamic response of aluminum honeycomb panels to high-frequency laser shock excitations | |
Hosoya et al. | Spherical projectile impact using compressed air for frequency response function measurements in vibration tests | |
Jung et al. | Visualization of pyroshock wave reduction by insulator using a laser shock based simulation method | |
CN112881756B (en) | Three-way impact acceleration sensor installation mode validity checking system and method | |
Singh et al. | Impulse force balance for ultrashort duration hypersonic test facilities | |
US6655189B1 (en) | Explosive excitation device and method | |
Gregory et al. | Characterization of Hartmann tube flow with porous pressure-sensitive paint | |
Allaei et al. | An Effective Passive Noise and Vibration Control Material | |
Thierry et al. | Characterization of blast waves using solid and gaseous explosives: application to dynamic buckling of cylindrical shells | |
Anderson et al. | Analysis of a generic warhead part I: Experimental and computational assessment of free field overpressure | |
Takayama et al. | Interaction of Small Scale Blast Waves with a Sphere, Cones, and an Ellipsoid | |
Mizukaki et al. | Four-dimensional visualization of blast loading inside a detonation-driven shock tube using improved pressure-sensitive paint and digital image correlation | |
Scislo et al. | 3D Vibration Measurements with Optical Systems: Selected Methods for Measurement Enhancements | |
Zakharin et al. | Laser-induced spark schlieren imaging | |
George et al. | Shock response spectrum of launch vehicle using LabVIEW |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |