CN114489155A - 一种新型太阳能路灯追光装置 - Google Patents
一种新型太阳能路灯追光装置 Download PDFInfo
- Publication number
- CN114489155A CN114489155A CN202210018131.7A CN202210018131A CN114489155A CN 114489155 A CN114489155 A CN 114489155A CN 202210018131 A CN202210018131 A CN 202210018131A CN 114489155 A CN114489155 A CN 114489155A
- Authority
- CN
- China
- Prior art keywords
- light intensity
- light
- solar cell
- cell panel
- absolute value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005286 illumination Methods 0.000 claims description 79
- 230000005540 biological transmission Effects 0.000 claims description 3
- 238000010248 power generation Methods 0.000 description 9
- 230000003287 optical effect Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- -1 carrier Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D3/00—Control of position or direction
- G05D3/12—Control of position or direction using feedback
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S9/00—Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply
- F21S9/02—Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply the power supply being a battery or accumulator
- F21S9/03—Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply the power supply being a battery or accumulator rechargeable by exposure to light
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V23/00—Arrangement of electric circuit elements in or on lighting devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S20/00—Supporting structures for PV modules
- H02S20/30—Supporting structures being movable or adjustable, e.g. for angle adjustment
- H02S20/32—Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21W—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
- F21W2131/00—Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
- F21W2131/10—Outdoor lighting
- F21W2131/103—Outdoor lighting of streets or roads
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
- Y02B20/72—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps in street lighting
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Photovoltaic Devices (AREA)
Abstract
本发明公开了一种新型太阳能路灯追光装置,包括:方向角度调节部件、光强采集模块和控制器模块;太阳能电池板固定在方向角度调节部件的顶部;光强采集模块包括光强传感器和遮光板;太阳能电池板的四条边的外沿各安装一个光强传感器,太阳能电池板的四条边的边缘处对应光强传感器的位置各安装一个遮光板,对四个光强传感器采集的光强度数据进行比较,如果光强度数据相差大于预设的启动阈值,则驱动所述方向角度调节部件运动,带动所述太阳能电池板和所述光强采集模块进行方向角度调整,直至光强度数据相差不大于预设的启动阈值。本发明能使太阳光线时刻垂直照射在太阳能电池板上,提高了太阳能电池板的发电效率。
Description
技术领域
本发明涉及路灯照明技术领域,尤其涉及一种新型太阳能路灯追光装置。
背景技术
目前,现有太阳能路灯的太阳能电池板往往是固定朝向一个方向的。由于太阳与太阳能电池板是相对运动的,太阳光线并不能时时刻刻垂直照射在太阳能电池板上,甚至会出现太阳能电池板背对太阳的情况,这导致太阳能电池板不能正常工作,无法满足路灯的照明需求。研究表明:当太阳光垂直照射在光伏设备上时,其发电效率最高,因此急需开发一种能使太阳光线时刻垂直照射在太阳能电池板上的装置。
有鉴于此,特提出本发明。
发明内容
本发明的目的是提供了一种新型太阳能路灯追光装置,以解决现有技术中存在的上述技术问题。本发明能使太阳光线时刻垂直照射在太阳能电池板上,有效提高太阳能电池板的发电效率,有效解决了由于太阳能电池板发电效率低下导致太阳能路灯不能正常工作的问题。
本发明的目的是通过以下技术方案实现的:
一种新型太阳能路灯追光装置,用于调整太阳能路灯的太阳能电池板的朝向,包括:方向角度调节部件、光强采集模块和控制器模块;所述太阳能电池板的背板固定在所述方向角度调节部件的顶部;所述光强采集模块包括光强传感器和遮光板;所述太阳能电池板的上、下、左、右四条边的外沿的中部各安装一个光强传感器,并且这四个光强传感器的光照接收面均与所述太阳能电池板的光照接收面平行;所述太阳能电池板的上、下、左、右四条边的边缘处对应光强传感器的位置各安装一个遮光板,并且这四个遮光板均垂直于所述四个光强传感器的光照接收面;当太阳光倾斜照射在所述太阳能电池板的光照接收面时,至少有一个遮光板会对至少一个光强传感器的光照接收面造成遮挡;所述控制器模块分别与所述四个光强传感器电连接,并获取所述四个光强传感器采集的光强度数据,然后对这些光强度数据进行比较,以确定太阳光是否垂直照射在所述太阳能电池板的光照接收面;如果这四个光强传感器采集的光强度数据相差不大于预设的启动阈值,则认定此时太阳光垂直照射在所述太阳能电池板的光照接收面,无需驱动所述方向角度调节部件运动;如果这四个光强传感器采集的光强度数据相差大于预设的启动阈值,则认定此时太阳光倾斜照射在所述太阳能电池板的光照接收面,所述控制器模块驱动所述方向角度调节部件运动,带动所述太阳能电池板和所述光强采集模块进行方向角度调整,直至这四个光强传感器采集的光强度数据相差不大于预设的启动阈值时,所述控制器模块控制所述方向角度调节部件停止运动。
优选地,所述方向角度调节部件包括底座、水平舵机、水平转动支架、竖直舵机和竖直转动支架;所述水平舵机安装在所述底座上,所述水平舵机的转轴与所述水平转动支架的底部连接,所述竖直舵机安装在所述水平转动支架上,所述竖直转动支架的底部与所述水平转动支架的顶部铰接;所述太阳能电池板的背板固定在所述竖直转动支架的顶部;所述控制器模块与所述水平舵机电连接,并通过所述水平舵机驱动所述水平转动支架水平转动,以带动所述太阳能电池板和所述光强采集模块进行水平方向角度调整;所述控制器模块与所述竖直舵机电连接,并通过所述竖直舵机驱动所述竖直转动支架竖直摆动,以带动所述太阳能电池板和所述光强采集模块进行竖直方向角度调整。
优选地,所述的对这些光强度数据进行比较包括:将所述太阳能电池板相对两条边安装的光强传感器所采集的光强度数据作为一个比较组,则得到两个比较组,每个比较组中有两个光强度数据;分别计算每个比较组内的两个光强度数据的差值的绝对值,得到左右两边光强度差值的绝对值和上下两边光强度差值的绝对值;分别将所述左右两边光强度差值的绝对值、所述上下两边光强度差值的绝对值与预设的启动阈值进行比较,如果所述左右两边光强度差值的绝对值和所述上下两边光强度差值的绝对值均不大于预设的启动阈值,则认定此时太阳光垂直照射在所述太阳能电池板的光照接收面,无需驱动所述方向角度调节部件运动,否则认定此时太阳光倾斜照射在所述太阳能电池板的光照接收面,所述控制器模块驱动所述方向角度调节部件运动,带动所述太阳能电池板和所述光强采集模块进行方向角度调整,直至所述左右两边光强度差值的绝对值和所述上下两边光强度差值的绝对值均不大于预设的启动阈值时,所述控制器模块控制所述方向角度调节部件停止运动。
优选地,分别将所述左右两边光强度差值的绝对值、所述上下两边光强度差值的绝对值与预设的启动阈值进行比较后:
如果只有所述左右两边光强度差值的绝对值大于预设的启动阈值,则认定此时太阳光水平倾斜照射在所述太阳能电池板的光照接收面,所述控制器模块通过所述水平舵机驱动所述水平转动支架水平转动,带动所述太阳能电池板和所述光强采集模块进行水平方向角度调整,直至所述左右两边光强度差值的绝对值和所述上下两边光强度差值的绝对值均不大于预设的启动阈值时,所述控制器模块控制所述方向角度调节部件停止运动;
如果只有所述上下两边光强度差值的绝对值大于预设的启动阈值,则认定此时太阳光竖直倾斜照射在所述太阳能电池板的光照接收面,所述控制器模块通过所述竖直舵机驱动所述竖直转动支架竖直摆动,带动所述太阳能电池板和所述光强采集模块进行竖直方向角度调整,直至所述左右两边光强度差值的绝对值和所述上下两边光强度差值的绝对值均不大于预设的启动阈值时,所述控制器模块控制所述方向角度调节部件停止运动;
如果所述左右两边光强度差值的绝对值和所述上下两边光强度差值的绝对值均大于预设的启动阈值,则认定此时太阳光水平和竖直均倾斜照射在所述太阳能电池板的光照接收面,所述控制器模块通过所述水平舵机驱动所述水平转动支架水平转动,带动所述太阳能电池板和所述光强采集模块进行水平方向角度调整,并且所述控制器模块通过所述竖直舵机驱动所述竖直转动支架竖直摆动,带动所述太阳能电池板和所述光强采集模块进行竖直方向角度调整,直至所述左右两边光强度差值的绝对值和所述上下两边光强度差值的绝对值均不大于预设的启动阈值时,所述控制器模块控制所述方向角度调节部件停止运动。
优选地,所述控制器模块通过所述水平舵机驱动所述水平转动支架水平转动,以带动所述太阳能电池板和所述光强采集模块进行水平270°范围内的方向角度调整;所述控制器模块通过所述竖直舵机驱动所述竖直转动支架竖直摆动,以带动所述太阳能电池板和所述光强采集模块进行竖直270°范围内的方向角度调整。
优选地,所述光强传感器采用BH1750光传感器。
优选地,所述控制器模块采用FPGA作为控制器。
优选地,所述控制器模块分别采用IIC协议与所述四个光强传感器进行数据传输。
与现有技术相比,本发明将太阳能电池板固定在了方向角度调节部件的顶部,并且在太阳能电池板的上、下、左、右四条边的外沿的中部各安装了一个与太阳能电池板的光照接收面朝向相同的光强传感器,在太阳能电池板的上、下、左、右四条边的边缘处对应光强传感器的位置各安装了一个尺寸面积相同的遮光板,这四个遮光板均垂直于四个光强传感器的光照接收面,将所述太阳能电池板相对两条边安装的光强传感器所采集的光强度数据作为一个比较组,则得到两个比较组;当太阳光倾斜照射在太阳能电池板的光照接收面时,至少有一个遮光板会对光强传感器的光照接收面造成遮挡,每个遮光板对光强传感器的光照接收面造成遮挡的遮挡面积不同,尤其是同一比较组的两个光强传感器被遮光板造成遮挡的遮挡面积差别最为明显,从而通过计算同一比较组内的两个光强传感器所采集的光强度数据的差值的绝对值并与预设的启动阈值进行比较,就可以确定出太阳光是否垂直照射在太阳能电池板的光照接收面上;当同一比较组内的两个光强传感器所采集的光强度数据的差值的绝对值大于预设的启动阈值时,认定此时太阳光倾斜照射在太阳能电池板的光照接收面,此时可以驱动方向角度调节部件运动,快速精准地带动太阳能电池板和光强采集模块进行方向角度调整,直至太阳光垂直照射在太阳能电池板的光照接收面上,因此本发明能使太阳光线时刻垂直照射在太阳能电池板上,有效提高太阳能电池板的发电效率,有效解决了由于太阳能电池板发电效率低下导致太阳能路灯不能正常工作的问题,而且结构简单、安装拆卸方便、成本低廉、易于实现、易于维护、易于操作。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
图1为本发明实施例所提供的新型太阳能路灯追光装置的整体结构示意图。
图2为本发明实施例所提供的方向角度调节部件2的结构示意图。
图3为本发明实施例所提供的光强采集模块3的结构示意图。
图4为本发明实施例所提供的新型太阳能路灯追光装置的原理示意图。
具体实施方式
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述;显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例,这并不构成对本发明的限制。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。
首先对本文中可能使用的术语进行如下说明:
术语“包括”、“包含”、“含有”、“具有”或其它类似语义的描述,应被解释为非排它性的包括。例如:包括某技术特征要素(如原料、组分、成分、载体、剂型、材料、尺寸、零件、部件、机构、装置、步骤、工序、方法、反应条件、加工条件、参数、算法、信号、数据、产品或制品等),应被解释为不仅包括明确列出的某技术特征要素,还可以包括未明确列出的本领域公知的其它技术特征要素。
除另有明确的规定或限定外,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如:可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本文中的具体含义。
术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述和简化描述,而不是明示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本文的限制。
下面对本发明所提供的新型太阳能路灯追光装置进行详细描述。本发明实施例中未作详细描述的内容属于本领域专业技术人员公知的现有技术。本发明实施例中未注明具体条件者,按照本领域常规条件或制造商建议的条件进行。本发明实施例中所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
如图1、图2、图3和图4所示,本发明提供了一种新型太阳能路灯追光装置,用于调整太阳能路灯的太阳能电池板1的朝向,其结构包括:方向角度调节部件2、光强采集模块3和控制器模块。
所述太阳能电池板1的背板固定在所述方向角度调节部件2的顶部。所述光强采集模块3包括光强传感器31和遮光板32;所述太阳能电池板1的上、下、左、右四条边的外沿的中部各安装一个光强传感器31,并且这四个光强传感器31的光照接收面均与所述太阳能电池板1的光照接收面平行,这四个光强传感器31的光照接收面的朝向均与所述太阳能电池板1的光照接收面的朝向相同;所述太阳能电池板1的上、下、左、右四条边的边缘处对应光强传感器31的位置各安装一个尺寸面积相同的遮光板32,并且这四个遮光板32均垂直于所述四个光强传感器31的光照接收面;当太阳光倾斜照射在所述太阳能电池板1的光照接收面时,至少有一个遮光板32会对至少一个光强传感器31的光照接收面造成遮挡。
所述控制器模块分别与所述四个光强传感器31电连接,并通过IIC协议获取所述四个光强传感器31采集的光强度数据,然后对这些光强度数据进行比较,以确定太阳光是否垂直照射在所述太阳能电池板1的光照接收面;如果这四个光强传感器31采集的光强度数据相差不大于预设的启动阈值,则认定此时太阳光垂直照射在所述太阳能电池板1的光照接收面,无需驱动所述方向角度调节部件2运动;如果这四个光强传感器31采集的光强度数据相差大于预设的启动阈值,则认定此时太阳光倾斜照射在所述太阳能电池板1的光照接收面,所述控制器模块驱动所述方向角度调节部件2运动,带动所述太阳能电池板1和所述光强采集模块3进行方向角度调整,直至这四个光强传感器31采集的光强度数据相差不大于预设的启动阈值时,太阳光垂直照射在所述太阳能电池板1的光照接收面上(即太阳能电池板转至最大光强面),所述控制器模块控制所述方向角度调节部件2停止运动。
具体地,该新型太阳能路灯追光装置可以包括以下实施方案:
(1)所述方向角度调节部件2包括底座21、水平舵机22、水平转动支架23、竖直舵机24和竖直转动支架25;所述水平舵机22安装在所述底座21上,所述水平舵机22的转轴与所述水平转动支架23的底部连接,所述竖直舵机24安装在所述水平转动支架23上,所述竖直舵机24的转轴与所述竖直转动支架25连接,所述竖直转动支架25的底部与所述水平转动支架23的顶部铰接,从而构成如图2所示的云台结构的方向角度调节部件2。所述太阳能电池板1的背板固定在所述竖直转动支架25的顶部。所述控制器模块与所述水平舵机22电连接,并通过所述水平舵机22驱动所述水平转动支架23水平转动,以带动所述太阳能电池板1和所述光强采集模块3进行水平方向角度调整。所述控制器模块与所述竖直舵机24电连接,并通过所述竖直舵机24驱动所述竖直转动支架25竖直摆动,以带动所述太阳能电池板1和所述光强采集模块3进行竖直方向角度调整。在实际应用中,所述控制器模块通过水平舵机22可实现所述太阳能电池板1和所述光强采集模块3在水平270°范围内进行自由转动,通过竖直舵机24可实现所述太阳能电池板1和所述光强采集模块3在竖直270°范围内进行自由转动;由于实际上太阳能电池板1和太阳的相对位置是达不到全方位变化的,有些角度是并不存在的,并不会超过水平270°与竖直270°所覆盖空间区域范围,因此本发明中的方向角度调节部件2采用水平舵机22和竖直舵机24这两个舵机就能够实现太阳能电池板270°追日,这充分满足了太阳能路灯上太阳能电池板的追日需求,能使太阳光线时刻垂直照射在太阳能电池板上。
(2)所述的对这些光强度数据进行比较可以包括:将所述太阳能电池板1相对两条边安装的光强传感器31所采集的光强度数据作为一个比较组,则得到两个比较组,每个比较组中有两个光强度数据;分别计算每个比较组内的两个光强度数据的差值的绝对值,得到左右两边光强度差值的绝对值和上下两边光强度差值的绝对值;分别将所述左右两边光强度差值的绝对值、所述上下两边光强度差值的绝对值与预设的启动阈值进行比较,如果所述左右两边光强度差值的绝对值和所述上下两边光强度差值的绝对值均不大于预设的启动阈值,则认定此时太阳光垂直照射在所述太阳能电池板1的光照接收面,无需驱动所述方向角度调节部件2运动,否则认定此时太阳光倾斜照射在所述太阳能电池板1的光照接收面,所述控制器模块驱动所述方向角度调节部件2运动,带动所述太阳能电池板1和所述光强采集模块3进行方向角度调整,直至所述左右两边光强度差值的绝对值和所述上下两边光强度差值的绝对值均不大于预设的启动阈值时,所述控制器模块控制所述方向角度调节部件2停止运动。
(3)当所述方向角度调节部件2采用如图2所示的云台结构的方向角度调节部件2时,所述的对这些光强度数据进行比较可以包括:将所述太阳能电池板1相对两条边安装的光强传感器31所采集的光强度数据作为一个比较组,则得到两个比较组,每个比较组中有两个光强度数据;分别计算每个比较组内的两个光强度数据的差值的绝对值,得到左右两边光强度差值的绝对值和上下两边光强度差值的绝对值;分别将所述左右两边光强度差值的绝对值、所述上下两边光强度差值的绝对值与预设的启动阈值进行比较:
①如果所述左右两边光强度差值的绝对值和所述上下两边光强度差值的绝对值均不大于预设的启动阈值,则认定此时太阳光垂直照射在所述太阳能电池板1的光照接收面,无需驱动所述方向角度调节部件2运动。
②如果只有所述左右两边光强度差值的绝对值大于预设的启动阈值,而所述上下两边光强度差值的绝对值不大于预设的启动阈值,则认定此时太阳光水平倾斜照射在所述太阳能电池板1的光照接收面,所述控制器模块通过所述水平舵机22驱动所述水平转动支架23水平转动,带动所述太阳能电池板1和所述光强采集模块3进行水平方向角度调整,直至所述左右两边光强度差值的绝对值和所述上下两边光强度差值的绝对值均不大于预设的启动阈值时,所述控制器模块控制所述方向角度调节部件2停止运动。
③如果只有所述上下两边光强度差值的绝对值大于预设的启动阈值,而所述左右两边光强度差值的绝对值不大于预设的启动阈值,则认定此时太阳光竖直倾斜照射在所述太阳能电池板1的光照接收面,所述控制器模块通过所述竖直舵机24驱动所述竖直转动支架25竖直摆动,带动所述太阳能电池板1和所述光强采集模块3进行竖直方向角度调整,直至所述左右两边光强度差值的绝对值和所述上下两边光强度差值的绝对值均不大于预设的启动阈值时,所述控制器模块控制所述方向角度调节部件2停止运动。
④如果所述左右两边光强度差值的绝对值和所述上下两边光强度差值的绝对值均大于预设的启动阈值,则认定此时太阳光水平和竖直均倾斜照射在所述太阳能电池板1的光照接收面,所述控制器模块通过所述水平舵机22驱动所述水平转动支架23水平转动,带动所述太阳能电池板1和所述光强采集模块3进行水平方向角度调整,并且所述控制器模块通过所述竖直舵机24驱动所述竖直转动支架25竖直摆动,带动所述太阳能电池板1和所述光强采集模块3进行竖直方向角度调整,直至所述左右两边光强度差值的绝对值和所述上下两边光强度差值的绝对值均不大于预设的启动阈值时,所述控制器模块控制所述方向角度调节部件2停止运动。
(4)预设的启动阈值是可以调整的,可以采用本发明所提供的新型太阳能路灯追光装置事先在施工现场进行光线入射角度检测实验和/或太阳能利用率实验来确定,可以结合水平舵机22和竖直舵机24的调整频率、调整功耗来调整,可以结合允许的太阳能利用率下降程度来调整。
(5)所述控制器模块可以采用现有技术中的FPGA作为控制器。所述控制器模块可以分别采用IIC协议与所述四个光强传感器31进行数据传输。所述光强传感器31优选采用现有技术中的BH1750光传感器。所述太阳能电池板1上安装的所述光强传感器31可以采集到目前的太阳光光强,并将采集到的光信号转换成电信号,通过AD转换器转换成数字信号的光强度数据,再将所述数字信号的光强度数据通过IIC协议传输到作为控制器的FPGA上。
(6)为了减轻该新型太阳能路灯追光装置的整体重量,底座21、水平转动支架23、竖直转动支架25和遮光板32最好均采用轻质材料制成,这可以方便这些部件的携带、安装和拆卸。
进一步地,如图1、图2、图3和图4所示,本发明所提供的新型太阳能路灯追光装置的工作原理为:当太阳光线垂直照射在太阳能电池板1的光照接收面时,由于安装在太阳能电池板1四周的四个光强传感器31的光照接收面均与所述太阳能电池板1的光照接收面平行,而安装在太阳能电池板1四边的四个尺寸面积相同的遮光板32均垂直于这四个光强传感器31的光照接收面,因此此时太阳光线也是垂直照射在这四个光强传感器31的光照接收面上的,四个遮光板32不会对这四个光强传感器31的光照接收面造成遮挡或者四个遮光板32对这四个光强传感器31的光照接收面造成遮挡的遮挡面积相同,故这四个光强传感器31采集的光强度数据相同或相近似,同一比较组内的两个光强传感器所采集的光强度数据的差值的绝对值均不大于预设的启动阈值;当太阳光线倾斜照射在太阳能电池板1的光照接收面时,由于安装在太阳能电池板1四周的四个光强传感器31的光照接收面均与所述太阳能电池板1的光照接收面平行,而安装在太阳能电池板1四边的四个尺寸面积相同的遮光板32均垂直于这四个光强传感器31的光照接收面,因此此时太阳光线也是倾斜照射在这四个光强传感器31的光照接收面上的,至少有一个遮光板32会对光强传感器31的光照接收面造成遮挡,每个遮光板32对光强传感器31的光照接收面造成遮挡的遮挡面积不同,尤其是太阳能电池板1相对两条边安装的光强传感器31被遮光板32造成遮挡的遮挡面积差别最为明显,同一比较组内的两个光强传感器31所采集的光强度数据的差值大于预设的启动阈值;从而可以看出:只需计算同一比较组内的两个光强传感器31所采集的光强度数据的差值的绝对值并与预设的启动阈值进行比较,就可以确定出太阳光是否垂直照射在太阳能电池板1的光照接收面上;如果同一比较组内的两个光强传感器31所采集的光强度数据相差均不大于预设的启动阈值,则认定此时太阳光垂直照射在所述太阳能电池板1的光照接收面,无需驱动所述方向角度调节部件2运动;如果同一比较组内的两个光强传感器31所采集的光强度数据相差大于预设的启动阈值,则认定此时太阳光倾斜照射在所述太阳能电池板1的光照接收面,所述控制器模块驱动所述方向角度调节部件2运动,带动所述太阳能电池板1和所述光强采集模块3进行方向角度调整,直至同一比较组内的两个光强传感器31所采集的光强度数据相差均不大于预设的启动阈值时,此时太阳光线垂直照射在太阳能电池板1的光照接收面上,所述控制器模块控制所述方向角度调节部件2停止运动。
与现有技术相比,本发明所提供的新型太阳能路灯追光装置至少具有以下优点:
(1)本发明采用水平舵机22和竖直舵机24来构建如图2所示的云台结构的方向角度调节部件2,将舵机、云台与太阳能电池板1结合在一起来调整太阳能路灯的太阳能电池板1的朝向,实现了太阳能电池板1在空间上的270度自由转动;由于实际上太阳能电池板1和太阳的相对位置是达不到全方位变化的,有些角度是并不存在的,并不会超过水平270°与竖直270°所覆盖空间区域范围,因此本发明中的方向角度调节部件2采用水平舵机22和竖直舵机24这两个舵机就能够实现太阳能电池板270°追日,这充分满足了太阳能路灯上太阳能电池板的追日需求,能使太阳光线时刻垂直照射在太阳能电池板上。
(2)本发明中所述控制器模块对水平舵机22和竖直舵机24的控制,最好是利用太阳能电池板1平行两边上安装的光强传感器31所采集的光强度数据取差值与预设的启动阈值进行比较来实现的,可以确定太阳光是否垂直照射在所述太阳能电池板1的光照接收面。
(3)本发明所提供的新型太阳能路灯追光装置中,通过四个光强传感器31采集当前的光强度数据,通过IIC协议传输给所述控制器模块,再经过所述控制器模块处理,判断当前太阳光是否垂直照射在所述太阳能电池板1的光照接收面上,若不垂直,则驱动方向角度调节部件2转动太阳能电池板1和光强采集模块3,直至太阳光垂直照射在太阳能电池板1的光照接收面上,停止方向角度调节部件2转动;这种结构具有结构简单巧思、成本低廉、易于实现、易于维护、易于操作的优点。
(4)本发明所提供的新型太阳能路灯追光装置中,将四个光强传感器31和四个遮光板32的位置巧妙结合,使得当太阳光线垂直照射在太阳能电池板1的光照接收面时四个遮光板32不会对这四个光强传感器31的光照接收面造成遮挡或者四个遮光板32对这四个光强传感器31的光照接收面造成遮挡的遮挡面积相同,而当太阳光倾斜照射在太阳能电池板1的光照接收面时至少有一个遮光板32会对光强传感器31的光照接收面造成遮挡或者四个遮光板32对这四个光强传感器31的光照接收面造成遮挡的遮挡面积存在很大差别,这可以轻易而准确的判断出太阳光线是否垂直照射在太阳能电池板1的光照接收面上。
(5)本发明所提供的新型太阳能路灯追光装置中,当太阳光线垂直照射在太阳能电池板1的光照接收面时为当前太阳能的最大光强面,本发明的结构可以随时捕捉当前太阳能的最大光强面,这极大的提高了太阳能的转换效率。
(6)本发明所提供的新型太阳能路灯追光装置可以实时追光,也可以每隔一段时间进行一次追光(例如:每隔几分钟进行一次追光),若设置成每隔几分钟进行一次追光可以降低功耗,可以将本发明应用在低功耗等很多不同需求的场景。
(7)本发明所提供的新型太阳能路灯追光装置中,光强传感器31优选采用现有技术中的BH1750光传感器,这能够及时有效的采集到当前光强数值。
综上可见,本发明实施例能使太阳光线时刻垂直照射在太阳能电池板上,有效提高太阳能电池板的发电效率,有效解决了由于太阳能电池板发电效率低下导致太阳能路灯不能正常工作的问题。
为了更加清晰地展现出本发明所提供的技术方案及所产生的技术效果,下面以具体实施例对本发明实施例所提供的新型太阳能路灯追光装置进行详细描述。
实施例1
如图1、图2、图3和图4所示,一种新型太阳能路灯追光装置,用于调整太阳能路灯的太阳能电池板1的朝向,其结构包括:方向角度调节部件2、光强采集模块3、控制器模块以及用于对所述控制器模块供电的电源模块。
所述方向角度调节部件2包括底座21、水平舵机22、水平转动支架23、竖直舵机24和竖直转动支架25;所述水平舵机22安装在所述底座21上,所述水平舵机22的转轴与所述水平转动支架23的底部连接,所述竖直舵机24安装在所述水平转动支架23上,所述竖直舵机24的转轴与所述竖直转动支架25连接,所述竖直转动支架25的底部与所述水平转动支架23的顶部铰接,从而构成如图2所示的云台结构的方向角度调节部件2。所述太阳能电池板1的背板固定在所述竖直转动支架25的顶部。
所述光强采集模块3包括光强传感器31和遮光板32;所述太阳能电池板1的上、下、左、右四条边的外沿的中部各安装一个光强传感器31,并且这四个光强传感器31的光照接收面均与所述太阳能电池板1的光照接收面平行,这四个光强传感器31的光照接收面的朝向均与所述太阳能电池板1的光照接收面的朝向相同;所述太阳能电池板1的上、下、左、右四条边的边缘处对应光强传感器31的位置各安装一个尺寸面积相同的遮光板32,并且这四个遮光板32均垂直于所述四个光强传感器31的光照接收面;当太阳光线垂直照射在太阳能电池板1的光照接收面时,四个遮光板32不会对这四个光强传感器31的光照接收面造成遮挡或者四个遮光板32对这四个光强传感器31的光照接收面造成遮挡的遮挡面积相同,而当太阳光倾斜照射在太阳能电池板1的光照接收面时,至少有一个遮光板32会对光强传感器31的光照接收面造成遮挡或者四个遮光板32对这四个光强传感器31的光照接收面造成遮挡的遮挡面积存在很大差别。
所述控制器模块分别与所述四个光强传感器31电连接,并通过IIC协议获取所述四个光强传感器31采集的光强度数据,然后将所述太阳能电池板1相对两条边安装的光强传感器31所采集的光强度数据作为一个比较组,则得到两个比较组,每个比较组中有两个光强度数据;分别计算每个比较组内的两个光强度数据的差值的绝对值,得到左右两边光强度差值的绝对值和上下两边光强度差值的绝对值;分别将所述左右两边光强度差值的绝对值、所述上下两边光强度差值的绝对值与预设的启动阈值进行比较,以确定太阳光是否垂直照射在所述太阳能电池板1的光照接收面;比较结果如下:
①如果所述左右两边光强度差值的绝对值和所述上下两边光强度差值的绝对值均不大于预设的启动阈值,则认定此时太阳光垂直照射在所述太阳能电池板1的光照接收面,无需驱动所述方向角度调节部件2运动。
②如果只有所述左右两边光强度差值的绝对值大于预设的启动阈值,而所述上下两边光强度差值的绝对值不大于预设的启动阈值,则认定此时太阳光水平倾斜照射在所述太阳能电池板1的光照接收面,所述控制器模块通过所述水平舵机22驱动所述水平转动支架23水平转动,带动所述太阳能电池板1和所述光强采集模块3在水平270°范围内进行方向角度调整,直至所述左右两边光强度差值的绝对值和所述上下两边光强度差值的绝对值均不大于预设的启动阈值时,所述控制器模块控制所述方向角度调节部件2停止运动。
③如果只有所述上下两边光强度差值的绝对值大于预设的启动阈值,而所述左右两边光强度差值的绝对值不大于预设的启动阈值,则认定此时太阳光竖直倾斜照射在所述太阳能电池板1的光照接收面,所述控制器模块通过所述竖直舵机24驱动所述竖直转动支架25竖直摆动,带动所述太阳能电池板1和所述光强采集模块3在竖直270°范围内进行方向角度调整,直至所述左右两边光强度差值的绝对值和所述上下两边光强度差值的绝对值均不大于预设的启动阈值时,所述控制器模块控制所述方向角度调节部件2停止运动。
④如果所述左右两边光强度差值的绝对值和所述上下两边光强度差值的绝对值均大于预设的启动阈值,则认定此时太阳光水平和竖直均倾斜照射在所述太阳能电池板1的光照接收面,所述控制器模块通过所述水平舵机22驱动所述水平转动支架23水平转动,带动所述太阳能电池板1和所述光强采集模块3在水平270°范围内进行方向角度调整,并且所述控制器模块通过所述竖直舵机24驱动所述竖直转动支架25竖直摆动,带动所述太阳能电池板1和所述光强采集模块33在竖直270°范围内进行方向角度调整,直至所述左右两边光强度差值的绝对值和所述上下两边光强度差值的绝对值均不大于预设的启动阈值时,所述控制器模块控制所述方向角度调节部件2停止运动。
将所述太阳能电池板1转换来的电能通过太阳能光电模块储存到所述电源模块中。
具体地,该新型太阳能路灯追光装置可以包括以下实施方案:
(1)所述控制器模块采用现有技术中的FPGA作为控制器。所述控制器模块的主要控制流程如下:当四个光强传感器31采集到光强度数据后,通过IIC协议将转换成数字信号的光强度数据传输到作为控制器的FPGA中对其进行处理,通过对太阳能电池板1平行两边上安装的光强传感器31所采集的光强度数据进行处理,将其作为一个比较组,则得到两个比较组,每个比较组中有两个光强度数据;分别计算每个比较组内的两个光强度数据的差值的绝对值,得到左右两边光强度差值的绝对值和上下两边光强度差值的绝对值;分别将所述左右两边光强度差值的绝对值、所述上下两边光强度差值的绝对值与预设的启动阈值进行比较,当所述左右两边光强度差值的绝对值和所述上下两边光强度差值的绝对值均不大于预设的启动阈值时,认定此时太阳光垂直照射在所述太阳能电池板1的光照接收面,无需驱动所述方向角度调节部件2运动;当所述左右两边光强度差值的绝对值大于预设的启动阈值和/或所述上下两边光强度差值的绝对值大于预设的启动阈值时,认定此时太阳光倾斜照射在所述太阳能电池板1的光照接收面,需要向光强度数据数值小的光强传感器31的方向去转动;也就是说,本发明实施例中通过两个光强传感器的比较组就可以实现三维的追光系统。其中,所述预设的启动阈值是经过了多次的实际测试后获得了一个比较合适的范围,可以根据不同的实际情况在范围内进行调整。
(2)所述光强传感器31采用现有技术中的BH1750光传感器。所述太阳能电池板1上安装的BH1750光传感器31可以采集到目前的太阳光光强,并将采集到的光信号转换成电信号,通过内置的AD转换器转换成数字信号的光强度数据,再将所述数字信号的光强度数据通过IIC协议传输到作为控制器的FPGA上。所述BH1750光传感器的内部由光敏二极管、运算放大器、ADC采集、晶振等组成;PD二极管通过光生伏特效应将输入光信号转换成电信号,经运算放大电路放大后,由ADC采集电压,然后通过逻辑电路转换成16位二进制数存储在内部的寄存器中(注:进入光窗的光越强,光电流越大,电压就越大,所以通过电压的大小就可以判断光照大小),最后通过IIC协议将数字信号的光强度数据传输至作为控制器的FPGA中。
(3)所述方向角度调节部件2中的水平舵机22和竖直舵机24可以采用现有技术中的舵机模块;舵机通过写占空比来控制其转动的角度。当所述控制器模块对一个对比组内的两个光强传感器31进行数据处理完成后,进行标志位取值设定,来给水平舵机22和/或竖直舵机24信号是否需要太阳能电池板转动,若需要,水平舵机22和/或竖直舵机24将进行转动,直至太阳能电池板与当前太阳光线垂直照射在太阳能电池板上。
经检测:本发明实施例1能使太阳光线时刻垂直照射在太阳能电池板上,有效提高太阳能电池板的发电效率。
综上可见,本发明实施例能使太阳光线时刻垂直照射在太阳能电池板上,有效提高太阳能电池板的发电效率,有效解决了由于太阳能电池板发电效率低下导致太阳能路灯不能正常工作的问题。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。本文背景技术部分公开的信息仅仅旨在加深对本发明的总体背景技术的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域技术人员所公知的现有技术。
Claims (8)
1.一种新型太阳能路灯追光装置,用于调整太阳能路灯的太阳能电池板的朝向,其特征在于,包括:方向角度调节部件、光强采集模块和控制器模块;
所述太阳能电池板的背板固定在所述方向角度调节部件的顶部;
所述光强采集模块包括光强传感器和遮光板;所述太阳能电池板的上、下、左、右四条边的外沿的中部各安装一个光强传感器,并且这四个光强传感器的光照接收面均与所述太阳能电池板的光照接收面平行;所述太阳能电池板的上、下、左、右四条边的边缘处对应光强传感器的位置各安装一个遮光板,并且这四个遮光板均垂直于所述四个光强传感器的光照接收面;当太阳光倾斜照射在所述太阳能电池板的光照接收面时,至少有一个遮光板会对至少一个光强传感器的光照接收面造成遮挡;
所述控制器模块分别与所述四个光强传感器电连接,并获取所述四个光强传感器采集的光强度数据,然后对这些光强度数据进行比较,以确定太阳光是否垂直照射在所述太阳能电池板的光照接收面;如果这四个光强传感器采集的光强度数据相差不大于预设的启动阈值,则认定此时太阳光垂直照射在所述太阳能电池板的光照接收面,无需驱动所述方向角度调节部件运动;如果这四个光强传感器采集的光强度数据相差大于预设的启动阈值,则认定此时太阳光倾斜照射在所述太阳能电池板的光照接收面,所述控制器模块驱动所述方向角度调节部件运动,带动所述太阳能电池板和所述光强采集模块进行方向角度调整,直至这四个光强传感器采集的光强度数据相差不大于预设的启动阈值时,所述控制器模块控制所述方向角度调节部件停止运动。
2.根据权利要求1所述的新型太阳能路灯追光装置,其特征在于,所述方向角度调节部件包括底座、水平舵机、水平转动支架、竖直舵机和竖直转动支架;
所述水平舵机安装在所述底座上,所述水平舵机的转轴与所述水平转动支架的底部连接,所述竖直舵机安装在所述水平转动支架上,所述竖直转动支架的底部与所述水平转动支架的顶部铰接;所述太阳能电池板的背板固定在所述竖直转动支架的顶部;
所述控制器模块与所述水平舵机电连接,并通过所述水平舵机驱动所述水平转动支架水平转动,以带动所述太阳能电池板和所述光强采集模块进行水平方向角度调整;
所述控制器模块与所述竖直舵机电连接,并通过所述竖直舵机驱动所述竖直转动支架竖直摆动,以带动所述太阳能电池板和所述光强采集模块进行竖直方向角度调整。
3.根据权利要求2所述的新型太阳能路灯追光装置,其特征在于,所述的对这些光强度数据进行比较包括:
将所述太阳能电池板相对两条边安装的光强传感器所采集的光强度数据作为一个比较组,则得到两个比较组,每个比较组中有两个光强度数据;分别计算每个比较组内的两个光强度数据的差值的绝对值,得到左右两边光强度差值的绝对值和上下两边光强度差值的绝对值;分别将所述左右两边光强度差值的绝对值、所述上下两边光强度差值的绝对值与预设的启动阈值进行比较,如果所述左右两边光强度差值的绝对值和所述上下两边光强度差值的绝对值均不大于预设的启动阈值,则认定此时太阳光垂直照射在所述太阳能电池板的光照接收面,无需驱动所述方向角度调节部件运动,否则认定此时太阳光倾斜照射在所述太阳能电池板的光照接收面,所述控制器模块驱动所述方向角度调节部件运动,带动所述太阳能电池板和所述光强采集模块进行方向角度调整,直至所述左右两边光强度差值的绝对值和所述上下两边光强度差值的绝对值均不大于预设的启动阈值时,所述控制器模块控制所述方向角度调节部件停止运动。
4.根据权利要求3所述的新型太阳能路灯追光装置,其特征在于,分别将所述左右两边光强度差值的绝对值、所述上下两边光强度差值的绝对值与预设的启动阈值进行比较后:
如果只有所述左右两边光强度差值的绝对值大于预设的启动阈值,则认定此时太阳光水平倾斜照射在所述太阳能电池板的光照接收面,所述控制器模块通过所述水平舵机驱动所述水平转动支架水平转动,带动所述太阳能电池板和所述光强采集模块进行水平方向角度调整,直至所述左右两边光强度差值的绝对值和所述上下两边光强度差值的绝对值均不大于预设的启动阈值时,所述控制器模块控制所述方向角度调节部件停止运动;
如果只有所述上下两边光强度差值的绝对值大于预设的启动阈值,则认定此时太阳光竖直倾斜照射在所述太阳能电池板的光照接收面,所述控制器模块通过所述竖直舵机驱动所述竖直转动支架竖直摆动,带动所述太阳能电池板和所述光强采集模块进行竖直方向角度调整,直至所述左右两边光强度差值的绝对值和所述上下两边光强度差值的绝对值均不大于预设的启动阈值时,所述控制器模块控制所述方向角度调节部件停止运动;
如果所述左右两边光强度差值的绝对值和所述上下两边光强度差值的绝对值均大于预设的启动阈值,则认定此时太阳光水平和竖直均倾斜照射在所述太阳能电池板的光照接收面,所述控制器模块通过所述水平舵机驱动所述水平转动支架水平转动,带动所述太阳能电池板和所述光强采集模块进行水平方向角度调整,并且所述控制器模块通过所述竖直舵机驱动所述竖直转动支架竖直摆动,带动所述太阳能电池板和所述光强采集模块进行竖直方向角度调整,直至所述左右两边光强度差值的绝对值和所述上下两边光强度差值的绝对值均不大于预设的启动阈值时,所述控制器模块控制所述方向角度调节部件停止运动。
5.根据权利要求4所述的新型太阳能路灯追光装置,其特征在于,所述控制器模块通过所述水平舵机驱动所述水平转动支架水平转动,以带动所述太阳能电池板和所述光强采集模块进行水平270°范围内的方向角度调整;
所述控制器模块通过所述竖直舵机驱动所述竖直转动支架竖直摆动,以带动所述太阳能电池板和所述光强采集模块进行竖直270°范围内的方向角度调整。
6.根据权利要求1至4中任一项所述的新型太阳能路灯追光装置,其特征在于,所述光强传感器采用BH1750光传感器。
7.根据权利要求1至4中任一项所述的新型太阳能路灯追光装置,其特征在于,所述控制器模块采用FPGA作为控制器。
8.根据权利要求1至4中任一项所述的新型太阳能路灯追光装置,其特征在于,所述控制器模块分别采用IIC协议与所述四个光强传感器进行数据传输。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210018131.7A CN114489155B (zh) | 2022-01-07 | 2022-01-07 | 一种新型太阳能路灯追光装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210018131.7A CN114489155B (zh) | 2022-01-07 | 2022-01-07 | 一种新型太阳能路灯追光装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114489155A true CN114489155A (zh) | 2022-05-13 |
CN114489155B CN114489155B (zh) | 2024-01-30 |
Family
ID=81509843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210018131.7A Active CN114489155B (zh) | 2022-01-07 | 2022-01-07 | 一种新型太阳能路灯追光装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114489155B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114779838A (zh) * | 2022-06-20 | 2022-07-22 | 鲁冉光电(微山)有限公司 | 一种车载摄像头角度智能调节控制系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104102235A (zh) * | 2014-07-17 | 2014-10-15 | 苏州工业职业技术学院 | 太阳光随动系统及随动方法 |
CN107461706A (zh) * | 2017-07-26 | 2017-12-12 | 徐俊芳 | 一种智能太阳能路灯 |
CN108153339A (zh) * | 2018-02-07 | 2018-06-12 | 东北林业大学 | 太阳能电池板自动追光系统 |
US20190068113A1 (en) * | 2017-08-31 | 2019-02-28 | Boe Technology Group Co., Ltd. | Solar panel tracing equipment and method and device of controlling the same, power generator and power system |
-
2022
- 2022-01-07 CN CN202210018131.7A patent/CN114489155B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104102235A (zh) * | 2014-07-17 | 2014-10-15 | 苏州工业职业技术学院 | 太阳光随动系统及随动方法 |
CN107461706A (zh) * | 2017-07-26 | 2017-12-12 | 徐俊芳 | 一种智能太阳能路灯 |
US20190068113A1 (en) * | 2017-08-31 | 2019-02-28 | Boe Technology Group Co., Ltd. | Solar panel tracing equipment and method and device of controlling the same, power generator and power system |
CN108153339A (zh) * | 2018-02-07 | 2018-06-12 | 东北林业大学 | 太阳能电池板自动追光系统 |
Non-Patent Citations (1)
Title |
---|
叶伟慧;廖才;石金强;陈国康;许迎彬;: "基于单片机的跟踪式太阳能追光控制系统", 智能计算机与应用, no. 01 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114779838A (zh) * | 2022-06-20 | 2022-07-22 | 鲁冉光电(微山)有限公司 | 一种车载摄像头角度智能调节控制系统 |
CN114779838B (zh) * | 2022-06-20 | 2022-09-02 | 鲁冉光电(微山)有限公司 | 一种车载摄像头角度智能调节控制系统 |
Also Published As
Publication number | Publication date |
---|---|
CN114489155B (zh) | 2024-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100913074B1 (ko) | 고효율 집광용 태양광 추적 장치 및 그 방법 | |
CN101969280B (zh) | 基于单片机的太阳能电池自动跟踪装置的控制方法 | |
KR100727283B1 (ko) | 태양광 감지기 및 이를 이용한 태양광 집광 장치 및 방법 | |
WO2013170563A1 (zh) | 太阳能实时跟踪系统 | |
CN101098111A (zh) | 二维跟踪太阳的光伏发电器支架 | |
CN212518876U (zh) | 一种太阳能光伏板设备 | |
WO2012009834A1 (zh) | 太阳能追日面板倾角自动补偿方法及其装置 | |
CN117450454A (zh) | 一种具有光感转向功能的防爆灯具 | |
CN108111109B (zh) | 一种能够调整照射角度的太阳能设备的驱动机构 | |
CN104331089A (zh) | 基于图像分析的户用光伏电池自动跟踪系统及方法 | |
CN114489155A (zh) | 一种新型太阳能路灯追光装置 | |
KR100916629B1 (ko) | 태양광 추적 집광장치 | |
CN204203774U (zh) | 一种全天候太阳能自动跟踪装置 | |
CN103914085A (zh) | 一种利用棒影图像实现太阳光跟踪的装置和方法 | |
CN201252501Y (zh) | 高效光跟踪太阳能发电装置 | |
CN211293758U (zh) | 基于机器视觉识别实现太阳能自动追踪装置 | |
CN205193600U (zh) | 三点定位太阳能自动跟踪装置及其控制系统 | |
JP3128040U (ja) | 光源追尾装置 | |
CN206686130U (zh) | 一种太阳能板追日装置 | |
CN213092167U (zh) | 一种光伏智能追日装置 | |
KR20090098591A (ko) | 태양광 감지기 제어 모듈 | |
CN211427664U (zh) | 一种光伏发电跟踪器教学模型 | |
CN110174908A (zh) | 定日镜方向调节系统及其控制方法 | |
CN112306099A (zh) | 智能太阳能自动追踪系统 | |
CN205005022U (zh) | 用于光伏系统的检测装置及光伏系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |