CN114488792A - 一种基于人群自抗扰的光电吊舱控制方法及装置 - Google Patents

一种基于人群自抗扰的光电吊舱控制方法及装置 Download PDF

Info

Publication number
CN114488792A
CN114488792A CN202111562462.9A CN202111562462A CN114488792A CN 114488792 A CN114488792 A CN 114488792A CN 202111562462 A CN202111562462 A CN 202111562462A CN 114488792 A CN114488792 A CN 114488792A
Authority
CN
China
Prior art keywords
crowd
disturbance rejection
model
pod
active disturbance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111562462.9A
Other languages
English (en)
Inventor
冯慧
王嘉程
王生
敖磊
张泰华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aerospace Information Research Institute of CAS
Original Assignee
Aerospace Information Research Institute of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aerospace Information Research Institute of CAS filed Critical Aerospace Information Research Institute of CAS
Priority to CN202111562462.9A priority Critical patent/CN114488792A/zh
Publication of CN114488792A publication Critical patent/CN114488792A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明提供一种基于人群自抗扰的光电吊舱控制方法及装置,包括:建立基于系留气球系统的光电吊舱动力学模型;对系留气球系统的控制系统各执行元件进行理论建模,建立速度稳定回路控制模型;基于光电吊舱动力学模型和速度稳定回路控制模型,建立自抗扰控制器模型;采用人群搜索算法对自抗扰控制器模型的参数进行寻优,确定最优自抗扰控制器模型。本发明针对系留气球系统作为弱控制飞行器,受风场扰动大、状态稳定性较差,影响光电吊舱稳定成像的问题,利用人群搜索算法优化自抗扰控制器,可有效隔离光电吊舱的内外扰动,提高光电吊舱的成像稳定性,在系留气球等浮空器长时驻空、实施对地观测、监视监控等领域的应用方面具有重要意义。

Description

一种基于人群自抗扰的光电吊舱控制方法及装置
技术领域
本发明涉及飞行器控制技术领域,尤其涉及一种基于人群自抗扰的光电吊舱控制方法及装置。
背景技术
系留气球具有可长时持续驻空、有效载重大等优点,搭载光电任务载荷系统后,可开展监视监控、对地侦察、遥感观测等不同应用,面对日益迫切的边防、海防、科学探测等应用需求,利用系留气球光电吊舱系统开展区域化精细监测越来越受到重视,未来在国民经济、科学研究与国防领域等将发挥巨大作用。
目前针对光电吊舱稳定控制提出了多种控制方法,如PID控制、变结构控制、自抗扰控制、智能控制、鲁棒控制等算法。现有的光电吊舱控制方法多应用于机载、车载、地基等平台形式,专门针对系留气球等浮空器平台的光电吊舱研发基本处于空白。
目前基于系留气球平台的光电吊舱稳定控制面临诸多限制条件,主要表现在以下几个方面:
1)受限于系留气球本身的结构,系留气球在驻空时易受到风向和风力的变动影响,在横滚、俯仰和偏航三个方向上会出现随机摇摆。难以控制系留气球的姿态,光电吊舱里的传感器视轴指向常常发生随机变动。
2)受限于风的影响,当风向变动过快的时候,系留气球平台受到扰动发生转动,为保证跟踪有效,需要电机频繁启停,控制光电传感器的指向,摩擦力矩和风阻力矩变动较大。难以保证快速性的同时具有高的稳定性。
3)受限于光电吊舱本身转动轴的转动速度,当风向变动快的时候,系留气球平台受到扰动转动的速度,可能会超过光电吊舱本身转动轴的转动速度,易“丢失”跟踪目标,难以实现稳定的跟踪。
发明内容
本发明提供一种基于人群自抗扰的光电吊舱控制方法及系统,用以填补现有技术在基于系留气球平台的光电吊舱稳定控制方面的空白。
第一方面,本发明提供一种基于人群自抗扰的光电吊舱控制方法,包括:
建立基于系留气球系统的光电吊舱动力学模型;
对所述系留气球系统的控制系统各执行元件进行理论建模,建立速度稳定回路控制模型;
基于所述光电吊舱动力学模型和所述速度稳定回路控制模型,建立自抗扰控制器模型;
采用人群搜索算法对所述自抗扰控制器模型的参数进行寻优,确定最优自抗扰控制器模型,以利用所述最优自抗扰控制器模型实施光电吊舱的稳定控制。
根据本发明提供的一种基于人群自抗扰的光电吊舱控制方法,所述光电吊舱动力学模型是由系留气球的瞬态运动方程、锚泊点的边界条件、主节点边界条件、系留气球的稳态运动方程以及系缆的差分耦合动力学方程组成。
根据本发明提供的一种基于人群自抗扰的光电吊舱控制方法,所述系留气球的瞬态运动方程的表达式为:
Figure BDA0003420647670000031
所述锚泊点的边界条件的表达式为:
[Vx0 Vy0 Vz0]T=(Lce)T[Vt0 Vn0 Vb0]T
所述主节点边界条件的表达式为:
Lce[VtN VnN VbN]T=VB+ω×RB
所述系留气球的稳态运动方程的表达式为:
Figure BDA0003420647670000032
设系缆的动力学方程的表达式为:
Figure BDA0003420647670000033
则所述系缆的差分耦合动力学方程的表达式为:
Figure BDA0003420647670000034
Figure BDA0003420647670000035
其中,M1为质量矩阵,M和N为中间结果矩阵,q为力矩阵,Y为系缆状态矩阵:[T VtVn Vbβγ]T,β为系缆的倾斜角,γ为系缆的方位角,Vn、Vb、Vt分别为系缆的速度在CFS中的分量;τRB为系缆的惯性力和气动力之和在系留气球的体轴系BFS中的投影;V为系留气球的球体在所述BFS中的速度;
Figure BDA0003420647670000036
为V的求导;CRB为转动的动力矩;[Vt0 Vn0 Vb0]T为系缆在系缆当地坐标系CFS中的速度;Lce为锚泊点所在的地面坐标系EFS与所述CFS之间的坐标转换矩阵;[Vx0 Vy0 Vz0]T为锚泊点在所述EFS中的速度;[VtN VnN VbN]T为第N个节点在所述CFS中的速度;RB为主节点B在所述BFS中的矢量;VB为主节点B在所述BFS中的速度;ω为光电吊舱转动轴的电机角速度;[p,q,r]分别为系留气球在所述BFS中的转动角速度;ψ,θ,φ分别为系留气球球体的偏航角,俯仰角和滚转角;
Figure BDA0003420647670000041
分别为i时刻,j位置的对应值;ΔS为系缆微段;Δt为时间微段。
根据本发明提供的一种基于人群自抗扰的光电吊舱控制方法,所述速度稳定回路控制模型包括光电吊舱转动轴的电机传递函数、速度陀螺的传递函数以及功率放大器的传递函数。
根据本发明提供的一种基于人群自抗扰的光电吊舱控制方法,所述电机传递函数的表达式为:
Figure BDA0003420647670000042
所述速度陀螺的传递函数的表达式为:
G”(s)=Gg(s);
所述功率放大器的传递函数的表达式为:
G”'(s)=Kpwm
其中,G'(s)、G”(s)和G”'(s)为别为电机传递函数、速度陀螺的传递函数和功率放大器的传递函数;La为电枢绕组电感;J为电机轴上的总转动惯量;Cm为电机转矩系数,Ce为电机的电动势系数;Ra为电枢绕组电阻;w(s)是输出角速度的拉普拉斯变换,Ua(s)是输入量的拉普拉斯变换;Gg(s)为速度陀螺的比例环节;Kpwm为功率放大器的比例放大环节。
根据本发明提供的一种基于人群自抗扰的光电吊舱控制方法,所述自抗扰控制器模型的表达式为:
Figure BDA0003420647670000051
Figure BDA0003420647670000052
Figure BDA0003420647670000053
Figure BDA0003420647670000054
u(k)=u0(k)-z3(k)/b0
Figure BDA0003420647670000055
Figure BDA0003420647670000061
其中,
Figure BDA0003420647670000062
为光电吊舱控制系统的微分方程;TD为跟踪微分器;ESO为扩张状态观测器;NLSEF为非线性状态误差反馈;
Figure BDA0003420647670000063
为总扰动;v(k)是系统输入信号;y为输出信号;w(k)为外部总扰动;微分信号v1(k)和微分信号v2(k)是TD将v(k)转变成的;z1(k)、z2(k)和z3(k),分别表示v1(k)、v2(k)和总扰动
Figure BDA0003420647670000064
的估计量;r,h,h0为TD中的参数;r值是快速因子;h是系统采样步长;h0是无量纲参数,为h的整数倍;h,β010203,δ,b为ESO中的参数;β010203是与h有关系数参数;δ是无意义系数,取h的整数倍;控制量系数b是时变函数,近似为常值b0;c,r1,h1为NLSEF中的参数;c是阻尼因子,h1是快速因子,r1是控制量因子;fhan和fal分别为非线性函数的表达式;u为被控对象;u为被控对象;u0(t)为误差反馈控制量;a、a0、a1和a2为无量纲中间参数。
根据本发明提供的一种基于人群自抗扰的光电吊舱控制方法,所述自抗扰控制器模型的待寻优参数包括参数β010203,c,h1
所述采用人群搜索算法对所述自抗扰控制器模型的参数进行寻优,包括:
步骤一:t=0,初始化人群搜索算法,设定空间维度、系统采样步长、人群规模、最大迭代次数N、最小适应值和人群搜索的空间的范围,在可行解域随机产生多个初始个体;每个所述初始个体为所述待寻优参数的组合;
步骤二:计算每个个体的适应度值;
步骤三:计算每个个体在每一维的搜索方向和步长;
步骤四:基于所述搜索方向和步长,更新每个个体的位置,以重新确定每个个体的适应度值;
步骤五:令t=t+1,并判断是否满足停止条件;若是,输出最优参数组合;若不是,则返回至步骤二。
第二方面,本发明还提供一种基于人群自抗扰的光电吊舱控制装置,包括:
第一处理单元,用于建立基于系留气球系统的光电吊舱动力学模型;
第二处理单元,用于对所述系留气球系统的控制系统各执行元件进行理论建模,建立速度稳定回路控制模型;
第三处理单元,用于基于所述光电吊舱动力学模型和所述速度稳定回路控制模型,建立自抗扰控制器模型;
第四处理单元,用于采用人群搜索算法对所述自抗扰控制器模型的参数进行寻优,确定最优自抗扰控制器模型,以利用所述最优自抗扰控制器模型实施光电吊舱的稳定控制。
第三方面,本发明提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如上述任一种所述基于人群自抗扰的光电吊舱控制方法的步骤。
第四方面,本发明还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如上述任一种所述基于人群自抗扰的光电吊舱控制方法的步骤。
本发明提供的基于人群自抗扰的光电吊舱控制方法及装置,针对系留气球系统作为弱控制飞行器,受风场扰动大、状态稳定性较差,影响光电吊舱稳定成像的问题,利用人群搜索算法优化自抗扰控制器,可有效隔离光电吊舱的内外扰动,提高光电吊舱的成像稳定性,在系留气球等浮空器长时驻空、实施对地观测、监视监控等领域的应用方面具有重要意义。
附图说明
为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明提供的基于人群自抗扰的光电吊舱控制方法的流程示意图;
图2是本发明提供的系留气球坐标系示意图;
图3是本发明提供的单轴电机控制原理示意图;
图4是本发明提供的速度稳定回路的控制结构示意图;
图5是本发明提供的速度稳定回路的控制模型示意图;
图6是本发明提供的二阶自抗扰控制器示意图;
图7是本发明提供的人群搜索算法优化自抗扰控制器参数原理示意图;
图8是本发明提供的人群搜索算法流程示意图。
图9是本发明提供的基于人群自抗扰的光电吊舱控制装置的结构示意图;
图10是本发明提供的电子设备的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
对于上述球载光电吊舱稳定控制存在的难点问题,需要克服解决风对系留气球平台的随机性影响,在保证光电吊舱快速响应的同时,提高光电吊舱的抗干扰能力,即提高光电吊舱的稳定性,是目前需要解决的关键技术问题。
自抗扰控制技术(ADRC)的核心思想是“主动抗扰”,通过扩张状态观测器能够将系统的外界扰动及系统模型的不确定性作为综合扰动项估计出来,从而可以实现对扰动的直接前馈补偿控制,消除其影响。此方法不需要对被控对象进行精确建模和对扰动项的物理测量,具有响应速度快、精度高、扰动抑制能力强及算法简单等特点。
在ADRC模型中,待确定的参数有12个,通过对模型的认识和经验取值,仍有5个参数需要确定,而单靠经验取值,很难使这5个参数相互配合达到最优控制效果,因此需要采用新的优化算法,找到相对应的一组参数值。
人群搜索算法(SOA)是一种新型群体智能算法,通过对人的随机搜索行为进行分析,借助脑科学、认知科学、多Agents(代理)系统和群体智能等的研究成果,利用人的利己行为、利他行为和预动行为,确定个体的搜索方向,从而寻找最优解,在PID控制器参数寻优中使用的较多,本发明创造性的将其用于自抗扰控制器参数寻优,解决了ADRC模型中不能实时自适应参数调整的缺陷,有效隔离光电吊舱内外扰动,提高光电吊舱成像稳定性,大大地提高了系统的抗扰性和鲁棒性。
下面结合图1-图10描述本发明实施例所提供的基于人群自抗扰的光电吊舱控制方法和装置。
图1是本发明提供的基于人群自抗扰的光电吊舱控制方法的流程示意图,如图1所示,包括但不限于以下步骤:
步骤101:建立基于系留气球系统的光电吊舱动力学模型。
具体来说,本发明主要是根据系留气球系统的光电探测任务需求,建立基于系留气球系统的光电吊舱动力学模型。由于系留气球系统是将系留气球的球体与光电吊舱近似于刚体固连,光电吊舱的运动与系留气球的球体的运动基本一致,系留气球系统的运动是缆索的运动与系留气球的球体运动的耦合,故光电吊舱动力学模型是由系缆动力学方程和系留气球的球体运动方程及初始条件和边界条件组成。
作为一种可选地实施例,所述光电吊舱动力学模型是由系留气球的瞬态运动方程、锚泊点的边界条件、主节点边界条件、系留气球的稳态运动方程以及系缆的动力学方程组成。
图2是本发明提供的系留气球坐标系示意图,如图2所示,预先构建锚泊点所在的地面坐标系EFS、系留气球的体轴系BFS和系缆当地坐标系CFS。将EFS与BFS之间的坐标转换矩阵记为Lbe,将EFS与CFS的坐标转换矩阵记为Lce,将系缆的方位角和倾斜角分别为γ和β,将系留气球球体的偏航角、俯仰角和滚转角分别记为ψ、θ和φ。
在确定坐标系之后,可以获取到系缆的瞬态运动方程,其表达式为:
Figure BDA0003420647670000101
其中,中间结果矩阵M、N和力矩阵q的表达式分别为:
Figure BDA0003420647670000111
Figure BDA0003420647670000112
Figure BDA0003420647670000113
上式中,M为中间结果矩阵,N为中间结果矩阵,q为力矩阵;Y为系缆状态矩阵:[TVt Vn Vbβ γ]T,β为系缆的倾斜角,γ为系缆的方位角,Vn、Vb、Vt分别为系缆的速度在CFS中的分量;Ft,Fn,Fb分别为系缆的惯性力和气动力之和在CFS中的分量;m为系缆的质量,ρ为空气密度,u为系缆的空速;Jt,Jn,Jb分别为风速J在CFS中的分量;e=1/EA,E为系缆的弹性模量,A为未变形前系缆的面积;T为系缆承受的拉力;W为重力;Vn、Vb、Vt分别为系缆的速度在CFS中的分量;Y为[T Vt Vn Vbβ γ]T
综合上述内容,则系留气球的瞬态运动方程的表达式为:
Figure BDA0003420647670000114
Figure BDA0003420647670000121
其中,M1为质量矩阵,其中m为球体质量,转动惯量Ixx,Iyy,Izz和惯性积Izx为球体重心处在系留气球的体轴系BFS中对应的值;τRB为系缆的惯性力和气动力之和在系留气球的体轴系BFS中的投影;V为系留气球的球体在BFS中的速度;
Figure BDA0003420647670000122
为V的求导,表示系留气球球体的加速度;CRB为转动的动力矩。
上述系留气球的瞬态运动方程的初始条件,可以取稳态时的系缆拉力,缆绳的倾斜角和方位角以及球体的偏航角,俯仰角和滚转角。
进一步地,锚泊点的边界条件的表达式可以表示为:
[Vx0 Vy0 Vz0]T=(Lce)T[Vt0 Vn0 Vb0]T (2)
其中,[Vt0 Vn0 Vb0]T为系缆在系缆当地坐标系CFS中的速度;[Vx0 Vy0 Vz0]T为锚泊点在地面坐标系EFS中的速度;Lce为EFS与CFS之间的坐标转换矩阵。
进一步地,主节点是指系缆与系留气球的球体之间的主要连接点,主节点边界条件满足速度连续条件,可以确定为:
Lce[VtN VnN VbN]T=VB+ω×RB (3)
其中,其中,从锚泊点到主节点将系缆分成N段,则n表示第n个节点,[VtN VnN VbN]T为第N个节点在CFS中的速度;RB为主点B在BFS中的矢量;VB为节点B在BFS中的速度;ω为光电吊舱转动轴的电机角速度。
进一步地,球体的稳态运动方程的表达式可以为:
Figure BDA0003420647670000131
其中,[p,q,r]分别为系留气球在所述BFS中的转动角速度;ψ,θ,φ分别为系留气球球体的偏航角,俯仰角和滚转角。
最后,基于差分法建立耦合方程,则可以获取到系缆的动力学方程,其表达式可以为:
Figure BDA0003420647670000132
Figure BDA0003420647670000133
其中,
Figure BDA0003420647670000134
分别为i时刻,j位置对应的值;ΔS为系缆微段;Δt为时间微段。
联立上述公式(1)-公式(5),则可以建立光电吊舱动力学模型,通过对光电吊舱动力学模型的求解,就可以确定出系缆速度、系留气球的球体速度以及倾斜角等相关参数,并由此可以进一步分析出光电吊舱的工作状态。
步骤102:对所述系留气球系统的控制系统各执行元件进行理论建模,建立速度稳定回路控制模型。
具体来说,本发明所构建的速度稳定回路控制模型,主要包括但不限于:光电吊舱转动轴的电机传递函数、速度陀螺的传递函数以及功率放大器的传递函数。
由于光电吊舱每个轴都是由一个电机单独控制,控制原理和控制方法设计都一样,其中电机一般采用的直流力矩电机。要控制光电传感器指向,需要使得各轴的电机各转动一定的角度才能实现。
光电吊舱的稳定控制系统的稳定性,实质上是要保证光电吊舱在内外扰动的情况下,控制各轴电机转动来实时补偿,以减弱或消除干扰,使得光电传感器的指向仍能保持稳定,不发生抖动和偏移。
图3是本发明提供的单轴电机控制原理示意图,如图3所示,本对于各轴电机的控制通常由位置环、速度环和电流环三闭环控制回路构成,对应的是位置控制器、速度控制器和电流控制器。
其中,电流环为最内环,控制电机输出稳定力矩,使电流不易波动,产生突变;速度环为中间环,能够抑制负载的干扰和光电吊舱内部摩擦力矩的干扰,实现传感器指向的稳定,响应迅速,反应较快;而位置环为最外环,主要测量和反馈位置信号,使得传感器指向跟随目标的移动而变动,但位置环只能隔离较低频率的扰动。
图4是本发明提供的速度稳定回路的控制结构示意图,如图4所示,要实现光电吊舱的稳定控制的关键是对速度环进行设计和控制,受电流环和位置环的影响较小。
有鉴于此,本发明所提供的基于人群自抗扰的光电吊舱控制方法,根据单轴电机的控制原理,综合考虑影响速度的内、外干扰因素,对系留气球系统的控制系统各执行元件进行理论建模,确定光电吊舱转动轴的电机传递函数、速度陀螺的传递函数以及功率放大器的传递函数,确定速度稳定回路控制模型。
系留气球系统的控制系统的各执行元件主要包括:直流力矩电机和负载(主要包括光电吊舱转动轴和转动轴上所连接的其他部件)、PWM功率放大器、速度陀螺等。
可选地,电机传递函数的表达式为:
Figure BDA0003420647670000141
其中,La为电枢绕组电感;J为电机轴上的总转动惯量;Cm为电机转矩系数,Ce为电机的电动势系数;Ra为电枢绕组电阻;w(s)是输出角速度的拉普拉斯变换,Ua(s)是输入量的拉普拉斯变换。
进一步地,在速度陀螺带宽较宽的情况下,速度陀螺的数学模型可以看作比例环节:
G”(s)=Gg(s)=kg (7)
进一步地,功率放大器的数学模型可简为比例放大环节:
G”'(s)=Kpwm (8)
图5是本发明提供的速度稳定回路的控制模型示意图,如图5所示,联立上述公式(6)至公式(8)则可以构建出速度稳定回路控制模型。
步骤103:基于所述光电吊舱动力学模型和所述速度稳定回路控制模型,建立自抗扰控制器模型。
自抗扰控制器主要由跟踪微分器TD、非线性状态误差反馈控制律NLSEF以及扩张状态观测器ESO三大部分组成,光电吊舱的控制系统的微分方程可以采用常规的二阶微分方程表示,具体为:
Figure BDA0003420647670000151
其中w(t)为外部总扰动;
Figure BDA0003420647670000152
包含了内部扰动(如摩擦力矩,陀螺噪声),以及外部扰动(如系留气球的运动);u为被控对象(被控对象就是如图3所示的整个内容,主要包括电机负载)的输入;b为控制量系数,可以取值为常值b0
图6是本发明提供的二阶自抗扰控制器示意图,如图6所示,v(t)是系统输入信号,相当于要求电机输出的角速度信号。
微分跟踪器将系统输入信号v(t)转变成同等微分信号v1(t)和微分信号v2(t)(可参阅微分跟踪器表达式)。e1(t)和e2(t)通过非线性组合得到u0(t)。z1(t)、z2(t)和z3(t),分别表示v1(t)、v2(t)和总扰动
Figure BDA0003420647670000161
的估计量。
在进行设计自抗扰设计和参数优化时,需要将算法离散化,可以表示为:
Figure BDA0003420647670000162
Figure BDA0003420647670000163
Figure BDA0003420647670000164
u(k)=u0(k)-z3(k)/b0 (13)
其中的两个非线性函数fhan和fal(就是非线性函数的表达式,类似于PID控制中的线性组合,都是反馈控制率)的表达式为:
Figure BDA0003420647670000171
Figure BDA0003420647670000172
此外,自抗扰控制还有扰动补偿过程,表示为:
联立上述公式(9)至公式(15),建立自抗扰控制器模型,其中整个模型的参数右12个,TD中有r,h,h0;ESO中有h,β010203,δ,b;NLSEF中有c,r1,h1
其中,r值是快速因子,越大响应越快;h是系统采样步长;h0是参数,无物理意义,一般可以取h的整数倍;δ是无意义系数,也可以取h的整数倍;控制量系数b是时变函数,可近似为常值b0;β010203与系统采样步长h有关,无物理意义,只是系数参数;参数c是阻尼因子;h1是快速因子;r1是控制量因子。由此,可以确定出需要优化的是以下五个参数:β010203,c,h1
步骤104:采用人群搜索算法对所述自抗扰控制器模型的参数进行寻优,确定最优自抗扰控制器模型,以利用所述最优自抗扰控制器模型实施光电吊舱的稳定控制。
图7是本发明提供的人群搜索算法优化自抗扰控制器参数原理示意图,如图7所示,本发明采用人群搜索算法面对上述五个参数:β010203,c,h1进行寻优,以获取最优自抗扰控制器模型。
图8是本发明提供的人群搜索算法流程示意图,如图8所示,在本实施例中不对如何建立自抗扰控制器模型再作赘述,仅介绍在获取自抗扰控制器模型后,如何利用人群搜索算法进行参数寻优,具体步骤包括但不限于:
步骤一:t=0,初始化人群搜索算法,设定空间维度、系统采样步长、人群规模、最大迭代次数N、最小适应值和人群搜索的空间的范围,在可行解域随机产生多个初始个体;每个所述初始个体为所述待寻优参数的组合;
步骤二:计算每个个体的适应度值;
步骤三:计算每个个体在每一维的搜索方向和步长;
步骤四:基于所述搜索方向和步长,更新每个个体的位置,以重新确定每个个体的适应度值;
步骤五:令t=t+1,并判断是否满足停止条件;若是,输出最优参数组合;若不是,则返回至步骤二。
步骤一的具体实施方式可以包括:
在进行参数优化的起始阶段,即t=0时,初始化人群搜索算法,在可行解域随机产生s个初始位置。
人群搜索算法根据对人的随机搜索行为的理解,采用高斯隶属函数表示搜索步长的模糊变量,其表达式为:
uA(x)=exp[-(x-u)2/2d2] (16)
其中,uA为高斯隶属度;x为输入变量;u、δ为隶属函数参数。可以设定最小隶属度值为umin=0.0111,最大隶属度值为umax=0.95。
除此之外,还需设定空间维度D为5维,系统采样步长h,人群规模s,最大迭代次数N,最小适应值和人群搜索的空间的范围等。
然后,在空间范围内随机产生s个初始位置,产生个体极值pi,best和全局极值gi,best
其中,个体极值就是人群在最好位置所得到的目标函数的值;全局极值就是在所有人群的个体极值中最小的那个值,与之对应的就是全局最优人群的位置。
步骤二所提出的评价各组参数的位置,计算每个位置的适应度值,的具体实施方式可以包括:
每个迭代周期人群搜索结束,都要进行适应值fit[t]的计算,并且将适应值进行比较。
适应度函数决定了每个个体解的走向,使得各组参数不断向最优解进化。本发明综合考虑响应的快速性、超调量和控制能量,采用以下适应度函数:
Figure BDA0003420647670000191
其中,e(t)为给定值与输出量的偏差;Δe(t)为相邻两次步距输出量之间的差值;c1为偏差在适应度函数中的权值,c2为控制量的平方项在适应度函数中的权值,可以取c1=0.02,c2=0.98。u(t)为控制量;Q是指目标函数值(也即是适应度值)。
进一步地,步骤三中所提出的计算每一个位置在每一维的搜索方向和步长的具体实施方式,可以包括:
将目标函数值按递减的顺序排序,采用线性隶属函数使隶属度与函数值的排列成正比,同时增大搜索的随机性:
Figure BDA0003420647670000201
uij=rand(ui,1),j=1,2,…,D (18)
其中,Ii是种群函数值按降序排列后xi(t)的序列编号;ui为目标函数值i的隶属度,设定最大隶属度为umax0.9500,最小umin为0.0111;uij
Figure BDA00034206476700002011
维搜索空间目标函数值的隶属度;D为搜索空间维数。
根据不确定推理的行为部分可得步长,表示为:
Figure BDA0003420647670000202
其中,αij为j维搜索空间的搜索步长;δij为高斯隶属函数参数,其值可由下式确定:
Figure BDA0003420647670000203
其中,xmin和xmax分别是同一子群中的具有最小和最大函数值的位置;t和T分别为当前迭代次数和最大迭代次数。
然后,分别计算第i个搜寻个体的利己方向
Figure BDA0003420647670000204
利他方向
Figure BDA0003420647670000205
以及预动方向
Figure BDA0003420647670000206
采用三个方向随机加权几何平均确定搜索方向:
Figure BDA0003420647670000207
其中t1,t2∈{t,t-1,t-2},
Figure BDA0003420647670000208
Figure BDA0003420647670000209
分别为
Figure BDA00034206476700002010
中的最佳位置;gi,best为第i个搜寻个体所在邻域的集体历史最佳位置,pi,best为第i个搜寻个体到目前为止经历过的最佳位置;
Figure BDA0003420647670000211
Figure BDA0003420647670000212
是在已知区间[0,1]内被均匀随机选择的实数;ω是惯性权值,其随着迭代次数的增加从0.9线性递减到0.1。
进一步地,上述步骤四中所提出的基于所述搜索方向和步长,更新每个个体的位置,具体包括:
在确定搜索方向和步长αij后,按照下式进行位置更新:
Δxij(t+1)=αij(t)dij(t);
xij(t+1)=xij(t)+Δxij(t+1) (22)
位置更新后,超过最大范围空间或最小范围空间的,要把个体位置改到范围空间的最大值或最小值。
最后,对个体极值pi,best和全局极值gi,best进行更新:用它的适应度值fit[t]和个体极值pi,best比较:
如果fit[t]<pi,best,则用fit[t]替换掉pi,best。对每个个体,用它的适应度值fit[t]和全局极值gi,best比较。如果fit[t]<gi,best,则用fit[t]替换掉gi,best
进一步地,在步骤五中,判断是否满足停止条件,若是,则结束算法并输出优化结果;否则,返回步骤二。
其中,停止条件可以是达最大循环次数或适应值小于最小适应值。
本发明提供的基于人群自抗扰的光电吊舱控制方法,针对系留气球系统作为弱控制飞行器,受风场扰动大、状态稳定性较差,影响光电吊舱稳定成像的问题,利用人群搜索算法优化自抗扰控制器,可有效隔离光电吊舱的内外扰动,提高光电吊舱的成像稳定性,在系留气球等浮空器长时驻空、实施对地观测、监视监控等领域的应用方面具有重要意义。
图9是本发明提供的基于人群自抗扰的光电吊舱控制装置的结构示意图,如图9所示,主要包括第一处理单元901、第二处理单元902、第三处理单元903和第四处理单元904,其中:
第一处理单元901主要用于建立基于系留气球系统的光电吊舱动力学模型;第二处理单元902主要用于对所述系留气球系统的控制系统各执行元件进行理论建模,建立速度稳定回路控制模型;第三处理单元903主要用于基于所述光电吊舱动力学模型和所述速度稳定回路控制模型,建立自抗扰控制器模型;第四处理单元904主要用于采用人群搜索算法对所述自抗扰控制器模型的参数进行寻优,确定最优自抗扰控制器模型,以利用所述最优自抗扰控制器模型实施光电吊舱的稳定控制。
需要说明的是,本发明实施例提供的基于人群自抗扰的光电吊舱控制装置,在具体运行时,可以执行上述任一实施例所述的基于人群自抗扰的光电吊舱控制方法,对此本实施例不作赘述。
本发明提供的基于人群自抗扰的光电吊舱控制装置,针对系留气球系统作为弱控制飞行器,受风场扰动大、状态稳定性较差,影响光电吊舱稳定成像的问题,利用人群搜索算法优化自抗扰控制器,可有效隔离光电吊舱的内外扰动,提高光电吊舱的成像稳定性,在系留气球等浮空器长时驻空、实施对地观测、监视监控等领域的应用方面具有重要意义。
图10是本发明提供的电子设备的结构示意图,如图10所示,该电子设备可以包括:处理器(processor)110、通信接口(Communications Interface)120、存储器(memory)130和通信总线140,其中,处理器110,通信接口120,存储器130通过通信总线140完成相互间的通信。处理器110可以调用存储器130中的逻辑指令,以执行基于人群自抗扰的光电吊舱控制方法,该方法包括:建立基于系留气球系统的光电吊舱动力学模型;对所述系留气球系统的控制系统各执行元件进行理论建模,建立速度稳定回路控制模型;基于所述光电吊舱动力学模型和所述速度稳定回路控制模型,建立自抗扰控制器模型;采用人群搜索算法对所述自抗扰控制器模型的参数进行寻优,确定最优自抗扰控制器模型,以利用所述最优自抗扰控制器模型实施光电吊舱的稳定控制。
此外,上述的存储器130中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
另一方面,本发明还提供一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,计算机能够执行上述各方法所提供的基于人群自抗扰的光电吊舱控制方法,该方法包括:建立基于系留气球系统的光电吊舱动力学模型;对所述系留气球系统的控制系统各执行元件进行理论建模,建立速度稳定回路控制模型;基于所述光电吊舱动力学模型和所述速度稳定回路控制模型,建立自抗扰控制器模型;采用人群搜索算法对所述自抗扰控制器模型的参数进行寻优,确定最优自抗扰控制器模型,以利用所述最优自抗扰控制器模型实施光电吊舱的稳定控制。
又一方面,本发明还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各实施例提供的基于人群自抗扰的光电吊舱控制方法,该方法包括:建立基于系留气球系统的光电吊舱动力学模型;对所述系留气球系统的控制系统各执行元件进行理论建模,建立速度稳定回路控制模型;基于所述光电吊舱动力学模型和所述速度稳定回路控制模型,建立自抗扰控制器模型;采用人群搜索算法对所述自抗扰控制器模型的参数进行寻优,确定最优自抗扰控制器模型,以利用所述最优自抗扰控制器模型实施光电吊舱的稳定控制。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

1.一种基于人群自抗扰的光电吊舱控制方法,其特征在于,包括:
建立基于系留气球系统的光电吊舱动力学模型;
对所述系留气球系统的控制系统各执行元件进行理论建模,建立速度稳定回路控制模型;
基于所述光电吊舱动力学模型和所述速度稳定回路控制模型,建立自抗扰控制器模型;
采用人群搜索算法对所述自抗扰控制器模型的参数进行寻优,确定最优自抗扰控制器模型,以利用所述最优自抗扰控制器模型实施光电吊舱的稳定控制。
2.根据权利要求1所述的基于人群自抗扰的光电吊舱控制方法,其特征在于,所述光电吊舱动力学模型是由系留气球的瞬态运动方程、锚泊点的边界条件、主节点边界条件、系留气球的稳态运动方程以及系缆的差分耦合动力学方程组成。
3.根据权利要求2所述的基于人群自抗扰的光电吊舱控制方法,其特征在于,所述系留气球的瞬态运动方程的表达式为:
Figure FDA0003420647660000011
所述锚泊点的边界条件的表达式为:
[Vx0 Vy0 Vz0]T=(Lce)T[Vt0 Vn0 Vb0]T
所述主节点边界条件的表达式为:
Lce[VtN VnN VbN]T=VB+ω×RB
设系缆的动力学方程的表达式为:
Figure FDA0003420647660000012
则所述系留气球的稳态运动方程的表达式为:
Figure FDA0003420647660000021
所述系缆的差分耦合动力学方程的表达式为:
Figure FDA0003420647660000022
Figure FDA0003420647660000023
其中,M1为质量矩阵,M和N为中间结果矩阵,q为力矩阵;Y为系缆状态矩阵:[T Vt Vn Vbβγ]T,β为系缆的倾斜角,γ为系缆的方位角,Vn、Vb、Vt分别为系缆的速度在CFS中的分量;τRB为系缆的惯性力和气动力之和在系留气球的体轴系BFS中的投影;V为系留气球的球体在所述BFS中的速度;
Figure FDA0003420647660000024
为V的求导;CRB为转动的动力矩;[Vt0 Vn0 Vb0]T为系缆在系缆当地坐标系CFS中的速度;Lce为锚泊点所在的地面坐标系EFS与所述CFS之间的坐标转换矩阵;[Vx0 Vy0Vz0]T为锚泊点在所述EFS中的速度;[VtN VnN VbN]T为第N个节点在所述CFS中的速度;RB为主节点B在所述BFS中的矢量;VB为主节点B在所述BFS中的速度;ω为光电吊舱转动轴的电机角速度;[p,q,r]分别为系留气球在所述BFS中的转动角速度;ψ,θ,φ分别为系留气球球体的偏航角,俯仰角和滚转角;
Figure FDA0003420647660000025
分别为i时刻,j位置对应的值;ΔS为系缆微段;Δt为时间微段。
4.根据权利要求1所述的基于人群自抗扰的光电吊舱控制方法,其特征在于,所述速度稳定回路控制模型包括光电吊舱转动轴的电机传递函数、速度陀螺的传递函数以及功率放大器的传递函数。
5.根据权利要求4所述的基于人群自抗扰的光电吊舱控制方法,其特征在于,所述电机传递函数的表达式为:
Figure FDA0003420647660000031
所述速度陀螺的传递函数的表达式为:
G”(s)=Gg(s);
所述功率放大器的传递函数的表达式为:
G”'(s)=Kpwm
其中,G'(s)、G”(s)和G”'(s)为别为电机传递函数、速度陀螺的传递函数和功率放大器的传递函数;La为电枢绕组电感;J为电机轴上的总转动惯量;Cm为电机转矩系数,Ce为电机的电动势系数;Ra为电枢绕组电阻;w(s)是输出角速度的拉普拉斯变换,Ua(s)是输入量的拉普拉斯变换;Gg(s)为速度陀螺的比例环节;Kpwm为功率放大器的比例放大环节。
6.根据权利要求1所述的基于人群自抗扰的光电吊舱控制方法,其特征在于,所述自抗扰控制器模型的表达式为:
Figure FDA0003420647660000032
TD:
Figure FDA0003420647660000033
ESO:
Figure FDA0003420647660000041
NLSEF:
Figure FDA0003420647660000042
u(k)=u0(k)-z3(k)/b0
Figure FDA0003420647660000043
Figure FDA0003420647660000044
其中,
Figure FDA0003420647660000045
为光电吊舱控制系统的微分方程;TD为跟踪微分器;ESO为扩张状态观测器;NLSEF为非线性状态误差反馈;
Figure FDA0003420647660000046
为总扰动;v(k)是系统输入信号;y为输出信号;w(k)为外部总扰动;微分信号v1(k)和微分信号v2(k)是TD将v(k)转变成的;z1(k)、z2(k)和z3(k),分别表示v1(k)、v2(k)和总扰动
Figure FDA0003420647660000051
的估计量;r,h,h0为TD中的参数;r值是快速因子;h是系统采样步长;h0是无量纲参数,为h的整数倍;h,β010203,δ,b为ESO中的参数;β010203是与h有关系数参数;δ是无意义系数,取h的整数倍;控制量系数b是时变函数,近似为常值b0;c,r1,h1为NLSEF中的参数;c是阻尼因子,h1是快速因子,r1是控制量因子;fhan和fal分别为非线性函数的表达式;u为被控对象;u0(t)为误差反馈控制量;a、a0、a1和a2为无量纲中间参数;u0(t)为误差反馈控制量。
7.根据权利要求6所述的基于人群自抗扰的光电吊舱控制方法,其特征在于,所述自抗扰控制器模型的待寻优参数包括参数β010203,c,h1
所述采用人群搜索算法对所述自抗扰控制器模型的参数进行寻优,包括:
步骤一:t=0,初始化人群搜索算法,设定空间维度、系统采样步长、人群规模、最大迭代次数N、最小适应值和人群搜索的空间的范围,在可行解域随机产生多个初始个体;每个所述初始个体为所述待寻优参数的组合;
步骤二:计算每个个体的适应度值;
步骤三:计算每个个体在每一维的搜索方向和步长;
步骤四:基于所述搜索方向和步长,更新每个个体的位置,以重新确定每个个体的适应度值;
步骤五:令t=t+1,并判断是否满足停止条件;若是,输出最优参数组合;若不是,则返回至步骤二。
8.一种基于人群自抗扰的光电吊舱控制装置,其特征在于,包括:
第一处理单元,用于建立基于系留气球系统的光电吊舱动力学模型;
第二处理单元,用于对所述系留气球系统的控制系统各执行元件进行理论建模,建立速度稳定回路控制模型;
第三处理单元,用于基于所述光电吊舱动力学模型和所述速度稳定回路控制模型,建立自抗扰控制器模型;
第四处理单元,用于采用人群搜索算法对所述自抗扰控制器模型的参数进行寻优,确定最优自抗扰控制器模型,以利用所述最优自抗扰控制器模型实施光电吊舱的稳定控制。
9.一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至7任一项所述基于人群自抗扰的光电吊舱控制方法步骤。
10.一种非暂态计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至7任一项所述基于人群自抗扰的光电吊舱控制方法步骤。
CN202111562462.9A 2021-12-20 2021-12-20 一种基于人群自抗扰的光电吊舱控制方法及装置 Pending CN114488792A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111562462.9A CN114488792A (zh) 2021-12-20 2021-12-20 一种基于人群自抗扰的光电吊舱控制方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111562462.9A CN114488792A (zh) 2021-12-20 2021-12-20 一种基于人群自抗扰的光电吊舱控制方法及装置

Publications (1)

Publication Number Publication Date
CN114488792A true CN114488792A (zh) 2022-05-13

Family

ID=81494188

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111562462.9A Pending CN114488792A (zh) 2021-12-20 2021-12-20 一种基于人群自抗扰的光电吊舱控制方法及装置

Country Status (1)

Country Link
CN (1) CN114488792A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11815912B2 (en) * 2021-12-30 2023-11-14 Aerospace Information Research Institute, Chinese Academy Of Sciences Stability control method and device based on particle active disturbance rejection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11815912B2 (en) * 2021-12-30 2023-11-14 Aerospace Information Research Institute, Chinese Academy Of Sciences Stability control method and device based on particle active disturbance rejection

Similar Documents

Publication Publication Date Title
CN113985740B (zh) 一种基于粒子自抗扰的稳定控制方法及装置
Ramirez-Rodriguez et al. Robust backstepping control based on integral sliding modes for tracking of quadrotors
Sydney et al. Dynamic control of autonomous quadrotor flight in an estimated wind field
Bouadi et al. Adaptive sliding mode control for quadrotor attitude stabilization and altitude tracking
Zhang et al. Attitude control of a quadrotor aircraft subject to a class of time-varying disturbances
Santoso et al. Hybrid PD-fuzzy and PD controllers for trajectory tracking of a quadrotor unmanned aerial vehicle: Autopilot designs and real-time flight tests
Raza et al. Intelligent flight control of an autonomous quadrotor
Doukhi et al. Neural network-based robust adaptive certainty equivalent controller for quadrotor UAV with unknown disturbances
Boudjedir et al. Adaptive neural network control based on neural observer for quadrotor unmanned aerial vehicle
CN115686038B (zh) 一种四旋翼吊挂系统的摆角观测与减摆控制系统及方法
Tran et al. Distributed artificial neural networks-based adaptive strictly negative imaginary formation controllers for unmanned aerial vehicles in time-varying environments
Kang et al. A second-order sliding mode controller of quad-rotor UAV based on PID sliding mode surface with unbalanced load
Sun et al. Linear-quadratic regulator controller design for quadrotor based on pigeon-inspired optimization
Sun et al. Nonlinear robust compensation method for trajectory tracking control of quadrotors
Song et al. Anti-disturbance compensation for quadrotor close crossing flight based on deep reinforcement learning
Kong et al. Experimental validation of a robust prescribed performance nonlinear controller for an unmanned aerial vehicle with unknown mass
CN114488792A (zh) 一种基于人群自抗扰的光电吊舱控制方法及装置
Zairi et al. Adaptive neural controller implementation in autonomous mini aircraft quadrotor (AMAC-Q) for attitude control stabilization
Wu et al. Improved reinforcement learning using stability augmentation with application to quadrotor attitude control
Pedro et al. Nonlinear control of quadrotor UAV using Takagi-Sugeno fuzzy logic technique
Li et al. The design of ship formation based on a novel disturbance rejection control
Karahan et al. Fault Tolerant Super Twisting Sliding Mode Control of a Quadrotor UAV Using Control Allocation
Housny et al. Robust sliding mode control for quadrotor UAV
Li et al. A novel anti-disturbance control of quadrotor UAV considering wind and suspended payload
Bai et al. A fuzzy adaptive drogue control method in autonomous aerial refueling

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination