CN114480647A - 膀胱癌检测试剂盒、核酸检测芯片、信号通道抑制剂及其应用 - Google Patents

膀胱癌检测试剂盒、核酸检测芯片、信号通道抑制剂及其应用 Download PDF

Info

Publication number
CN114480647A
CN114480647A CN202210098322.9A CN202210098322A CN114480647A CN 114480647 A CN114480647 A CN 114480647A CN 202210098322 A CN202210098322 A CN 202210098322A CN 114480647 A CN114480647 A CN 114480647A
Authority
CN
China
Prior art keywords
circtaf4b
bladder cancer
bca
mir
tgf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210098322.9A
Other languages
English (en)
Inventor
张晓婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Baoan Songgang People's Hospital
Original Assignee
Shenzhen Baoan Songgang People's Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Baoan Songgang People's Hospital filed Critical Shenzhen Baoan Songgang People's Hospital
Priority to CN202210098322.9A priority Critical patent/CN114480647A/zh
Publication of CN114480647A publication Critical patent/CN114480647A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/178Oligonucleotides characterized by their use miRNA, siRNA or ncRNA

Abstract

本发明属于癌症医疗技术领域,具体涉及膀胱癌检测试剂盒、核酸检测芯片、信号通道抑制剂及其应用。膀胱癌检测试剂盒包括能够扩增膀胱癌标记基因的引物,膀胱癌核酸检测芯片包括能够与膀胱癌标记基因杂交的探针,膀胱癌标记基因为circTAF4B。本申请公开了一种新的BCa诊断和治疗靶点及相关的信号通道,有助于BCa的临床治疗和理论研究。

Description

膀胱癌检测试剂盒、核酸检测芯片、信号通道抑制剂及其应用
技术领域
本发明属于癌症医疗技术领域,具体涉及膀胱癌检测试剂盒、核酸检测芯片、信号通道抑制剂及其应用。
背景技术
膀胱癌(BCa)是泌尿系最常见的恶性肿瘤,环状RNA(circRNAs)已被公认为是基因表达的关键调控因子。然而,CircRNAs参与BCa的分子机制在很大程度上尚不清楚。因而,本申请的目的之一是对CircRNAs参与BCa的分子机制进行探讨。
发明内容
有鉴于此,本发明公开了膀胱癌检测试剂盒、核酸检测芯片、信号通道抑制剂及其应用,以解决现有技术中存在的技术问题。
本申请为解决其技术问题而公开的膀胱癌检测试剂盒为:
一张膀胱癌检测试剂盒,其特征在于:
包括能够扩增膀胱癌标记基因的引物,膀胱癌标记基因为circTAF4B。
作为优选,circTAF4B的长度为484nt。
作为优选,circTAF4B由位于CHR18:23895192-23915195的TAF4B mRNA反向剪接形成。
作为优选,膀胱癌标记基因还包括miRNA-1298-5p,膀胱癌检测试剂盒还包括能够扩增 miRNA-1298-5p的引物。
本申请为解决其技术问题而公开的膀胱癌核酸检测芯片为:
一种膀胱癌核酸检测芯片,其特征在于:
包括能够与膀胱癌标记基因杂交的探针,所述膀胱癌标记基因为circTAF4B。
作为优选,circTAF4B的长度为484nt。
作为优选,circTAF4B由位于CHR18:23895192-23915195的TAF4B mRNA反向剪接形成。
作为优选,膀胱癌标记基因还包括miRNA-1298-5p,膀胱癌核酸检测芯片还包括能够与 miRNA-1298-5p杂交的探针。
本申请为解决其技术问题而公开的circTAF4B/miR-1298-5p/TGFα信号通道抑制剂为:
一种circTAF4B/miR-1298-5p/TGFα信号通道抑制剂,其特征在于:
该circTAF4B/miR-1298-5p/TGFα信号通道抑制剂能够靶向circTAF4B以抑制circTAF4B的表达。
本申请还涉及shRNA在制备circTAF4B/miR-1298-5p/TGFα信号通道抑制剂中应用,其特征在于:采用shRNA靶向circTAF4B以抑制circTAF4B的表达。
本申请还涉及circTAF4B/miR-1298-5p/TGFα信号通道在制备膀胱癌药物中的应用,其特征在于:采用能够靶向circTAF4B并抑制circTAF4B表达的物质以断开 circTAF4B/miR-1298-5p/TGFα信号通道。
有益的技术效果:
在我们的研究中,我们发现circTAF4B通过增加TGFα的表达促进BCa的生长和转移。 TGFα的诱导表达逆转了circTAF4B下调引起的细胞生长和转移抑制。circTAF4B作为Mir-1298-5p的“miRNA海绵”增加TGFα的表达。因而,环状RNA在BCa中作为癌基因发挥作用。circTAF4B可通过调节miR-1298-5p/TGFα轴促进BCa中的细胞增殖、迁移、侵袭和EMT。我们的研究可能在circRNA研究中开辟一个新的研究领域,并为BCa的诊断和治疗提供新的靶点。
以下结合说明书附图和具体实施方式,对本申请的技术方案和技术效果进行详细介绍。
附图说明
图1、circTAF4B在BCa组织中过度表达,并与临床病理特征相关;
图1A、circTAF4B结构和拼接接头的示意图;
图1B、Sanger测序证实了circTAF4B的连接位点;
图1C、与TAF4B mRNA相比,circTAF4B不被RNase R酶降解;
图1D/1E、circTAF4B在肿瘤和邻近正常组织中的表达水平;
图1F、膀胱癌高、低病理分级组织中circTAF4B表达的差异;
图1G、有淋巴结转移和无淋巴结转移患者之间circTAF4B表达的差异;
图1H/1I、circTAF4B高表达组和circTAF4B低表达组之间总生存时间(OS时间)的差异。
图2、敲除circTAF4B抑制体外BCa细胞的增殖;
图2A、circTAF4B在不同BCa细胞系和正常上皮细胞系中的表达水平;
图2B/2C、靶向circTAF4B的shRNA(shcirc-1和shcirc-2)对circTAF4B和TAF4B表达的影响;
图2D/2E、CCK-8试验和克隆形成试验表明转染circTAF4B可降低BCa细胞的增殖。
数据代表三个以上独立实验的平均值±标准差*p<0.05**p<0.01。
图3、体外敲除circTAF4B抑制BCa细胞的迁移、侵袭和EMT过程;
图3A/3B、伤口愈合和跨孔迁移试验表明,转染shcircTAF4B可下调BCa细胞的迁移;
图3C、Transwell侵袭实验显示,敲除circTAF4B可抑制BCa细胞的侵袭;
图3D、westernblotting检测EMT标记物的蛋白表达水平。
数据代表三个以上独立实验的平均值±标准差*p<0.05**p<0.01。
图4、circTAF4B海绵miR-1298-5p;
图4A、通过核/细胞质分离实验检测circTAF4B在细胞质和细胞核中的分布;
图4B、通过qRTPCR验证生物素标记的circTAF4B探针的有效性;
图4C、RNA下拉分析表明,circTAF4B探针捕捉到了microRNA的富集;
图4D、靶向circTAF4B的双荧光素酶报告质粒示意图;
图4E、与circTAF4B野生型(WT)和miR-1298-5p模拟物共转染后,荧光素酶活性显著降低;
图4F/4G、qRT PCR显示,敲除circTAF4B对miR-1298-5p的表达没有影响,而miR-1298-5p 的过度表达对circTAF4B的表达没有影响。
数据代表三个以上独立实验的平均值±标准差*p<0.05**p<0.01。
图5、CIRCTAF4B通过吸附miR-1298-5p积极调节TGFα;
图5A、使用三个数据库对miR-1298-5p靶基因进行文氏图分析;
图5B/5C、TCGA数据库和我们的数据显示,在BCa组织中,miR-1298-5p表达与TGFα表达呈负相关;
图5D、我们的数据显示,在BCa组织中,circTAF4B表达与TGFα表达呈正相关;
图5E/5F、miR-1298-5p的过度表达在mRNA和蛋白质水平降低了TGFα的表达;
图5G、TGFα序列与miR-1298-5p互补构建的双荧光素酶报告质粒示意图;
图5H、双荧光素酶分析显示miR-1298-5p降低了含有野生型TGFα的载体的荧光素酶活性;
图5I/5J、抑制miR-1298-5p可通过circTAF4B敲除逆转TGFα抑制的mRNA和蛋白质表达。
数据代表三个以上独立实验的平均值±标准差*p<0.05**p<0.01。
图6、TGFα的过度表达逆转了circTAF4B敲除诱导的BCa细胞生长和转移的下降;
图6A、pcDNA3的作用。1-TGFα经qRT-PCR验证;
图6B/6C、CCK-8和集落形成试验表明TGFα增强了shcircTAF4B引起的细胞增殖减少;
图6D/6E、伤口愈合和跨孔迁移实验表明TGFα逆转了shcircTAF4B诱导的细胞迁移减少;
图6F、Transwell侵袭实验表明TGFα逆转了shcircTAF4B介导的细胞迁移抑制。
数据代表三个以上独立实验的平均值±标准差*p<0.05**p<0.01。
图7、circTAF4B的沉默抑制体内BCa细胞的生长和EMT过程。
图7A、裸鼠移植瘤处死。
图7B、从两组裸鼠中取出移植瘤。
图7C、circTAF4B下调组的肿瘤重量显著低于阴性对照组。
图7D、每周测量两组的肿瘤体积。
图7E、circTAF4B下调组和阴性对照组中TGFα、miR-1298-5p和EMT标记物的表达水平。
图7F、western印迹分析显示,沉默circTAF4B下调N-钙粘蛋白、波形蛋白和TGFα的表达,上调E-钙粘蛋白的表达。
数据代表三个以上独立实验的平均值±标准差*p<0.05**p<0.01。
图8、BCa进展中循环F4b/miR-1298-5p/TGFα轴示意图。
具体实施方式
目的:
膀胱癌(BCa)是泌尿系最常见的恶性肿瘤,环状RNA(circRNAs)已被公认为是基因表达的关键调控因子。然而,circRNAs参与BCa的分子机制在很大程度上尚不清楚。因而,本申请的目的之一是对circRNAs参与BCa的分子机制进行探讨。
方法:
采用qRT-PCR法检测环状RNATAF4B(circTAF4B)的表达水平。细胞增殖通过CCK-8和集落形成试验进行评估。伤口愈合和Transwell实验用于测量细胞迁移和侵袭能力。此外,还进行了qRT-PCR和western印迹分析,以确定epithelial-mesenchymal transition(EMT)标记物的表达水平。核/细胞质分离分析(nuclear/cytoplasmic fractionationassay)用于测量 circTAF4B的亚细胞位置。RNA下拉和双荧光素酶报告分析(RNApull-downand dual-luciferase reporter assays)用于检测circTAF4B的靶microRNA。制备小鼠异种移植模型(mouse xenograft model)评估circTAF4B对BCa肿瘤发生的影响。
结果:
在本研究中,我们发现了一种新的环状RNA,circTAF4B,在BCa中显著上调,并与不良预后相关。下调的circTAF4B抑制了BCa细胞的生长、转移和EMT过程。在机制上,我们发现circTAF4B通过吸附miR-1298-5p促进转化生长因子α(TGFα)的表达。circTAF4B在体内增强了BCa细胞的增殖和EMT过程。研究表明,circTAF4B通过调节miR-1298-5p/TGFα轴在BCa的生长、转移和EMT过程中发挥致癌作用。因此,circTAF4B可能成为BCa的诊断和治疗靶点。
一、引言
膀胱癌(BCa)是世界上第九大最常见的癌症,也是泌尿系统最常见的恶性肿瘤之一。 2017年,美国共有74000名患者被诊断为BCa,全世界共有430000多名患者被诊断为BCa。根据肿瘤浸润深度,BCa分为两种类型:非肌肉浸润性膀胱癌(NMIBC)和肌肉浸润性膀胱癌(MIBC)。尽管MIBC约占该疾病的25%,但近一半的患者发生肿瘤转移,预后不良。尽管在过去的十年中外科和化疗治疗都有所发展,但BCa患者的5年生存率仍处于较低水平。然而,基底细胞癌发生和转移的机制尚不清楚。因此,迫切需要发现BCa的新生物标志物和治疗靶点。
环状RNA(circRNA)是由前RNA转录产物的反向剪接形成的一类非编码RNA,在细胞、组织和器官中稳定、丰富地维持着。circRNA是一种共价封闭的环状序列,没有5'帽或3'多聚腺苷酸化尾。由于高通量测序和circRNA研究技术的发展,已经发现了大量的功能性circRNA。先前的研究表明,circRNAs可以与microRNAs(miRNAs)相互作用来调节下游靶基因的表达。例如,circPSMC3通过充当海绵状miR-296-5p的ceRNA来抑制胃癌的增殖和转移。在我们之前的研究中,我们发现circTLK1通过分泌miR-136-5p促进肾细胞癌的进展。circRNA-MYLK作为ceRNA促进膀胱癌的进展。然而,circRNA在肿瘤发生和转移中的作用尚不清楚。众所周知,在各种癌症的生长和转移过程中,circRNA通过miRNA反应元件(MRE) 与miRNA结合。miRNAs已被证明在各种肿瘤的生长和转移中起着至关重要的作用。例如,miRNA-1298-5p可以抑制BCa和胃癌(GC)的发展和进展。miR-1298-5p在非小细胞肺癌(NSCLC)中下调,并与不良预后相关。在乳腺癌中,miR-1298-5p通过抑制CXCL11表达抑制细胞生长和转移。
在本研究中,我们通过筛选先前研究中的RNA序列数据,重点关注circ_0047322。circ_0047322来源于TATA盒结合蛋白(TBP)相关因子4B(TAF4B)基因,经鉴定为circTAF4B。circTAF4B在BCa组织中显著上调,与BCa患者的不良预后密切相关。更重要的是,我们发现circTAF4B以ceRNA依赖的方式海绵状miR-1298-5p来调节转化生长因子α(TGFα)的表达,从而促进BCa的增殖、迁移、侵袭和EMT过程。我们的发现揭示了一种新的潜在机制,通过该机制,circTAF4B/miR-1298-5p/TGFα信号通路参与BCa的肿瘤发生和转移。
二、材料与方法
1、患者和临床样本
从接受手术的BCa患者中收集76对肿瘤组织和匹配的邻近正常组织。本研究由北京大学深圳医院医学研究伦理区域委员会和人类伦理委员会批准。所有BCa患者均同意本研究。
具体情况见TABLE1。
Figure RE-GDA0003552804140000061
P<0.05and**P<0.01represent statistical significance.
Results are analyzed by Chi-square test.
2、细胞系
所有细胞系,包括SV-HUC1和BCa细胞系,均来自美国类型培养物收集中心(ATCC,Manassas,VA,USA)。BCa细胞系在含有10%胎牛血清(FBS)和1%抗生素的DMEM(Invitrogen,Carlsbad,CA,USA)中培养。SV-HUC1细胞在混合有10%FBS和1%抗生素的F12K培养基中生长。所有细胞系均在37℃和5%CO2的培养箱中培养。
3、RNA提取与定量分析(实时PCR)
TRIzol试剂(Invitrogen,Carlsbad,CA,USA)用于提取总RNA。定量实时PCR(qRTPCR)根据SYBR绿色PCR试剂盒(Takara)进行,并在罗氏
Figure RE-GDA0003552804140000062
480II PCR仪器(瑞士巴塞尔)上进行。应用GAPDH或U6核RNA作为内部对照。
4、转染
GenePharma设计了两个靶向circTAF4B(shcirc-1,shcirc-2)和相应对照(shCtrl)的短发夹状RNA(shRNA),并克隆到pGPU6/GFP/Neo载体中。miR-1298-5p模拟物及其相应的对照(miR-NC)和miR-1298-5p抑制剂及其相应的对照(NC抑制剂)购自RiboBio。GenePharma 合成了TGFα过表达载体(pcDNA3.1-TGFα)和相应的对照(pcDNA3.1-NC)。根据说明,所有转染均使用Lipofectamine 3000试剂(Invitrogen)。为了稳定转染,SW780细胞被慢病毒感染shcirc-1(先前已证实有效)或其相应的对照(shCtrl),然后用3mg/ml嘌呤霉素选择两周。
5、细胞增殖试验
细胞计数试剂盒-8(CCK-8)(Beyotime生物技术研究所)实验和集落形成实验用于评估细胞增殖能力。对于CCK-8实验,转染的BCa细胞在96孔培养板中以每孔1000个细胞的浓度培养。在0、24、48、72和96小时,使用微孔板分析仪(Bio-Rad,Hercules,CA,USA) 在450nm处测量BCa细胞的吸光度值。对于菌落形成试验,BCa细胞在6孔板中以每孔1000 个细胞的浓度培养15天。菌落用结晶紫染色,并用冰醋酸冲洗。最后,使用微孔板读取器在595nm处测量吸光度值。
6、伤口愈合试验
伤口愈合实验用于测量细胞迁移能力。转染的BCa细胞在6孔板中生长。一个黄色的移液管尖端被用来画疤痕,直到细胞生长到90-95%的丰度。24小时后,我们用10倍放大的数字显微镜拍摄迁移细胞的图像。
7、Transwell分析
Transwell分析用于评估BCa细胞的迁移和侵袭能力。将转染的细胞混合在无血清培养基中,并接种在涂有基质凝胶(BD Biosciences)的Transwell插入物(康宁)中,或以2-3×104 细胞/孔的密度不涂。将含有10%血清的培养基添加到下室。培养24-48小时后,细胞用0.1%结晶紫染色并用PBS洗涤。在20倍显微镜下进行观察和摄影。
8、蛋白质印迹分析
用RIPA试剂(Beyotime,中国北京)提取蛋白质,用10%SDS-PAGE分离,并转移到PVDF膜上。PVDF膜用5%牛奶封闭1小时,并在4℃下与一级抗体孵育12小时以上,在室温下与二级抗体孵育1小时。Quantity One软件(Bio-Rad)用于发光检测和成像。N-钙粘蛋白、波形蛋白、E-钙粘蛋白和GAPDH抗体由细胞信号技术(Danvers,MA,USA)提供, TGFα抗体从ABCam(USA)获得。
9、核/细胞质分馏
使用PARIS试剂盒(Life Technologies,MA)进行核/细胞质分离。按照说明书分离细胞核和细胞质后,用qRT-PCR检测目的基因的表达,并以GAPDH和U6作为对照。
10、RNA下拉分析
将SW780和T24细胞与pcDNA3共转染。1-circTAF4B和生物素标记的circTAF4B。下拉蛋白用不含RNase的DNase I和RNeasy迷你试剂盒(德国QIAGEN)处理。提取microRNA,用qRT-PCR定量检测。
11、双荧光素酶报告试验
由GeneCopoeia设计并合成了荧光素酶报告质粒。将野生型(WT)circTAF4B或突变型 (Mut)circTAF4B的序列克隆到MT06载体中。将野生型(WT)TGFα和突变型(Mut)TGFα的序列克隆到MT07载体中。荧光素酶报告质粒和miR-1298-5p共转染BCa细胞。最后,使用荧光素酶报告试剂盒(Promega)测定BCa细胞的荧光素酶活性。
12、异种肿瘤移植物
本研究采用4周龄雄性BALB/C裸鼠进行异种肿瘤移植试验。12只小鼠随机分为两组。将表达shcircTAF4B(5×107)的SW780细胞皮下注射到小鼠背部。每周测量异种移植瘤的体积。六周后,处死小鼠,收集肿瘤并称重。从肿瘤中提取总RNA和总蛋白,检测靶基因的表达。
13、统计分析
使用SPSS 22.0(SPSS)对独立复制的所有数据进行分析,结果以平均值±标准差(SD) 表示。各组之间的差异通过Student t检验进行分析。P值<0.05或P值<0.01被认为具有统计学意义。
三、实验结果
通过生物信息学网站(circBank),我们确定circTAF4B(Circu_0047322)长度为484nt,由位于CHR18:23895192-23915195的TAF4B mRNA反向剪接形成,在BCa组织中显著增强,并与不良预后呈正相关。circTAF4B的剪接位点如图1A所示。Sanger序列用于验证连接点(图 1B)。核糖核酸酶R酶消化试验表明,circTAF4B对核糖核酸酶R而不是TAF4BmRNA具有抗性(图1C)。接下来,我们发现circTAF4B在65.7%(50/76)的BCa组织中显著增强(图 1D)。与匹配的相邻正常组织相比,肿瘤组织中circTAF4B的表达水平也显著增加(图1E)。此外,circTAF4B表达增加与较高的组织学分级和淋巴转移呈正相关(图1F,G)。然而, circTAF4B的高表达与膀胱癌患者较低的总生存率和无病生存率相关(图1H,I),表明 circTAF4B可能是BCa患者预后不良的原因。
1、体外敲除circTAF4B抑制BCa细胞的增殖、转移和EMT
与膀胱细胞系HT1197相比,BCa细胞,尤其是SW780和T24细胞的circTAF4B表达水平明显升高(图2A)。因此,选择SW780和T24细胞进行进一步实验。为了探索circTAF4B 在BCa发展中的作用,我们合成了一种靶向circTAF4B的shRNA以抑制circTAF4B的表达 (图2B)。然而,敲除circTAF4B不能调节TAF4B mRNA的表达,表明circTAF4B不能调节 TAF4B的转录(图2C)。CCK-8和集落形成试验表明,敲除circTAF4B可显著抑制BCa细胞的增殖(图2D,E)。伤口愈合和跨孔迁移实验表明,抑制circTAF4B可显著降低BCa细胞的迁移能力(图3A、B、6B)。Transwell侵袭试验表明,下调circTAF4B可降低BCa细胞的侵袭能力(图3C)。此外,敲除circTAF4B显著抑制N-钙粘蛋白、蜗牛和波形蛋白的表达,并增加E-钙粘蛋白的表达(图3D),表明circTAF4B促进了EMT过程。
2、circTAF4B主要是海绵状miRNA-1298-5p
为了进一步研究circTAF4B在BCa肿瘤发生中的机制,我们进行了核/细胞质分离分析,发现circTAF4B主要分布在BCa细胞的细胞质中(图4A),表明circTAF4B可能作为“miRNA 海绵”捕获肿瘤抑制因子miRNA。为了验证这一假设,我们合成了一种circTAF4B特异性探针,发现它确实可以在circTAF4B表达增加时捕获circTAF4B(图4B)。RNA下拉分析显示,在两种BCa细胞系中,circTAF4B探针中miR-1298-5p显著富集(图4C)。此外,生物信息学分析预测circTAF4B与miR-1298-5p的种子序列互补。然后,将含有circTAF4B野生型(WT)和突变型(Mut)的荧光素酶报告质粒与miR-1298-5p共转染。荧光素酶报告分析表明,当circTAF4B WT质粒与miR-1298-5p共转染时,荧光素酶活性显著降低(图4D,E)。然而,circTAF4B的敲除或过度表达并未改变miR-1298-5p的表达(图4F,G)。
3、circTAF4B通过吸附miR-1298-5p调节TGFα
为了研究miR-1298-5p的靶基因,我们使用miRNA数据库(miRtarbase、starBase和TargetScan)预测miR-1298-5p的潜在靶基因,并选择CBX6、FXR1和TGFα进行进一步实验(图5A)。使用TCGA数据库,我们发现BCa组织中miR-1298-5p(MIMAT0005800)的表达水平低于正常组织,而BCa中TGFα的表达水平显著高于正常组织。miR-1298-5p表达与来自TCGA数据库的BCa组织中TGFα表达呈负相关(图5B)。在收集的76个BCa组织中, TGFα的表达水平与miR-1298-5p的表达呈负相关(图5C)。此外,在76个BCa组织中, circTAF4B表达与TGFα表达呈正相关(图5D)。进一步的实验证实,miR-1298-5p的表达增强抑制了TGFα的mRNA和蛋白质表达(图5E,F)。为了进一步验证miR-1298-5p和TGFα之间的核心结合位点,我们突变了TGFα3'UTR(3554-3560),预测其与miR-1298-5p互补,并构建了双荧光素酶报告质粒(图5G)。含有TGFα野生型(WT)或突变型(Mut)的双荧光素酶报告质粒与miR-1298-5p模拟物共转染。双荧光素酶分析证实miR-1298-5p显著降低 TGFα野生型(WT)的荧光素酶活性(图5H)。最后,qRT-PCR和western印迹实验证明, circTAF4B基因敲除对TGFα表达的抑制可通过抑制miR-1298-5p得到补偿(图5I,J)。这些结果表明,circTAF4B可以通过分泌miR-1298-5p上调TGFα的表达。
4、TGFα过度表达逆转shcircTAF4B介导的BCa细胞生长和转移抑制
为了研究circTAF4B是否通过调节TGFα的表达促进增殖和转移,我们在circTAF4B和 TGFα之间进行了一项拯救实验。转染pcDNA3后,BCa细胞中TGFα的表达显著增加。 1-circTAF4B(图6A、B)。CCK-8和集落形成实验表明,强制表达TGFα可以明显逆转circTAF4B抑制诱导的细胞增殖抑制(图6B,C)。伤口愈合和Transwell迁移实验表明,敲除circTAF4B抑制BCa细胞迁移,同时共转染pcDNA3。1-TGFα削弱了这种作用(图6D,E)。Transwell 侵袭实验表明,通过增强TGFα表达,shcircTAF4B抑制的细胞侵袭能力显著逆转(图6F)。上述结果表明,TGFα的过度表达逆转了circTAF4B基因敲除对BCa细胞生长和转移的抑制作用。
5、敲除circTAF4B抑制体内肿瘤生长和BCa的EMT
为了证实circTAF4B在体内BCa进展中的作用,我们进行了肿瘤异种移植实验。将稳定表达SHCRITAF4B的SW780细胞皮下注射到裸鼠背部。6周后收集移植瘤(图7A,B)。如图7C、7D所示,circTAF4B下调组的肿瘤体积和重量明显低于阴性对照组。此外,敲除circTAF4B抑制TGFα、N-钙粘蛋白和波形蛋白的表达,同时上调体内E-钙粘蛋白的表达(图7E)。Western印迹分析证实,circTAF4B的下调抑制了Ncadherin、波形蛋白和TGFα的蛋白表达水平,同时增加了E-钙粘蛋白的蛋白表达水平(图7F)。总之,circTAF4B在体内积极调节TGFα表达,促进肿瘤生长和EMT。circTAF4B/miR-1298-5p/TGFα轴的原理图如图8所示。
四、结论
近年来,随着RNA测序技术的发展,大量的circRNA被发现。越来越多的证据表明,circRNA通过调节肿瘤细胞的恶性表型在肿瘤的发生和发展中发挥重要作用。例如,环状RNA FAM114A2通过分泌miR-762抑制膀胱癌的进展。环状RNA环FNDC3b通过miR-1178-3p/G3BP2/SRC/FAK轴减少膀胱癌的进展。环状RNA环DONSON促进GC生长和侵袭。在本研究中,我们重点研究了从TAF4B的10-13个外显子衍生的一种circRNA,即 circTAF4B。先前的一项研究表明,通过微阵列数据集(GSE92675),与匹配的正常组织相比,circTAF4B在BCa组织中过度表达。进一步的分析显示,circTAF4B可能与miR-515-5p相互作用,调节多个基因的表达,包括HIST1H3B、CENPA、HIST1H2B、HIST1H3H、HIST1H3F 和HIST1H2BO。然而,这些结果是基于生物信息学分析,而不是严格的实验。目前,我们不了解circTAF4B在BCa进展中的作用。因此,有必要研究circTAF4B在BCa发展中的作用。我们的研究表明,circTAF4B在BCa组织和细胞系中均显著增强。circTAF4B表达增加与BCa 的病理分级呈正相关,与BCa患者的生存率呈负相关。此外,我们发现circTAF4B在体外和体内都能促进BCa细胞的生长、转移和EMT。先前的一项研究表明,起源于外显子的环状 RNA主要分布在细胞质中。它们可能通过充当“miRNA海绵”或翻译蛋白质发挥作用。在本研究中,我们通过核/细胞质分离分析发现circTAF4B主要分布在细胞质中。然而,根据 cirRNADB数据库的分析,circTAF4B缺乏开放阅读框(ORF)和蛋白质翻译能力。因此, circTAF4B可能在BCa进展过程中充当“miRNA海绵”。RNA下拉和双荧光素酶分析表明, circTAF4B对miR-1298-5p具有阳性吸附作用。然而,敲除circTAF4B不能调节miR-1298-5p 的表达,表明circTAF4B仅吸收miR-1298-5p并抑制其活性,而不是促进其降解。miRNA是一种长度为19-24nt的长非编码RNA。它们可以与目标基因的3'UTR结合以阻止转录和翻译过程。miRNAs已被证明在各种肿瘤的生长和转移中起着至关重要的作用。据报道, miRNA-1298-5p通过抑制连接蛋白43的表达来抑制膀胱癌的进展。在我们的研究中,我们通过生物信息学分析推测TGFα可能是BCa进展过程中miR-1298-5p的靶基因。进一步的实验表明miR-1298-5p与TGFα的3'UTR结合并抑制TGFα的mRNA和蛋白质表达。TGFα是表皮生长因子家族的一员,由TGFα基因编码。TGFα通过与EGFR结合激活一系列信号通路,调节细胞增殖、转移、分化、组织修复、创伤修复和能量代谢等细胞生物学过程。据报道,TGFα在乳腺癌、前列腺癌和肝癌中可加速细胞增殖、侵袭和MT,并通过PHD3调节肺癌EMT。此外,miR-152可以通过靶向前列腺癌来抑制迁移和侵袭。miR-376c可以通过靶向TGFα来减少骨肉瘤的进展。miR-505通过靶向TGFα抑制子宫内膜癌的发生。这些研究表明,TGFα在恶性肿瘤中经常上调,并受到miRNA的调控。在我们的研究中,我们发现circTAF4B通过增加TGFα的表达促进BCa的生长和转移。TGFα的诱导表达逆转了circTAF4B下调引起的细胞生长和转移抑制。基于上述结果,我们证明circTAF4B作为miR-1298-5p的“miRNA海绵”增加TGFα的表达。因而,我们鉴定了一种新的环状RNA,称为circTAF4B,它在BCa中作为癌基因发挥作用。circTAF4B可通过调节miR-1298-5p/TGFα轴促进BCa中的细胞增殖、迁移、侵袭和EMT。我们的研究可能在circRNA研究中开辟一个新的研究领域,并为BCa的诊断和治疗提供新的靶点。
以上结合说明书附图和具体实施例对本发明的技术方案和技术效果进行了详细阐述,应该说明的是,说明书中公开的具体实施方式仅是本发明较佳的实施例而已,所述领域的技术人员还可以在此基础上开发出其他的实施例;任何不脱离本发明创新理念的简单变形和等同替换均涵盖于本发明,属于本专利的保护范围。

Claims (11)

1.膀胱癌检测试剂盒,其特征在于:
包括能够扩增膀胱癌标记基因的引物,所述膀胱癌标记基因为circTAF4B。
2.根据权利要求1所述的膀胱癌检测试剂盒,其特征在于:circTAF4B的长度为484nt。
3.根据权利要求2所述的膀胱癌检测试剂盒,其特征在于:
circTAF4B由位于CHR18:23895192-23915195的TAF4B mRNA反向剪接形成。
4.根据权利要求1所述的膀胱癌检测试剂盒,其特征在于:
所述膀胱癌标记基因还包括miRNA-1298-5p,所述膀胱癌检测试剂盒还包括能够扩增miRNA-1298-5p的引物。
5.膀胱癌核酸检测芯片,其特征在于:
包括能够与膀胱癌标记基因杂交的探针,所述膀胱癌标记基因为circTAF4B。
6.根据权利要求5所述的膀胱癌核酸检测芯片,其特征在于:circTAF4B的长度为484nt。
7.根据权利要求6所述的膀胱癌核酸检测芯片,其特征在于:
circTAF4B由位于CHR18:23895192-23915195的TAF4B mRNA反向剪接形成。
8.根据权利要求5所述的膀胱癌核酸检测芯片,其特征在于:
所述膀胱癌标记基因还包括miRNA-1298-5p,所述膀胱癌核酸检测芯片还包括能够与miRNA-1298-5p杂交的探针。
9.circTAF4B/miR-1298-5p/TGFα信号通道抑制剂,其特征在于:
该circTAF4B/miR-1298-5p/TGFα信号通道抑制剂能够靶向circTAF4B以抑制circTAF4B的表达。
10.shRNA在制备circTAF4B/miR-1298-5p/TGFα信号通道抑制剂中应用,其特征在于:
采用shRNA靶向circTAF4B以抑制circTAF4B的表达。
11.circTAF4B/miR-1298-5p/TGFα信号通道在制备膀胱癌药物中的应用,其特征在于:采用能够靶向circTAF4B并抑制circTAF4B表达的物质以断开circTAF4B/miR-1298-5p/TGFα信号通道。
CN202210098322.9A 2022-01-27 2022-01-27 膀胱癌检测试剂盒、核酸检测芯片、信号通道抑制剂及其应用 Pending CN114480647A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210098322.9A CN114480647A (zh) 2022-01-27 2022-01-27 膀胱癌检测试剂盒、核酸检测芯片、信号通道抑制剂及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210098322.9A CN114480647A (zh) 2022-01-27 2022-01-27 膀胱癌检测试剂盒、核酸检测芯片、信号通道抑制剂及其应用

Publications (1)

Publication Number Publication Date
CN114480647A true CN114480647A (zh) 2022-05-13

Family

ID=81477069

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210098322.9A Pending CN114480647A (zh) 2022-01-27 2022-01-27 膀胱癌检测试剂盒、核酸检测芯片、信号通道抑制剂及其应用

Country Status (1)

Country Link
CN (1) CN114480647A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116606932A (zh) * 2023-03-22 2023-08-18 唐山市人民医院 一种胃癌预后预测风险模型的构建方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116606932A (zh) * 2023-03-22 2023-08-18 唐山市人民医院 一种胃癌预后预测风险模型的构建方法

Similar Documents

Publication Publication Date Title
Zhang et al. microRNA-21 promotes tumor proliferation and invasion in gastric cancer by targeting PTEN
Zhao et al. The IncRNA SNHG5/miR‐32 axis regulates gastric cancer cell proliferation and migration by targeting KLF4
Huang et al. MicroRNA-485-5p suppresses growth and metastasis in non-small cell lung cancer cells by targeting IGF2BP2
Zhao et al. MicroRNA-7/NF-κB signaling regulatory feedback circuit regulates gastric carcinogenesis
Chen et al. CSTF2-induced shortening of the RAC1 3′ UTR promotes the pathogenesis of urothelial carcinoma of the bladder
Qu et al. Long noncoding RNA SOX2OT contributes to gastric cancer progression by sponging miR-194-5p from AKT2
Huang et al. MiR-137 suppresses migration and invasion by targeting EZH2-STAT3 signaling in human hepatocellular carcinoma
Gong et al. Long noncoding RNA linc00462 promotes hepatocellular carcinoma progression
Yang et al. MicroRNA‑143 targets CD44 to inhibit breast cancer progression and stem cell-like properties
Gao et al. RETRACTED ARTICLE: Long noncoding RNA MAGI1-IT1 promoted invasion and metastasis of epithelial ovarian cancer via the miR-200a/ZEB axis
Tian et al. LINC02418 promotes colon cancer progression by suppressing apoptosis via interaction with miR-34b-5p/BCL2 axis
Wo et al. Long noncoding RNA SOX2-OT facilitates prostate cancer cell proliferation and migration via miR-369-3p/CFL2 axis
Wu et al. Long noncoding RNA TUSC7 inhibits cell proliferation, migration and invasion by regulating SOCS4 (SOCS5) expression through targeting miR-616 in endometrial carcinoma
Deng et al. Hsa_circ_0088233 alleviates proliferation, migration, and invasion of prostate cancer by targeting hsa-miR-185-3p
Li et al. DDX11-AS1exacerbates bladder cancer progression by enhancing CDK6 expression via suppressing miR-499b-5p
Huangfu et al. MicroRNA-135b/CAMK2D Axis contribute to malignant progression of gastric cancer through EMT process remodeling
Shi et al. CCAT2 enhances autophagy‐related invasion and metastasis via regulating miR‐4496 and ELAVL1 in hepatocellular carcinoma
Xing et al. Silencing of LINC01963 enhances the chemosensitivity of prostate cancer cells to docetaxel by targeting the miR-216b-5p/TrkB axis
Zhang et al. Circular RNA TAF4B promotes bladder cancer progression by sponging miR-1298-5p and regulating TGFA expression
Zhu et al. MiR-146a-5p inhibits proliferation and promotes apoptosis of oral squamous cell carcinoma cells by regulating NF-κB signaling pathway.
Yu et al. Long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) promotes cell proliferation and migration by regulating miR-143-3p and MAGE family member A9 (MAGEA9) in oral squamous cell carcinoma
Lu et al. miR-934 promotes breast cancer metastasis by regulation of PTEN and epithelial–mesenchymal transition
Wang et al. A novel identified long non-coding RNA, lncRNA MEF2C-AS1, inhibits cervical cancer via regulation of miR-592/RSPO1
Wu et al. Long non-coding RNA DLX6-AS1 knockdown suppresses the tumorigenesis and progression of non-small cell lung cancer through microRNA-16-5p/BMI1 axis
Ji et al. Deoxyelephantopin suppresses pancreatic cancer progression in vitro and in vivo by targeting linc00511/miR-370-5p/p21 promoter axis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication