CN114480256B - 甘草次酸诱导肝细胞氧化应激和炎症反应及其应用 - Google Patents

甘草次酸诱导肝细胞氧化应激和炎症反应及其应用 Download PDF

Info

Publication number
CN114480256B
CN114480256B CN202210245325.0A CN202210245325A CN114480256B CN 114480256 B CN114480256 B CN 114480256B CN 202210245325 A CN202210245325 A CN 202210245325A CN 114480256 B CN114480256 B CN 114480256B
Authority
CN
China
Prior art keywords
glycyrrhetinic acid
cell line
cells
liver
human normal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210245325.0A
Other languages
English (en)
Other versions
CN114480256A (zh
Inventor
吴瑾
王永辉
李晓丽
刘忠文
高月
王宇光
席令仪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Environmental Medicine and Operational Medicine Institute of Military Medicine Institute of Academy of Military Sciences
Original Assignee
Environmental Medicine and Operational Medicine Institute of Military Medicine Institute of Academy of Military Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Environmental Medicine and Operational Medicine Institute of Military Medicine Institute of Academy of Military Sciences filed Critical Environmental Medicine and Operational Medicine Institute of Military Medicine Institute of Academy of Military Sciences
Priority to CN202210245325.0A priority Critical patent/CN114480256B/zh
Publication of CN114480256A publication Critical patent/CN114480256A/zh
Application granted granted Critical
Publication of CN114480256B publication Critical patent/CN114480256B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/067Hepatocytes
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/20Animals treated with compounds which are neither proteins nor nucleic acids
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/035Animal model for multifactorial diseases
    • A01K2267/0368Animal model for inflammation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/02Atmosphere, e.g. low oxygen conditions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Environmental Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Epidemiology (AREA)
  • Animal Husbandry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Cell Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了甘草次酸诱导肝细胞氧化应激和炎症反应及其应用,本发明首次发现并证实了甘草次酸具有肝毒性,能够导致肝损伤,基于该首次发现,本发明为本领域提供了用于药物肝损伤研究的与人类肝脏疾病病理机制相似的实验细胞系模型和动物模型,为进一步探索甘草次酸产生肝毒性的机制提供了实验基础,为新型的针对肝毒性的药物的筛选和开发提供了新思路。

Description

甘草次酸诱导肝细胞氧化应激和炎症反应及其应用
技术领域
本发明属于生物医药技术领域,具体地,本发明涉及甘草次酸诱导肝细胞氧化应激和炎症反应及其应用。
背景技术
甘草(Glycyrrhiza uralensis Fisch)是一种豆科植物,因其在抗氧化和免疫调节方面的作用而被广泛报道,它包含许多生物活性成分,如甘草酸(Glycyrrhizic acid,GL)、甘草次酸(Glycyrrhetinic acid,GA)、甘草苷(Liquiritin)等。其中,GA是从甘草根茎中提取的一种重要的有效活性成分,属五环三萜皂苷类化合物,在结构上与甾体类激素相似。目前,甘草次酸及其衍生物已被证明具有多种药理作用,包括抗炎、抗菌、抗病毒、抗肿瘤和抗氧化活性等,甘草次酸及其衍生物可抑制原癌细胞的信息传递和基因表达,对致癌性的病毒如肝炎病毒、EB病毒及艾滋病毒的感染均有抑制作用,相关研究表明GA在体外能增强小檗碱抑制金黄色葡萄球菌的效力,还能中和破伤风毒素的毒力。此外,GA及其衍生物在包括肝癌在内的许多肝脏疾病中显示出显著的肝脏保护作用。
肝脏是人体重要的免疫和代谢器官,在人体中的各种代谢和解毒、免疫防御、免疫稳态的维持和免疫监视过程中均发挥着关键的作用。当肝脏超负荷时,各种肝病最终可能会发展为终末期肝病,例如肝癌。越来越多的证据表明,炎症反应在预防肝病进展中起着至关重要的作用。GA及其衍生物在抗炎方面显示出巨大的潜力,且表现出显著的保肝作用(Hasan S K,Khan R,Ali N,et al.18-βGlycyrrhetinic acid alleviates 2-acetylaminofluorene-induced hepatotoxicity in Wistar rats:role inhyperproliferation,inflammation and oxidative stress[J].Human&ExperimentalToxicology,2015,34(6):628-641.)。与正常肝组织相比,在肝癌肿瘤组织中发现了更多的GA受体,这使得GA受体介导的药物递送成为一种新的肝癌靶向治疗策略。GA对肝脏的保护作用已在各种肝病中得到了广泛报道,但是,迄今为止,尚未见甘草次酸对正常肝细胞影响的相关报道。
发明内容
本发明的目的在于提供甘草次酸诱导肝细胞氧化应激和炎症反应及其应用,为本领域提供用于药物肝损伤研究的与人类肝脏疾病病理机制相似的实验细胞系模型和动物模型,为进一步探索甘草次酸产生肝毒性的机制提供实验基础,为新型的针对肝毒性的药物的筛选和开发提供新思路。
本发明的上述目的通过以下技术方案得以实现:
本发明的第一方面提供了甘草次酸在构建肝损伤细胞系模型中的应用。
进一步,所述甘草次酸的使用浓度为25-100μM。
进一步,所述肝损伤细胞系模型的构建包括如下步骤:体外培养人正常肝细胞系,将甘草次酸加入到所述人正常肝细胞系中,得到肝损伤细胞系模型;
优选地,所述人正常肝细胞系为L-02细胞系;
优选地,所述甘草次酸的使用浓度为25-100μM。
在本发明的具体实施例中,本发明采用的为人正常肝细胞系为L-02细胞系,所述L-02细胞经不同浓度的甘草次酸、甘草酸、甘草苷处理后,仅有甘草次酸对L-02细胞表现出显著的细胞毒性,且随着甘草次酸浓度的增加,L-02细胞的活力显著降低(IC50=65.3μM),此外,本发明进一步通过实验证明了甘草次酸通过激活NF-κB通路显著诱导肝细胞的氧化应激损伤及炎症反应,表明了甘草次酸能够诱导肝细胞损伤,其对肝细胞的损伤作用显著优于甘草酸和甘草苷,可作为构建肝损伤细胞系模型的理想诱导剂。
进一步,所述肝损伤细胞系模型的构建的具体步骤包括:将L-02细胞以1×105个细胞/mL的密度接种于96孔板中,然后用25-100μM的甘草次酸处理L-02细胞,处理时间为24-48小时,优选为48小时,即可得到甘草次酸诱导的肝损伤细胞系模型;
优选地,采用添加有10%胎牛血清(Gibco,USA)和1%青霉素-链霉素的RPMI-1640培养基(Gibco,USA)培养L-02细胞,并将其置于37℃、5%CO2加湿培养箱中培养。
本发明的第二方面提供了甘草次酸在构建肝损伤动物模型中的应用。
进一步,所述甘草次酸的使用浓度为25-100μM。
进一步,所述肝损伤动物模型的构建包括如下步骤:给受试动物施用甘草次酸得到肝损伤动物模型;
优选地,所述受试动物包括大鼠、小鼠、兔、犬、猴、猪;
优选地,所述甘草次酸的使用浓度为25-100μM。
进一步,构建本发明所述的肝损伤动物模型的受试动物的来源并不局限于大鼠、小鼠、兔、犬、猴、猪,根据本领域技术人员的研究目的的不同可选择不同的受试动物,包括但不限于大鼠、小鼠、兔、犬、猴、猪、豚鼠、地鼠、长爪沙鼠、棉鼠、羊等,基于这些受试动物构建得到的肝损伤动物模型也均包含在本发明的保护范围内。
在本发明的具体实施例中,本发明通过实验证明了甘草次酸可诱导肝细胞的氧化应激损伤以及炎症反应,促进人正常肝细胞L-02中TRAF1、TRAF3、IL-1β、MAP3K14、IL-6和ATF4 mRNA的表达水平,此外,甘草次酸可显著诱导人正常肝细胞L-02中的NF-κB p105/p50、NF-κB p100/p52、TRAF1、TRAF3、CyclinD1、Survivin、MMP9、CXCL8和TRIM25蛋白的表达,以上结果表明了甘草次酸通过激活NF-κB通路显著诱导肝细胞的氧化应激损伤及炎症反应,具有显著的肝毒性,可导致肝损伤,进一步表明了通过将甘草次酸施用于受试动物的方法可制备得到肝损伤动物模型。
进一步,所述给受试动物施用甘草次酸的方法包括但不限于:皮下注射、肌肉注射、静脉注射、口服、直肠给药、阴道给药、鼻腔给药、透皮给药、结膜下给药、眼球内给药、眼眶给药、眼球后给药、视网膜给药、脉络膜给药、鞘内注射等。
进一步,可通过检测小鼠肝细胞中TRAF1、TRAF3、IL-1β、MAP3K14、IL-6和ATF4mRNA的表达水平,以及肝细胞中NF-κB p105/p50、NF-κB p100/p52、TRAF1、TRAF3、CyclinD1、Survivin、MMP9、CXCL8和TRIM25的蛋白表达水平,进一步优化出构建肝损伤动物模型的最优方案。
本发明的第三方面提供了一种肝损伤细胞系模型的构建方法。
进一步,所述方法包括如下步骤:体外培养人正常肝细胞系,将甘草次酸加入到所述人正常肝细胞系中,得到肝损伤细胞系模型。
进一步,所述人正常肝细胞系为L-02细胞系,所述甘草次酸的使用浓度为25-100μM。
进一步,所述方法的具体步骤如下:将L-02细胞以1×105个细胞/mL的密度接种于96孔板,然后用25-100μM的甘草次酸处理L-02细胞,处理时间为24-48小时,优选为48小时,即可得到甘草次酸诱导的肝损伤细胞系模型;
优选地,采用添加有10%胎牛血清(Gibco,USA)和1%青霉素-链霉素的RPMI-1640培养基(Gibco,USA)培养L-02细胞,并将其置于37℃、5%CO2加湿培养箱中培养。
本发明的第四方面提供了甘草次酸在诱导肝细胞氧化应激中的应用。
进一步,所述甘草次酸诱导丙二醛和活性氧的产生,同时抑制谷胱甘肽和超氧化物歧化酶的活性。
进一步,所述丙二醛(Malondialdehyde,MDA)是膜脂过氧化最重要的产物之一,其产生还能进一步加剧膜的损伤,是一种常用的膜脂过氧化指标,在酸性和高温度条件下,可以与硫代巴比妥酸(TBA)反应生成红棕色的三甲川(3,5,5-三甲基恶唑-2,4-二酮),其最大吸收波长在532nm。丙二醛是评价氧化应激过程中常用的指标,是脂质与氧自由基反应形成的产物之一,其含量代表脂质过氧化的程度。
进一步,所述活性氧(Reactive oxygen species,ROS)是含氧的化学反应性化学物质。实例包括过氧化物、超氧化物、羟基自由基、单线态氧和α-氧。在生物学背景下,活性氧的形成为氧的正常代谢的天然副产物,并且在细胞信号传导和体内平衡中具有重要作用。然而,在环境压力(例如,紫外线或热暴露)期间,活性氧的水平会急剧增加。这可能会对细胞结构造成严重损害,这被称为氧化应激。活性氧的产生受植物中应激因子反应的强烈影响,这些增加活性氧产生的因素包括干旱,盐度,寒冷,营养缺乏,金属毒性和UV-B辐射。活性氧也由外源性源如电离辐射产生。
进一步,所述谷胱甘肽(Glutathione,GSH)是一种含γ-酰胺键和巯基的三肽,由谷氨酸、半胱氨酸及甘氨酸组成,存在于几乎身体的每一个细胞,谷胱甘肽在抗氧化防御、营养代谢和细胞调节(包括基因表达、DNA和蛋白质合成、细胞增殖和凋亡、信号转导、细胞因子产生和免疫反应以及蛋白质谷胱甘肽化)中发挥重要作用,谷胱甘肽的缺乏会导致氧化应激。谷胱甘肽常作为脂质过氧化损伤指标。
进一步,所述超氧化物歧化酶(Superoxide dismutase,SOD)是生物体系中抗氧化酶系的重要组成成员,广泛分布在微生物、植物和动物体内,作为一种抗氧化金属酶,超氧化物歧化酶能够催化超氧阴离子自由基歧化生成氧和过氧化氢,在机体氧化与抗氧化平衡中起到至关重要的作用,与很多疾病的发生、发展密不可分。超氧化物歧化酶是反映人体内自由基代谢状态的重要指标之一,其水平的高低可间接反映机体清除自由基的能力。
本发明的第五方面提供了甘草次酸在激活肝细胞NF-κB通路中的应用。
进一步,所述甘草次酸促进肝细胞中NF-κB p105/p50、NF-κB p100/p52、TRAF1、TRAF3、CyclinD1、Survivin、MMP9、CXCL8和TRIM25的产生。
相对于现有技术,本发明具有的优点和有益效果:
现有技术中公开了甘草次酸具有显著的保肝作用,而本发明首次发现并证实了甘草次酸具有肝毒性,能够导致肝损伤,这一结果属于预料不到的技术效果,基于该首次发现本发明为本领域提供了用于药物肝损伤研究的与人类肝脏疾病病理机制相似的实验细胞系模型和动物模型,为进一步探索甘草次酸产生肝毒性的机制提供了实验基础,为新型的针对肝毒性的药物的筛选和开发提供了新思路。
附图说明
以下,结合附图来详细说明本发明的实施方案,其中:
图1为甘草酸、甘草次酸、甘草苷的化学结构式及其对L-02细胞生长影响的结果图,其中,A图:甘草酸、甘草次酸、甘草苷的化学结构式,B图:甘草酸对L-02细胞生存率的影响,C图:甘草次酸对L-02细胞生存率的影响,D图:甘草次酸对L-02细胞生存率的影响,E图:不同浓度的甘草次酸处理L-02细胞的电镜结果图;
图2为不同浓度的甘草次酸对L-02细胞氧化应激影响的结果图,其中,A图:丙二醛(MDA),B图:超氧化物歧化酶(SOD),C图:谷胱甘肽(GSH),D图:活性氧(ROS);
图3为甘草次酸对L-02细胞转录调控影响的结果图,其中,A图:差异表达基因结果图,B图:总体差异基因表达量分析结果图,C图:对差异基因进行功能的显著性分析结果图,D图:KEGG通路富集分析显示的前30个显著富集的通路;
图4为随着甘草次酸处理浓度的增加,L-02细胞中TRAF1、TRAF3、IL-1β、MAP3K14、IL-6、ATF4的mRNA相对表达水平结果图,其中,A图:TRAF1,B图:TRAF3,C图:IL-1β,D图:MAP3K14,E图:IL-6,F图:ATF4;
图5为不同浓度的甘草次酸或DMSO处理对L-02细胞中NF-kB信号通路和细胞因子水平影响的结果图,其中,A图:Western blot结果图,B图:ELISA定量检测TNF-α的结果图,C图:ELISA定量检测IL-1的结果图,D图:ELISA定量检测IL-6的结果图。
具体实施方式
下面结合具体实施例,进一步阐述本发明,仅用于解释本发明,而不能理解为对本发明的限制。本领域的普通技术人员可以理解为:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。下述实施例中所使用的实验方法如无特殊说明,均为常规方法;下述实施例中所用的试剂、生物材料等,如无特殊说明,均可从商业途径得到。
实施例1甘草次酸对人正常肝细胞L-02细胞活力的影响
1、实验材料
甘草酸、甘草次酸、甘草苷的结构式如图1A所示,均购自于上海源叶生物科技有限公司;人正常肝细胞L-02细胞系购自于北京协和细胞库,用于蛋白质印迹的抗体包括针对NF-κB p105/p50(Cell Signaling Technology,USA,#3035,1:1200)、NF-κB p100/p52(Cell Signaling Technology,USA,#4882,1:1500)、TNF受体相关因子1TRAF1(Abcam,UK,ab155268,1:1200)、TRAF3(Abcam,英国,ab155298,1:800)、CXCL8(Abcam,英国,ab18672,1:2000)、CyclinD1(Abcam,ab226977,1:1000)、Survivin(Bioss,bs-0615R,1:500)、MMP9(Abcam,ab58803,1:1500)、TRIM25(Bioss,bs-4170R,1:500)和GAPDH(UtiBody,UM4002,1:2000)的抗体。
2、细胞培养和甘草次酸处理
采用添加有10%胎牛血清(Gibco,USA)和1%青霉素-链霉素的RPMI-1640培养基(Gibco,USA)培养人正常肝细胞L-02细胞,并将其置于37℃、5%CO2加湿培养箱中培养。L-02细胞用不同浓度的甘草酸、甘草次酸、甘草苷或溶剂(DMSO)处理。
3、细胞活力测定
将L-02细胞以1×105个细胞/mL的密度接种于96孔板中24小时,然后分别用不同浓度的甘草酸、甘草次酸、甘草苷或DMSO处理。其中,用DMSO处理的L-02细胞作为对照组。按照制造商的要求使用CCK-8细胞计数试剂盒(CCK-8,Dojindo Molecular Technologies)测试相应细胞的活力,记录在酶标仪(Bio-Rad Laboratories,Inc.,Hercules,CA,USA)中450nm处测量得到的吸光度值。分析细胞活力结果以阐明甘草酸、甘草次酸、甘草苷对L-02细胞的毒性作用。此外,采用倒置光学显微镜观察不同浓度的甘草次酸(0μM,25μM,50μM,100μM)处理L-02细胞12h后细胞形态的变化。
4、实验结果
结果显示,低浓度的甘草酸短暂促进了L-02细胞的生长,150-300μM的甘草酸抑制了L-02细胞活力,而超过300μM的甘草酸则会增强L-02细胞活力(见图1B);甘草次酸抑制了L-02细胞活力,且随着浓度的增加,细胞活力显著降低(IC50=65.3μM)(见图1C);此外,通过甘草苷处理的L-02细胞的细胞活力随着甘草苷浓度的增加而略有下降(见图1D);不同浓度的甘草次酸处理L-02细胞的电镜结果图显示,随着甘草次酸处理浓度的不断增加(0μM,25μM,50μM,100μM),对L-02细胞生长的抑制程度也逐渐增加,L-02活细胞逐渐减少(见图1E)。
实施例2甘草次酸诱导人正常肝细胞L-02的氧化应激
1、实验方法
采用市售试剂盒(南京建成生物工程研究所,南京,中国)对不同浓度(25μM、50μM、100μM)的甘草次酸或DMSO处理48小时后的L-02细胞进行细胞氧化应激的检测。
(1)检测细胞内活性氧(ROS)和超氧化物歧化酶(SOD)的水平
活性氧(ROS)的水平是通过将L-02细胞与2,7-二氯荧光素二乙酸酯(DCFH-DA)在37℃下孵育1h进行测量得到的。L-02细胞在6孔板中培养,补充10μM/L DCFH-DA,37℃孵育20min。然后用无血清培养基洗涤细胞3次。用0、25、50和100μM的甘草次酸处理L-02细胞,处理后收集细胞,然后通过荧光酶标仪在488nm的激发波长和525nm的发射波长下检测其荧光信号,分析活性氧的水平;
超氧化物歧化酶(SOD)的水平是采用组织细胞总超氧化物歧化酶SOD活性检测试剂盒(WST-8法)进行检测得到的。用PBS配置0、25、50和100μM的甘草次酸溶液,并用所述不同浓度的甘草次酸处理L-02细胞,并加入样品制备液(100-200μL/1×106个细胞)。WST-8反应体系(160μL)由151μL SOD检测缓冲液、8μL WST-8和1μL酶溶液混合而成。然后在样品中加入SOD检测缓冲液、WST-8反应体系和反应引发液,37℃孵育30min。然后使用荧光酶标仪在450nm处测定L-02细胞中SOD的含量。
(2)检测细胞内谷胱甘肽(GSH)和丙二醛(MDA)的水平
谷胱甘肽(GSH)的水平是采用GSH和GSSG检测试剂盒(S0053,Beyotime,上海,中国)测定得到的。用0、25、50和100μM甘草次酸处理L-02细胞后,首先用PBS洗涤L-02细胞。然后离心后收获细胞,加入三倍量的M溶液。样品溶液经过充分涡旋、冻融和离心,然后根据制造商的说明检测L-02细胞中GSH的含量;
丙二醛(MDA)的水平是采用脂质过氧化MDA检测试剂盒(S0131S,Beyotime,上海,中国)测定得到的。制备0、25、50和100μM甘草次酸处理的L-02细胞作为细胞匀浆样品,L-02细胞中MDA的含量根据制造商的说明进行检测。
2、实验结果
结果显示,25μM、50μM、100μM的甘草次酸均显著增加了L-02细胞内ROS的水平(见图2D);在25μM、50μM、100μM的甘草次酸处理的L-02细胞中也检测到SOD变化,三种浓度的甘草次酸对L-02细胞内SOD活性显示出不同的影响,其中,25μM甘草次酸刺激SOD活性的增加,而50μM和100μM的甘草次酸则抑制了L-02细胞中的SOD活性(见图2B);
结果显示,与DMSO组相比,25μM、50μM、100μM的甘草次酸处理的L-02细胞中的GSH水平均有所下降,此外,随着甘草次酸处理浓度的增加,GSH含量呈下降趋势(见图2C);三种浓度的甘草次酸显著增加了L-02细胞中MDA的水平(见图2A),并且在25μM、50μM、100μM的甘草次酸处理的L-02细胞中观察到MDA含量呈剂量依赖性增加。以上结果进一步表明了甘草次酸可诱导肝细胞的氧化应激损伤。
实施例3甘草次酸对人正常肝细胞L-02转录调控的影响
1、RNA测序
为了全面阐明甘草次酸对L-02细胞基因表达情况的影响,本实施例使用Trizol试剂盒(Promega,Madison,USA)提取L-02细胞的总RNA,无论是否经过甘草次酸的处理均提取其总RNA。
L-02细胞在6孔板中培养(每孔1×106个细胞),然后用0μM、25μM、50μM、100μM的甘草次酸处理L-02细胞。用PBS洗涤细胞并收集用于随后的总RNA提取。根据说明书进行总RNA提取。使用Agilent 2100生物分析仪(Agilent Technologies,Santa Clara,CA,USA)验证提取物中RNA的质量。将RNA逆转录为cDNA,然后用市售试剂盒(QIAquick PCR提取试剂盒,Promega,Madison,USA)对其进行纯化。通过富集cDNA片段制备的cDNA文库在IlluminaHiSeq2000平台上进行测序。在对照细胞和甘草次酸处理的细胞之间鉴定差异表达基因(DEGs)。使用TopHat v2.0.4将读数映射到人类基因组,并使用Cufflinks v2.0.2计算基因表达(RPKM)值。将≥0.3的最小RPKM表达阈值应用于数据。采用Cuffdiff进行差异基因表达的统计分析,显著性错误发现率(False discovery rate,FDR)为5%。P<0.05和|Log2FC|>1的基因被认为是差异表达基因(DEGs)。DAVID Bioinformatics Resources 6.8(https://david.ncifcrf.gov)被引用用于后续执行基因本体(GO)富集分析和KEEG通路分析(http://www.genome.jp/kegg/)。
2、实验结果
分析经甘草次酸处理后的L-02细胞中的转录组变化,其中,筛选得到的P<0.05和|Log2FC|>1的基因被认为是DEGs,本实施例在甘草次酸处理组共鉴定出2856个差异表达基因(DEGs),其中上调基因1351个,下调基因1505个(见图3A)。所有DEGs的表达水平在对照组(DMSO组)和处理组之间均存在显著的差异(见图3B),研究结果表明了这些DEGs与甘草次酸对L-02细胞的影响有关;
进一步对筛选得到的DEGs进行基因本体富集分析,结果见图3C所示,对DEGs进行了京都基因和基因组百科全书(KEGG)通路富集,前30个显著富集的通路如图3D所示,包括TNF信号通路和NF-κB信号通路等。
实施例4甘草次酸处理对L-02细胞NF-κB通路的影响
1、RNA提取和实时定量PCR
将L-02细胞以1×105个细胞/mL的密度接种于12孔板中,并用不同浓度的甘草次酸(25μM、50μM、100μM)或DMSO处理24小时,然后用Trizol试剂(Invitrogen)提取,在无RNase的环境下通过向细胞中加入氯仿和异丙醇的方法提取细胞中的RNA。提取的RNA浓度用2000分光光度计(Termo Scientific,USA)进行检测。
使用cDNA逆转录试剂盒(Takara Bio,日本)将RNA逆转录为cDNA,并使用AppliedBiosystemsTMQuantStudioTM5Real-Time PCR System通过
Figure BDA0003545005620000112
qPCR SYBR Green MasterMix(Yeasen Biotechnology,上海,中国)进行定量检测。基因的量化被归一化为GAPDH并表示为2-ΔΔCt。每次实验至少重复三次。本实施例中使用的引物如下表1所示。
表1引物序列
Figure BDA0003545005620000111
2、统计分析
每组实验重复3次,获得的最终数据表示为平均标准偏差(SD)。GraphPad Prism软件(版本7,GraphPad,San Diego,CA,USA)用于数据的分析。通过t检验和单因素方差分析(ANOVA)检测各组之间的统计差异。P值≤0.05的差异被认为具有统计学意义。
3、实验结果
结果显示,甘草次酸显著促进了L-02细胞中TRAF1、TRAF3、IL-1β、MAP3K14、IL-6和ATF4 mRNA的表达水平(见图4A-F),其中,TRAF1、IL-1β、IL-6和ATF4的产生是由甘草次酸以浓度依赖性方式诱导的(见图4A、图4C、图4E、图4F),而诱导TRAF3和MAP3K14表达的最有效的甘草次酸的浓度分别为50μM和100μM(见图4B和图4D)。
实施例5甘草次酸激活NF-κB通路的验证
1、蛋白质印迹实验
将L-02细胞以106个细胞/孔的密度接种于6孔板中过夜。当细胞达到60%-70%的汇合度时,用不同浓度的甘草次酸(25μM、50μM、100μM)或DMSO处理L-02细胞。处理48小时后,收集细胞上清液用于随后的酶联免疫吸附试验中(ELISA),而细胞用预冷的PBS洗涤,并用加入蛋白酶和磷酸酶抑制剂的预冷的RIPA裂解液裂解。然后以12000rpm离心15分钟后收集细胞蛋白。使用Bradford蛋白测定法测定细胞中蛋白质的浓度。
变性后,细胞蛋白在15%SDS-聚丙烯酰胺凝胶上分离,并通过电泳转移到聚偏二氟乙烯膜上,在含有0.05%Tween-20 Tris缓冲液的5%脱脂牛奶中封闭1小时后,将膜与靶向NF-κB p105/p50、NF-κB p100/p52、TRAF1、TRAF3、CyclinD1、Survivin、MMP9、CXCL8、TRIM25和GAPDH(Abcam,USA)4℃过夜。第二天,将相应的二抗在室温下应用于膜上1小时。通过增强的化学发光系统(Applygen Technologies Inc.,北京,中国)检测蛋白质条带,并用Image J软件测量条带灰度值。
2、ELISA检测
为了评价甘草次酸处理对人正常肝细胞L-02促炎细胞因子表达的影响,本实施例检测了上述实验收集得到的细胞上清液中IL-6、IL-1β和TNF-α的表达水平。用于IL-6、IL-1β和TNF-α检测的商业ELISA试剂盒均购自于R&D system。所述检测过程是根据制造商的说明书进行的。
3、数据分析
数据表示为从至少三个重复实验中获得的平均值±标准差(mean±SD)。用Student's t检验比较了甘草次酸处理组合对照组之间的基因表达水平或蛋白质表达水平。采用单因素方差分析评估不同浓度(25μM、50μM、100μM)的甘草次酸处理组之间的基因表达水平或蛋白质水平。P<0.05被认为具有统计学意义。
4、实验结果
结果显示,25μM、50μM、100μM的甘草次酸均显著刺激L-02细胞中促炎细胞因子蛋白表达水平的增加,包括TNF-α、IL-1和IL-6,此外,50μM和100μM的甘草次酸处理显著促进了TNF-α、IL-1和IL-6的表达(见图5B-图5D);
结果显示,甘草次酸处理促进了L-02细胞中TRAF1和NF-κB2的表达(见图5A),并且随着甘草次酸处理浓度的增加,TRAF1和NF-κB2的表达水平逐渐增加。此外,在不同浓度甘草次酸处理的L-02细胞中,与对照组相比,IL-1β和CXCL8的表达显著升高(见图5A和图5C);随着甘草次酸处理浓度的增加,NF-κB p105/p50、NF-κB p100/p52、TRAF1、TRAF3、CyclinD1、Survivin、MMP9、CXCL8和TRIM25蛋白的表达水平显著增加(见图5A),以上结果表明了甘草次酸处理激活了L-02细胞中的NF-κB通路。
上述实施例的说明只是用于理解本发明的方法及其核心思想。应当指出,对于本领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也将落入本发明权利要求的保护范围内。
序列表
<110> 军事科学院军事医学研究院环境医学与作业医学研究所
<120> 甘草次酸诱导肝细胞氧化应激和炎症反应及其应用
<141> 2022-03-14
<160> 12
<170> SIPOSequenceListing 1.0
<210> 1
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
tcctgtggaa gatcaccaat gt 22
<210> 2
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
gcaggcacaa cttgtagcc 19
<210> 3
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
cagactaacc cgccgctaaa g 21
<210> 4
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
gatgctctct tgacacgctg t 21
<210> 5
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
atgatggctt attacagtgg caa 23
<210> 6
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
gtcggagatt cgtagctgga 20
<210> 7
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
cggaaagtgg gagatcctga a 21
<210> 8
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
gggcgatgat agagatggca g 21
<210> 9
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
actcacctct tcagaacgaa ttg 23
<210> 10
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
ccatctttgg aaggttcagg ttg 23
<210> 11
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
atgaccgaaa tgagcttcct g 21
<210> 12
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 12
gctggagaac ccatgaggt 19

Claims (5)

1.甘草次酸在构建肝损伤细胞系模型中的应用,其特征在于,所述甘草次酸的使用浓度为25-100 μM,所述细胞系为L-02细胞系。
2.根据权利要求1所述的应用,其特征在于,所述肝损伤细胞系模型的构建包括如下步骤:体外培养人正常肝细胞系,将甘草次酸加入到所述人正常肝细胞系中,得到肝损伤细胞系模型;
所述人正常肝细胞系为L-02细胞系;
所述甘草次酸的使用浓度为25-100 μM。
3.一种肝损伤细胞系模型的构建方法,其特征在于,所述方法包括如下步骤:体外培养人正常肝细胞系,将甘草次酸加入到所述人正常肝细胞系中,得到肝损伤细胞系模型;
所述人正常肝细胞系为L-02细胞系;
所述甘草次酸的使用浓度为25-100 μM。
4.甘草次酸在诱导肝细胞氧化应激中的应用,其特征在于,所述甘草次酸诱导丙二醛和活性氧的产生,同时抑制谷胱甘肽和超氧化物歧化酶的活性;
所述甘草次酸的使用浓度为25-100 μM,所述肝细胞为L-02细胞系。
5.甘草次酸在激活肝细胞NF-κB通路中的应用,其特征在于,所述甘草次酸促进肝细胞中NF-κB p105/p50、NF-κB p100/p52、TRAF1、TRAF3、CyclinD1、Survivin、MMP9、CXCL8和TRIM25的产生;
所述甘草次酸的使用浓度为25-100 μM,所述肝细胞为L-02细胞系。
CN202210245325.0A 2022-03-14 2022-03-14 甘草次酸诱导肝细胞氧化应激和炎症反应及其应用 Active CN114480256B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210245325.0A CN114480256B (zh) 2022-03-14 2022-03-14 甘草次酸诱导肝细胞氧化应激和炎症反应及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210245325.0A CN114480256B (zh) 2022-03-14 2022-03-14 甘草次酸诱导肝细胞氧化应激和炎症反应及其应用

Publications (2)

Publication Number Publication Date
CN114480256A CN114480256A (zh) 2022-05-13
CN114480256B true CN114480256B (zh) 2023-05-26

Family

ID=81485806

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210245325.0A Active CN114480256B (zh) 2022-03-14 2022-03-14 甘草次酸诱导肝细胞氧化应激和炎症反应及其应用

Country Status (1)

Country Link
CN (1) CN114480256B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115645413A (zh) * 2022-09-23 2023-01-31 中南大学湘雅二医院 甘草次酸的新用途

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9173852B2 (en) * 2008-04-08 2015-11-03 Tian Si Polymer Materials Technology Development Co. Glycyrrhetinic acid-mediated nanoparticles of hepatic targeted drug delivery system, process for preparing the same and use thereof
CN101254308B (zh) * 2008-04-08 2010-09-15 南开大学 甘草次酸-聚乙二醇/壳聚糖肝靶向复合给药系统及制备方法
CN102258524B (zh) * 2011-06-10 2015-08-19 中国科学院上海生命科学研究院湖州营养与健康产业创新中心 甘草次酸的医药用途
CN102727471A (zh) * 2012-07-06 2012-10-17 中国人民解放军军事医学科学院放射与辐射医学研究所 五味子甲素在制备治疗胆汁酸淤积性肝损伤的药物中的应用
CN102864121A (zh) * 2012-10-11 2013-01-09 中国药科大学 脂肪细胞/肝细胞共培养模型进行降脂药物快速筛选的模型及其应用

Also Published As

Publication number Publication date
CN114480256A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
Qi et al. Sulforaphane exerts anti-inflammatory effects against lipopolysaccharide-induced acute lung injury in mice through the Nrf2/ARE pathway
Kim et al. Afzelin suppresses proinflammatory responses in particulate matter-exposed human keratinocytes
Lee et al. The prevention of TNF-α/IFN-γ mixture-induced inflammation in human keratinocyte and atopic dermatitis-like skin lesions in Nc/Nga mice by mineral-balanced deep sea water
Sun et al. Nucleosides isolated from Ophiocordyceps sinensis inhibit cigarette smoke extract-induced inflammation via the SIRT1–nuclear factor-κB/p65 pathway in RAW264. 7 macrophages and in COPD mice
Liang et al. The antioxidant rosmarinic acid ameliorates oxidative lung damage in experimental allergic asthma via modulation of NADPH oxidases and antioxidant enzymes
Zheng et al. (±) Equol inhibits invasion in prostate cancer DU145 cells possibly via down-regulation of matrix metalloproteinase-9, matrix metalloproteinase-2 and urokinase-type plasminogen activator by antioxidant activity
Liu et al. Taxifolin, extracted from waste larix olgensis roots, attenuates CCl4-induced liver fibrosis by regulating the PI3K/AKT/mTOR and TGF-β1/Smads signaling pathways
CN114480256B (zh) 甘草次酸诱导肝细胞氧化应激和炎症反应及其应用
Kim et al. Acanthopanax senticosus has a heme oxygenase-1 signaling-dependent effect on Porphyromonas gingivalis lipopolysaccharide-stimulated macrophages
Jia et al. Inhibition of cardiotrophin‑1 overexpression is involved in the anti‑fibrotic effect of Astrogaloside IV
Trejo-Moreno et al. Cucumis sativus aqueous fraction inhibits angiotensin II-induced inflammation and oxidative stress in vitro
Gu et al. Total flavonoids of sea buckthorn (Hippophae rhamnoides L.) improve MC903-induced atopic dermatitis-like lesions
Song et al. Korean red ginseng and Korean black ginseng extracts, JP5 and BG1, prevent hepatic oxidative stress and inflammation induced by environmental heat stress
Costa et al. ROS/RNS balancing, aerobic fermentation regulation and cell cycle control–a complex early trait (‘CoV-MAC-TED’) for combating SARS-CoV-2-induced cell reprogramming
Tan et al. Schisandrin B induced ROS-mediated autophagy and Th1/Th2 imbalance via selenoproteins in Hepa1-6 cells
Qian et al. Portulaca oleracea alleviates CCl4-induced acute liver injury by regulating hepatic S100A8 and S100A9
Tran et al. In vitro Screening of Herbal Medicinal Products for Their Supportive Curing Potential in the Context of SARS‐CoV‐2
Tao et al. Metformin alleviates chronic obstructive pulmonary disease and cigarette smoke extract-induced glucocorticoid resistance by activating the nuclear factor E2-related factor 2/heme oxygenase-1 signaling pathway
Jiao et al. Transcriptomic analysis of the anti-inflammatory effect of Cordyceps militaris extract on acute gouty arthritis
Devi et al. Immunomodulatory effects of Premna tomentosa extract against Cr (VI) induced toxicity in splenic lymphocytes—an in vitro study
Oh et al. Effects of oral administration of Phellinus linteus on the production of Th1-and Th2-type cytokines in mice
Liu et al. Troxerutin suppress inflammation response and oxidative stress in jellyfish dermatitis by activating Nrf2/HO-1 signaling pathway
Song et al. Vitamin C inhibits apoptosis in THP‑1 cells in response to incubation with Mycobacterium tuberculosis
CN114438016B (zh) 石斛酚对肝细胞的毒性作用及其在肝细胞毒性研究中的用途
Yang et al. Proteomics analysis of the protective effect of canola (Brassica campestris L.) bee pollen flavonoids on the tert-butyl hydroperoxide-induced EA. hy926 cell injury model

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant