CN114477312B - Method for preparing ternary positive electrode material precursor by layered doping - Google Patents
Method for preparing ternary positive electrode material precursor by layered doping Download PDFInfo
- Publication number
- CN114477312B CN114477312B CN202111658802.8A CN202111658802A CN114477312B CN 114477312 B CN114477312 B CN 114477312B CN 202111658802 A CN202111658802 A CN 202111658802A CN 114477312 B CN114477312 B CN 114477312B
- Authority
- CN
- China
- Prior art keywords
- solution
- salt solution
- precursor
- preparing
- salt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002243 precursor Substances 0.000 title claims abstract description 51
- 239000007774 positive electrode material Substances 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000006243 chemical reaction Methods 0.000 claims abstract description 63
- 239000000243 solution Substances 0.000 claims abstract description 60
- 239000012266 salt solution Substances 0.000 claims abstract description 51
- 239000007788 liquid Substances 0.000 claims abstract description 36
- 239000002245 particle Substances 0.000 claims abstract description 35
- 238000000975 co-precipitation Methods 0.000 claims abstract description 21
- 229910052751 metal Inorganic materials 0.000 claims abstract description 20
- 239000002184 metal Substances 0.000 claims abstract description 19
- 239000010406 cathode material Substances 0.000 claims abstract description 18
- 150000003297 rubidium Chemical class 0.000 claims abstract description 17
- 150000002751 molybdenum Chemical class 0.000 claims abstract description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 15
- 238000003756 stirring Methods 0.000 claims abstract description 14
- 239000008139 complexing agent Substances 0.000 claims abstract description 11
- 229910001419 rubidium ion Inorganic materials 0.000 claims abstract description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000008367 deionised water Substances 0.000 claims abstract description 6
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 6
- 238000001035 drying Methods 0.000 claims abstract description 6
- 239000000463 material Substances 0.000 claims abstract description 6
- 238000005406 washing Methods 0.000 claims abstract description 6
- 239000011258 core-shell material Substances 0.000 claims abstract description 3
- 229910052742 iron Inorganic materials 0.000 claims abstract description 3
- 238000012216 screening Methods 0.000 claims abstract 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 17
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 17
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 9
- 150000002696 manganese Chemical class 0.000 claims description 6
- 150000001868 cobalt Chemical class 0.000 claims description 5
- 150000002815 nickel Chemical class 0.000 claims description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 4
- -1 halogen salt Chemical class 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 239000011733 molybdenum Substances 0.000 claims description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- 238000009826 distribution Methods 0.000 claims description 3
- 239000011572 manganese Substances 0.000 claims description 3
- 229910002651 NO3 Inorganic materials 0.000 claims description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 2
- 229910021529 ammonia Inorganic materials 0.000 claims description 2
- 239000007864 aqueous solution Substances 0.000 claims description 2
- 229910052736 halogen Inorganic materials 0.000 claims description 2
- 229910021645 metal ion Inorganic materials 0.000 claims description 2
- 239000012716 precipitator Substances 0.000 claims 3
- 230000032683 aging Effects 0.000 claims 1
- 238000003483 aging Methods 0.000 claims 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 abstract description 8
- 229910001416 lithium ion Inorganic materials 0.000 abstract description 8
- 230000014759 maintenance of location Effects 0.000 abstract description 6
- 230000006911 nucleation Effects 0.000 abstract description 4
- 238000010899 nucleation Methods 0.000 abstract description 4
- 239000003795 chemical substances by application Substances 0.000 abstract description 2
- 239000012141 concentrate Substances 0.000 abstract description 2
- 230000001376 precipitating effect Effects 0.000 abstract description 2
- 230000002431 foraging effect Effects 0.000 abstract 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 15
- 239000003513 alkali Substances 0.000 description 14
- KFDQGLPGKXUTMZ-UHFFFAOYSA-N [Mn].[Co].[Ni] Chemical compound [Mn].[Co].[Ni] KFDQGLPGKXUTMZ-UHFFFAOYSA-N 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000012535 impurity Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 6
- 229910001873 dinitrogen Inorganic materials 0.000 description 6
- 230000002572 peristaltic effect Effects 0.000 description 6
- 230000035484 reaction time Effects 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- 238000001914 filtration Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229910052701 rubidium Inorganic materials 0.000 description 3
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- SDEPJGRDJDRALP-UHFFFAOYSA-N [Mo].[Rb] Chemical compound [Mo].[Rb] SDEPJGRDJDRALP-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/80—Compounds containing nickel, with or without oxygen or hydrogen, and containing one or more other elements
- C01G53/82—Compounds containing nickel, with or without oxygen or hydrogen, and containing two or more other elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
本发明公开了一种分层掺杂制备三元正极材料前驱体的方法,向反应釜底液中加入金属盐溶液、沉淀剂溶液、络合剂溶液和铷盐溶液,进行共沉淀反应,待反应釜内颗粒粒径生长至小于目标粒径0.5~3μm时,暂停进料,加入去离子水,浓缩置换出反应釜中含有铷离子的料液;然后继续共沉淀反应,同时加入钼盐溶液进行共沉淀反应,至颗粒平均粒径生长至目标粒径,停止进料,得含有前驱体材料的溶液;将所得含有前驱体材料的溶液搅拌进行陈化、洗涤、干燥、筛分、除铁,得核壳结构三元正极材料前驱体。本发明可防止三元正极材料前驱体成核过程中裂纹产生,提高三元正极材料的高温循环性能与倍率性的同时,提高锂离子电池电导率和容量保持率。The invention discloses a method for preparing a precursor of a ternary positive electrode material by layered doping. A metal salt solution, a precipitating agent solution, a complexing agent solution and a rubidium salt solution are added to the bottom liquid of a reaction kettle to carry out a co-precipitation reaction. When the particle size in the reactor grows to less than the target particle size of 0.5 ~ 3 μm, stop feeding, add deionized water, concentrate and replace the feed liquid containing rubidium ions in the reactor; then continue the co-precipitation reaction, and add molybdenum salt solution at the same time Carry out co-precipitation reaction until the average particle size grows to the target particle size, stop feeding, and obtain a solution containing precursor materials; stir the obtained solution containing precursor materials for aging, washing, drying, screening, and iron removal , to obtain the core-shell structure ternary cathode material precursor. The invention can prevent the generation of cracks in the nucleation process of the precursor of the ternary positive electrode material, improve the high-temperature cycle performance and rate performance of the ternary positive electrode material, and at the same time improve the conductivity and capacity retention rate of the lithium ion battery.
Description
技术领域technical field
本发明涉及三元正极材料前驱体,尤其是一种分层掺杂制备三元正极材料前驱体的方法。The invention relates to a ternary positive electrode material precursor, in particular to a method for preparing the ternary positive electrode material precursor by layered doping.
背景技术Background technique
镍钴锰三元正极材料前驱体是制备锂离子电池正极材料最重要的原材料,三元前驱体主要制备方法是把镍钴锰金属盐溶液、液碱、氨水同时加入反应釜中进行共沉淀反应,由于设备及工艺条件限制,在共沉淀反应形核过程中通常会有微裂纹产生。为更好发挥三元正极材料优异的性能,其前驱体的制备对三元正极材料的生产至关重要,因为前驱体的品质(形貌、粒径、粒径分布、比表面积、杂质含量、振实密度等)直接决定了最后烧结产物的理化指标,导致烧结而成的三元正极材料电性能一般,循环性能和比容量较差,为了解决这些缺陷,目前在三元前驱体的制备过程中大多采用掺杂其他金属元素或在三元前驱体表面包覆的方法,掺杂或包覆虽然可以提高三元正极材料的高温循环性能与倍率性,但是其制备而成的锂离子电池电导率和容量保持率差,不能满足需求。The precursor of nickel-cobalt-manganese ternary cathode material is the most important raw material for the preparation of lithium-ion battery cathode materials. The main preparation method of the ternary precursor is to add nickel-cobalt-manganese metal salt solution, liquid caustic soda, and ammonia water into the reactor at the same time for co-precipitation reaction , due to the limitations of equipment and process conditions, microcracks are usually generated during the nucleation process of the co-precipitation reaction. In order to give full play to the excellent performance of the ternary cathode material, the preparation of its precursor is crucial to the production of the ternary cathode material, because the quality of the precursor (morphology, particle size, particle size distribution, specific surface area, impurity content, Tap density, etc.) directly determine the physical and chemical indicators of the final sintered product, resulting in the general electrical properties of the sintered ternary cathode material, poor cycle performance and specific capacity, in order to solve these defects, currently in the preparation process of the ternary precursor Most of them use the method of doping other metal elements or coating on the surface of the ternary precursor. Although doping or coating can improve the high-temperature cycle performance and rate performance of the ternary cathode material, the electrical conductivity of the lithium-ion battery prepared by it The rate and capacity retention rate are poor, which cannot meet the demand.
发明内容Contents of the invention
本发明所要解决的技术问题是提供一种分层掺杂制备三元正极材料前驱体的方法,防止三元正极材料前驱体成核过程中裂纹产生,提高三元正极材料的高温循环性能与倍率性的同时,提高锂离子电池电导率和容量保持率。The technical problem to be solved by the present invention is to provide a method for preparing the precursor of the ternary positive electrode material by layered doping, to prevent cracks from being generated during the nucleation process of the precursor of the ternary positive electrode material, and to improve the high temperature cycle performance and rate of the ternary positive electrode material At the same time, it improves the conductivity and capacity retention of lithium-ion batteries.
本发明解决其技术问题所采用的技术方案是:一种分层掺杂制备三元正极材料前驱体的方法,包括以下步骤:The technical solution adopted by the present invention to solve the technical problem is: a method for preparing a ternary cathode material precursor by layered doping, comprising the following steps:
(1)配制金属盐溶液、沉淀剂溶液、络合剂溶液、铷盐溶液和钼盐溶液;(1) Prepare metal salt solution, precipitant solution, complexing agent solution, rubidium salt solution and molybdenum salt solution;
(2)在反应釜中加入水、络合剂溶液、沉淀剂溶液,搅拌、恒温,配制反应釜底液;(2) Add water, complexing agent solution, precipitating agent solution in reaction kettle, stir, constant temperature, prepare reaction kettle bottom liquid;
(3)向反应釜底液中加入金属盐溶液、沉淀剂溶液、络合剂溶液和铷盐溶液,进行共沉淀反应,待反应釜内颗粒粒径生长至小于目标粒径0.5~3μm时,暂停进料,加入去离子水,浓缩置换出反应釜中含有铷离子的料液;(3) Add metal salt solution, precipitant solution, complexing agent solution and rubidium salt solution to the reaction kettle bottom liquid, carry out co-precipitation reaction, when the particle size in the reaction kettle grows to be less than the target particle size of 0.5 ~ 3 μm, Suspend feeding, add deionized water, concentrate and replace the feed liquid containing rubidium ions in the reactor;
(4)然后继续向反应釜中加入金属盐溶液、沉淀剂溶液、络合剂溶液,同时加入钼盐溶液进行共沉淀反应,至颗粒平均粒径生长至目标粒径,停止进料,得含有前驱体材料的溶液;(4) Then continue to add metal salt solution, precipitant solution, complexing agent solution in reactor, add molybdenum salt solution simultaneously and carry out co-precipitation reaction, grow to target particle diameter to particle average particle diameter, stop feeding, must contain a solution of a precursor material;
(5)将步骤(4)所得含有前驱体材料的溶液搅拌进行陈化、洗涤、干燥、筛分、除铁,得核壳结构三元正极材料前驱体。(5) Stir the solution containing the precursor material obtained in step (4) to age, wash, dry, sieve, and remove iron to obtain a core-shell structure ternary cathode material precursor.
进一步的,所述金属盐溶液为含有镍盐、钴盐、锰盐的水溶液,所述镍、钴、锰盐的摩尔比为60~90︰5~20︰10~30,所述金属盐溶液中金属离子的总浓度为1~2mol/L,所述的镍盐、钴盐、锰盐为硫酸盐、硝酸盐、卤素盐中的至少一种。Further, the metal salt solution is an aqueous solution containing nickel salt, cobalt salt, and manganese salt, and the molar ratio of the nickel, cobalt, and manganese salts is 60-90:5-20:10-30, and the metal salt solution The total concentration of metal ions in the medium is 1-2 mol/L, and the nickel salt, cobalt salt, and manganese salt are at least one of sulfate, nitrate, and halogen salt.
进一步的,所述的沉淀剂溶液为浓度为5~12mol/L的氢氧化钠溶液,所述的络合剂溶液为质量浓度为12%~24%的氨水溶液,所述铷盐溶液中铷离子浓度为0.1~1mol/L,钼盐溶液中钼离子浓度为0.1~1mol/L。Further, the precipitant solution is a sodium hydroxide solution with a concentration of 5-12mol/L, the complexing agent solution is an ammonia solution with a mass concentration of 12%-24%, and the rubidium salt solution in the rubidium salt solution is The ion concentration is 0.1-1mol/L, and the molybdenum ion concentration in the molybdenum salt solution is 0.1-1mol/L.
进一步的,所述步骤(3)、步骤(4)中控制反应温度为40~70℃,pH值为11.5~13,氨浓度为2~16g/L,搅拌转速为300~600rpm。Further, in the step (3) and step (4), the reaction temperature is controlled to be 40-70° C., the pH value is 11.5-13, the ammonia concentration is 2-16 g/L, and the stirring speed is 300-600 rpm.
进一步的,所述金属盐溶液的进料量为20~500L/h,铷盐溶液与金属盐溶液的进料量比为1︰200~10000,钼盐溶液与金属盐溶液的进料量比为1︰200~10000。Further, the feed rate of the metal salt solution is 20 to 500 L/h, the feed rate ratio of the rubidium salt solution to the metal salt solution is 1:200 to 10000, and the feed rate ratio of the molybdenum salt solution to the metal salt solution It is 1:200~10000.
进一步的,步骤(3)所述的颗粒平均粒径为粒度分布D50值,目标粒径为3~13μm。Further, the average particle size of the particles described in step (3) is the D50 value of the particle size distribution, and the target particle size is 3-13 μm.
进一步的,所制得的三元正极材料前驱体分子式为:NixCoyMn1-x-y(OH)2[Rb]m[Mo]n,m和n为掺杂量,其中,0.50≤x≤0.90、0.05≤y≤0.30、0.05≤1-x-y≤0.30、0.0001≤m≤0.005、0.0001≤n≤0.005。Further, the molecular formula of the prepared ternary cathode material precursor is: Ni x Co y Mn 1-xy (OH) 2 [Rb] m [Mo] n , m and n are doping amounts, where, 0.50≤x ≤0.90, 0.05≤y≤0.30, 0.05≤1-xy≤0.30, 0.0001≤m≤0.005, 0.0001≤n≤0.005.
进一步的,步骤(3)中,通过浓缩置换出反应釜中含有铷离子的料液。Further, in step (3), the feed liquid containing rubidium ions in the reactor is replaced by concentration.
由上述的一种分层掺杂制备三元正极材料前驱体的方法制得的三元正极材料。A ternary positive electrode material prepared by the above-mentioned method for preparing a precursor of a ternary positive electrode material by layered doping.
一种锂离子电池,所述锂离子电池包括上述的三元正极材料。A lithium ion battery, comprising the above-mentioned ternary positive electrode material.
本发明的有益效果是:本发明一种分层掺杂制备三元正极材料前驱体的方法,防止三元正极材料前驱体成核过程中裂纹产生,提高三元正极材料的高温循环性能与倍率性的同时,提高锂离子电池电导率和容量保持率,其1C倍率循环100次容量最高为192.5mah/g,电导率最高为9.7×10-3,循环100次容量保持率最高为92.68%。The beneficial effects of the present invention are: a method for preparing the precursor of the ternary positive electrode material by layered doping in the present invention, which prevents the generation of cracks during the nucleation process of the precursor of the ternary positive electrode material, and improves the high-temperature cycle performance and rate of the ternary positive electrode material At the same time, the conductivity and capacity retention of lithium-ion batteries are improved. The highest capacity of 100 cycles at 1C rate is 192.5mah/g, the highest conductivity is 9.7×10 -3 , and the highest capacity retention rate is 92.68% after 100 cycles.
具体实施方式Detailed ways
下面结合实施例对本发明进一步说明。Below in conjunction with embodiment the present invention is further described.
实施例1:Example 1:
向反应釜中加入纯水并加热至60℃,然后将配制的液碱溶液调整pH为12.0,然后加入氨水溶液将底液调配为4.5g/L,反应釜内部搅拌桨叶以260r/min的转速运行,配制得到共沉淀反应的底液。然后以300L/h的流量加入1.98mol/L的镍钴锰溶液(镍钴锰摩尔比为67:13:20)、以185L/h的流量加入32%的液碱溶液、30L/h的流量加入21%的氨水溶液,使用蠕动泵以100ml/min流量加入0.5mol/L铷盐溶液,反应时,ph以0.05/h速率降低至11.60后保持,在反应前7小时以3000L/h的流量通入纯度99.99%的氮气,8小时后以500L/h的流量通入压缩空气。在反应釜中发生30个小时的共沉淀反应后,粒度D50生长到3μm,暂停进料,加入去离子水,通过浓缩出清置换出剩余铷离子,等待2h后继续进料,将铷盐溶液改为钼盐溶液,流量不变,待颗粒D50值生长至4μm时停止进料,总反应时长为75h。将三元正极材料前驱体料液经洗涤杂质、过滤、脱水、干燥后得到分层掺杂的三元正极材料前驱体。Add pure water into the reaction kettle and heat it to 60°C, then adjust the pH of the prepared liquid alkali solution to 12.0, then add ammonia solution to adjust the bottom liquid to 4.5g/L, and the stirring blade inside the reaction kettle is set at 260r/min Run at a high speed to prepare the bottom solution for the co-precipitation reaction. Then add 1.98mol/L nickel-cobalt-manganese solution (the molar ratio of nickel-cobalt-manganese is 67:13:20) at a flow rate of 300L/h, add 32% liquid alkali solution at a flow rate of 185L/h, and add a flow rate of 30L/h Add 21% ammonia solution, and use a peristaltic pump to add 0.5mol/L rubidium salt solution at a flow rate of 100ml/min. During the reaction, the pH is reduced to 11.60 at a rate of 0.05/h and then maintained. The flow rate is 3000L/h for 7 hours before the reaction Nitrogen gas with a purity of 99.99% was fed in, and compressed air was fed in at a flow rate of 500 L/h after 8 hours. After 30 hours of co-precipitation reaction in the reactor, the particle size D50 grows to 3 μm, the feeding is suspended, deionized water is added, and the remaining rubidium ions are replaced by concentrating and clearing, and the feeding is continued after waiting for 2 hours. Change to molybdenum salt solution, the flow rate remains unchanged, stop feeding when the particle D50 value grows to 4μm, and the total reaction time is 75h. Washing impurities, filtering, dehydrating and drying the ternary positive electrode material precursor liquid to obtain a layered doped ternary positive electrode material precursor.
实施例2:Example 2:
向反应釜中加入纯水并加热至60℃,然后将配制的液碱溶液调整pH为11.95,然后加入氨水溶液将底液调配为5g/L,反应釜内部搅拌桨叶以260r/min的转速运行,配制得到共沉淀反应的底液。然后以300L/h的流量加入1.98mol/L的镍钴锰溶液、以185L/h的流量加入32%的液碱溶液、30L/h的流量加入21%的氨水溶液,使用蠕动泵以200ml/min流量加入0.5mol/L的铷盐溶液,反应时,ph以0.05/h速率降低至11.60后保持,在反应前6小时以3000L/h的流量通入纯度99.99%的氮气,7小时后以500L/h的流量通入压缩空气。在反应釜中发生27个小时的共沉淀反应后,粒度D50生长到3μm,暂停进料,加入去离子水,通过浓缩出清置换出剩余铷离子,等待2h后继续进料,待3h后继续进料,将铷盐溶液改为钼盐溶液,流量不变,待粒度继续生长至3.6-3.7μm时停机,总反应时长为68h。将三元前驱体浆料经洗涤杂质、过滤、脱水、干燥后得到分层掺杂的三元前驱体。Add pure water to the reaction kettle and heat it to 60°C, then adjust the pH of the prepared liquid alkali solution to 11.95, then add ammonia solution to adjust the bottom liquid to 5g/L, and the stirring blade inside the reaction kettle is at a speed of 260r/min Run, and prepare the bottom liquid of co-precipitation reaction. Then add 1.98mol/L nickel-cobalt-manganese solution at a flow rate of 300L/h, add 32% liquid alkali solution at a flow rate of 185L/h, add 21% ammonia solution at a flow rate of 30L/h, use a peristaltic pump to Add a 0.5mol/L rubidium salt solution at a flow rate of 0.5 mol/L. During the reaction, the ph decreases to 11.60 at a rate of 0.05/h and then maintains it. Nitrogen gas with a purity of 99.99% is introduced at a flow rate of 3000 L/h for 6 hours before the reaction. The flow rate of 500L/h is fed into the compressed air. After 27 hours of co-precipitation reaction in the reactor, the particle size D50 grows to 3 μm, the feeding is suspended, deionized water is added, and the remaining rubidium ions are replaced by concentration and clearing. After waiting for 2 hours, continue feeding, and continue after 3 hours. Feed, change the rubidium salt solution to molybdenum salt solution, the flow rate remains unchanged, stop when the particle size continues to grow to 3.6-3.7μm, and the total reaction time is 68h. The ternary precursor slurry is washed with impurities, filtered, dehydrated and dried to obtain a layered doped ternary precursor.
实施例3:Example 3:
反应釜中加入纯水并加热至60℃,将配制的液碱溶液调整pH为11.55,然后加入氨水溶液将底液调配为6.5g/L,反应釜内部搅拌桨叶以260r/min的转速运行,配制得到共沉淀反应的底液。然后以360L/h的流量加入1.98mol/L(比例:83:7:10)的镍钴锰溶液、以135L/h的流量加入32%的液碱溶液、25L/h的流量加入21%的氨水溶液,使用蠕动泵以150ml/min流量加入0.5mol/L的铷盐溶液,反应2h时,ph以0.05/h速率降低至11.40后保持,在反应期间全程通入3000L/h纯度99.99%的氮气保护。在反应釜中发生60个小时的共沉淀反应后,颗粒D50值生长至8μm时,暂停进料,加入去离子水,通过浓缩出清置换出剩余铷离子,等待2h后继续进料,将铷盐溶液改为0.5mol/L钼盐溶液,流量不变,待反应釜内颗粒D50值生长至10μm时停止进料,总反应时长为80h。将三元前驱体浆料经洗涤杂质、过滤、脱水、干燥后得到分层掺杂的三元前驱体。Add pure water into the reaction kettle and heat it to 60°C, adjust the pH of the prepared liquid alkali solution to 11.55, then add ammonia solution to adjust the bottom liquid to 6.5g/L, and the stirring blades inside the reaction kettle run at a speed of 260r/min , to prepare the bottom liquid of co-precipitation reaction. Then add 1.98mol/L (ratio: 83:7:10) nickel-cobalt-manganese solution at a flow rate of 360L/h, add 32% liquid alkali solution at a flow rate of 135L/h, and add 21% Ammonia solution, use a peristaltic pump to add 0.5mol/L rubidium salt solution at a flow rate of 150ml/min. When reacting for 2 hours, the ph is reduced to 11.40 at a rate of 0.05/h and then maintained. During the reaction, 3000L/h of purity 99.99% Nitrogen protection. After 60 hours of co-precipitation reaction in the reactor, when the D50 value of the particles grows to 8 μm, the feeding is suspended, deionized water is added, and the remaining rubidium ions are replaced by concentration and clearing. After waiting for 2 hours, continue to feed, and the rubidium The salt solution was changed to 0.5mol/L molybdenum salt solution, the flow rate remained unchanged, and the feeding was stopped when the D50 value of the particles in the reactor grew to 10 μm, and the total reaction time was 80h. The ternary precursor slurry is washed with impurities, filtered, dehydrated and dried to obtain a layered doped ternary precursor.
对比例1:(不掺杂铷钼,其他同实施例1)Comparative example 1: (no doping rubidium molybdenum, other with embodiment 1)
向反应釜中加入纯水并加热至60℃,然后将配制的液碱溶液调整pH为12.0,然后加入氨水溶液将底液调配为4.5g/L,反应釜内部搅拌桨叶以260r/min的转速运行,配制得到共沉淀反应的底液。然后以300L/h的流量加入1.98mol/L的镍钴锰溶液、以185L/h的流量加入32%的液碱溶液、30L/h的流量加入21%的氨水溶液,反应时,ph以0.05/h速率降低至11.60后保持,在反应前7小时以3000L/h的流量通入纯度99.99%的氮气,8小时后以500L/h的流量通入压缩空气。在反应釜中发生98h的共沉淀反应后,粒度生长至3.6um时停机。将三元前驱体浆料经洗涤杂质、过滤、脱水、干燥后得到三元前驱体。Add pure water into the reaction kettle and heat it to 60°C, then adjust the pH of the prepared liquid alkali solution to 12.0, then add ammonia solution to adjust the bottom liquid to 4.5g/L, and stir the blades inside the reaction kettle at a speed of 260r/min Run at a high speed to prepare the bottom solution for the co-precipitation reaction. Then add 1.98mol/L nickel-cobalt-manganese solution at a flow rate of 300L/h, add 32% liquid alkali solution at a flow rate of 185L/h, add 21% ammonia solution at a flow rate of 30L/h, and during the reaction, the pH is 0.05 After the /h rate was reduced to 11.60, the nitrogen gas with a purity of 99.99% was fed at a flow rate of 3000 L/h for 7 hours before the reaction, and compressed air was fed with a flow rate of 500 L/h after 8 hours. After 98 hours of co-precipitation reaction in the reactor, stop when the particle size grows to 3.6um. The ternary precursor slurry is washed with impurities, filtered, dehydrated and dried to obtain a ternary precursor.
对比例2:(其他同实施例1,不进行浓缩置换)Comparative example 2: (other is the same as embodiment 1, does not carry out concentrated replacement)
向反应釜中加入纯水并加热至60℃,然后将配制的液碱溶液调整pH为12.0,然后加入氨水溶液将底液调配为4.5g/L,反应釜内部搅拌桨叶以260r/min的转速运行,配制得到共沉淀反应的底液。然后以300L/h的流量加入1.98mol/L的镍钴锰溶液、以185L/h的流量加入32%的液碱溶液、30L/h的流量加入21%的氨水溶液,使用蠕动泵以100ml/min流量加入0.5mol/L的铷盐溶液,反应时,ph以0.05/h速率降低至11.60后保持,在反应前7小时以3000L/h的流量通入纯度99.99%的氮气,8小时后以500L/h的流量通入压缩空气。在反应釜中发生30个小时的共沉淀反应后,粒度D50生长到3μm,暂停进铷盐溶液,以同样的流量通入钼盐溶液,待颗粒D50值生长至4μm时停止进料,总反应时长为75h。将三元正极材料前驱体料液经洗涤杂质、过滤、脱水、干燥后得到分层掺杂的三元正极材料前驱体。Add pure water into the reaction kettle and heat it to 60°C, then adjust the pH of the prepared liquid alkali solution to 12.0, then add ammonia solution to adjust the bottom liquid to 4.5g/L, and the stirring blade inside the reaction kettle is set at 260r/min Run at a high speed to prepare the bottom solution for the co-precipitation reaction. Then add 1.98mol/L nickel-cobalt-manganese solution at a flow rate of 300L/h, add 32% liquid alkali solution at a flow rate of 185L/h, add 21% ammonia solution at a flow rate of 30L/h, use a peristaltic pump to Add a 0.5mol/L rubidium salt solution at a flow rate of 0.5 mol/L. During the reaction, the ph decreases to 11.60 at a rate of 0.05/h and then maintains it. Nitrogen gas with a purity of 99.99% is introduced at a flow rate of 3000 L/h for 7 hours before the reaction. The flow rate of 500L/h is fed into the compressed air. After 30 hours of co-precipitation reaction in the reactor, the particle size D50 grows to 3 μm, the rubidium salt solution is suspended, and the molybdenum salt solution is passed into the molybdenum salt solution at the same flow rate, and the feeding is stopped when the particle D50 value grows to 4 μm. The total reaction The duration is 75h. Washing impurities, filtering, dehydrating and drying the ternary positive electrode material precursor liquid to obtain a layered doped ternary positive electrode material precursor.
对比例3:(其他同实施例1,掺杂铷,不掺杂钼)Comparative example 3: (other is the same as embodiment 1, doping rubidium, not doping molybdenum)
向反应釜中加入纯水并加热至60℃,然后将配制的液碱溶液调整pH为12.0,然后加入氨水溶液将底液调配为4.5g/L,反应釜内部搅拌桨叶以260r/min的转速运行,配制得到共沉淀反应的底液。然后以300L/h的流量加入1.98mol/L的镍钴锰溶液、以185L/h的流量加入32%的液碱溶液、30L/h的流量加入21%的氨水溶液,使用蠕动泵以100ml/min流量加入0.5mol/L的铷盐溶液,反应时,ph以0.05/h速率降低至11.60后保持,在反应前7小时以3000L/h的流量通入纯度99.99%的氮气,8小时后以500L/h的流量通入压缩空气。待颗粒D50值生长至4μm时停止进料,总反应时长为75h。将三元正极材料前驱体料液经洗涤杂质、过滤、脱水、干燥后得到分层掺杂的三元正极材料前驱体。Add pure water into the reaction kettle and heat it to 60°C, then adjust the pH of the prepared liquid alkali solution to 12.0, then add ammonia solution to adjust the bottom liquid to 4.5g/L, and the stirring blade inside the reaction kettle is set at 260r/min Run at a high speed to prepare the bottom solution for the co-precipitation reaction. Then add 1.98mol/L nickel-cobalt-manganese solution at a flow rate of 300L/h, add 32% liquid alkali solution at a flow rate of 185L/h, add 21% ammonia solution at a flow rate of 30L/h, use a peristaltic pump to Add a 0.5mol/L rubidium salt solution at a flow rate of 0.5 mol/L. During the reaction, the ph decreases to 11.60 at a rate of 0.05/h and then maintains it. Nitrogen gas with a purity of 99.99% is introduced at a flow rate of 3000 L/h for 7 hours before the reaction. The flow rate of 500L/h is fed into the compressed air. Stop feeding when the particle D50 value grows to 4 μm, and the total reaction time is 75 hours. Washing impurities, filtering, dehydrating and drying the ternary positive electrode material precursor liquid to obtain a layered doped ternary positive electrode material precursor.
对比例4:其他同实施例1,掺杂钼,不掺杂铷)Comparative example 4: other is the same as embodiment 1, doping molybdenum, not doping rubidium)
向反应釜中加入纯水并加热至60℃,然后将配制的液碱溶液调整pH为12.0,然后加入氨水溶液将底液调配为4.5g/L,反应釜内部搅拌桨叶以260r/min的转速运行,配制得到共沉淀反应的底液。然后以300L/h的流量加入1.98mol/L的镍钴锰溶液、以185L/h的流量加入32%的液碱溶液、30L/h的流量加入21%的氨水溶液,使用蠕动泵以100ml/min流量加入0.5mol/L的钼盐溶液,反应时,ph以0.05/h速率降低至11.60后保持,在反应前7小时以3000L/h的流量通入纯度99.99%的氮气,8小时后以500L/h的流量通入压缩空气。待颗粒D50值生长至4μm时停止进料,总反应时长为75h。将三元正极材料前驱体料液经洗涤杂质、过滤、脱水、干燥后得到分层掺杂的三元正极材料前驱体。Add pure water into the reaction kettle and heat it to 60°C, then adjust the pH of the prepared liquid alkali solution to 12.0, then add ammonia solution to adjust the bottom liquid to 4.5g/L, and the stirring blade inside the reaction kettle is set at 260r/min Run at a high speed to prepare the bottom solution for the co-precipitation reaction. Then add 1.98mol/L nickel-cobalt-manganese solution at a flow rate of 300L/h, add 32% liquid alkali solution at a flow rate of 185L/h, add 21% ammonia solution at a flow rate of 30L/h, use a peristaltic pump to Add 0.5 mol/L molybdenum salt solution at a flow rate of 0.5 mol/L. During the reaction, the ph is reduced to 11.60 at a rate of 0.05/h and then maintained. In the first 7 hours of the reaction, nitrogen gas with a purity of 99.99% is introduced at a flow rate of 3000 L/h. The flow rate of 500L/h is fed into the compressed air. Stop feeding when the particle D50 value grows to 4 μm, and the total reaction time is 75 hours. Washing impurities, filtering, dehydrating and drying the ternary positive electrode material precursor liquid to obtain a layered doped ternary positive electrode material precursor.
电化学性能检测方法:Electrochemical performance testing method:
1、将实施例、对比例制备的前驱体和氢氧化锂按照摩尔比M(Ni+Co+Mn):M(Li)=1:1.03的比例混合均匀后,在450℃下预烧4h后,取出研磨后,在750℃下煅烧20h后,取出粉碎最终得到正极材料,分别记为A1、A2、A3、D1、D2、D3、D4;1. After mixing the precursors and lithium hydroxide prepared in the examples and comparative examples uniformly according to the molar ratio M(Ni+Co+Mn):M(Li)=1:1.03, pre-calcine at 450°C for 4h , after being taken out and ground, calcined at 750°C for 20h, taken out and pulverized to finally obtain positive electrode materials, which are respectively denoted as A1, A2, A3, D1, D2, D3, and D4;
2、将所得的正极材料,按照正极材料:导电碳:聚偏氟乙烯(PVDF)=90:5:5配成浆料,制作成正极极片(极片压实密度为3.3g/cm2),选用金属锂片作为负极材料,组装成2025的扣式电池;2. The obtained positive electrode material is made into a slurry according to the positive electrode material: conductive carbon: polyvinylidene fluoride (PVDF) = 90:5:5, and made into a positive electrode sheet (the compacted density of the electrode sheet is 3.3g/cm2) , choose metal lithium sheet as the negative electrode material, and assemble it into a 2025 button battery;
3、以1M LiPF6 EC:DEC:DMC=1:1:1(V%)为电解液,在0.2C倍率下活化三圈后,以0.2C倍率循环100次,分别测定第1次循环时的放电容量和第100次循环时的放电容量,计算循环100次容量保持率;3. Using 1M LiPF6 EC:DEC:DMC=1:1:1 (V%) as the electrolyte, after 3 cycles of activation at 0.2C rate, cycle 100 times at 0.2C rate, and measure the Discharge capacity and discharge capacity at the 100th cycle, calculate the capacity retention rate of 100 cycles;
4、采用导电银胶依次将四根导线固定在载玻片上,将形态为浆状的锂离子电池正极材料均匀涂覆于载玻片上,然后进行真空干燥,在载玻片上得到膜层,采用电流表测定电流I,采用电压表测定电压U,然后根据公式σ=IL/US,计算得出锂离子电池正极材料的电导率σ。4. Use conductive silver glue to fix the four wires on the glass slide in turn, and evenly coat the positive electrode material of the lithium-ion battery in the form of slurry on the glass slide, and then vacuum-dry to obtain a film layer on the glass slide. The current I is measured by the ammeter, the voltage U is measured by the voltmeter, and then the conductivity σ of the positive electrode material of the lithium-ion battery is calculated according to the formula σ=IL/US.
表1实施例及对比例所得正极材料的电化学性能The electrochemical properties of the positive electrode material obtained in table 1 embodiment and comparative examples
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111658802.8A CN114477312B (en) | 2021-12-31 | 2021-12-31 | Method for preparing ternary positive electrode material precursor by layered doping |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111658802.8A CN114477312B (en) | 2021-12-31 | 2021-12-31 | Method for preparing ternary positive electrode material precursor by layered doping |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114477312A CN114477312A (en) | 2022-05-13 |
CN114477312B true CN114477312B (en) | 2023-07-11 |
Family
ID=81497100
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111658802.8A Active CN114477312B (en) | 2021-12-31 | 2021-12-31 | Method for preparing ternary positive electrode material precursor by layered doping |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114477312B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114988491A (en) * | 2022-05-27 | 2022-09-02 | 荆门市格林美新材料有限公司 | Bimetal alternately-doped nickel-manganese precursor and preparation method and application thereof |
CN115924991B (en) * | 2022-12-15 | 2024-06-25 | 蜂巢能源科技股份有限公司 | High nickel hydroxide precursor, preparation method thereof and ternary positive electrode material |
WO2025010707A1 (en) * | 2023-07-13 | 2025-01-16 | 广东邦普循环科技有限公司 | Positive electrode precursor, and preparation method therefor and use thereof |
CN117623405A (en) * | 2023-10-28 | 2024-03-01 | 荆门市格林美新材料有限公司 | Method for preparing ternary precursor small particles by oxidation method |
CN117276534B (en) * | 2023-11-21 | 2024-02-13 | 宜宾光原锂电材料有限公司 | High cycle cathode material precursor and preparation method thereof and cathode materials and batteries |
CN117303465B (en) * | 2023-11-28 | 2024-02-13 | 宜宾光原锂电材料有限公司 | Ternary precursor, positive electrode material, preparation method of ternary precursor and positive electrode material, and lithium battery |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112164790A (en) * | 2020-08-27 | 2021-01-01 | 荆门市格林美新材料有限公司 | Precursor for coated lithium battery, positive electrode material for lithium battery and preparation method thereof |
CN112357973A (en) * | 2020-09-30 | 2021-02-12 | 宜宾光原锂电材料有限公司 | Preparation method of positive electrode material precursor and prepared positive electrode material precursor |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102820464A (en) * | 2012-09-03 | 2012-12-12 | 济宁市无界科技有限公司 | Preparation method of manganese-based compound positive pole material for secondary lithium ion battery |
CN103441255B (en) * | 2013-09-16 | 2017-02-01 | 宁德新能源科技有限公司 | Positive pole material of lithium ion battery and preparation method of positive pole material |
CN110391416A (en) * | 2019-07-11 | 2019-10-29 | 光鼎铷业(广州)集团有限公司 | A kind of rubidium doping concentration gradient tertiary cathode material and preparation method thereof |
CN112758991B (en) * | 2020-12-28 | 2021-11-16 | 宜宾光原锂电材料有限公司 | A kind of preparation method of core-shell structure ternary cathode material precursor |
-
2021
- 2021-12-31 CN CN202111658802.8A patent/CN114477312B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112164790A (en) * | 2020-08-27 | 2021-01-01 | 荆门市格林美新材料有限公司 | Precursor for coated lithium battery, positive electrode material for lithium battery and preparation method thereof |
CN112357973A (en) * | 2020-09-30 | 2021-02-12 | 宜宾光原锂电材料有限公司 | Preparation method of positive electrode material precursor and prepared positive electrode material precursor |
Also Published As
Publication number | Publication date |
---|---|
CN114477312A (en) | 2022-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114477312B (en) | Method for preparing ternary positive electrode material precursor by layered doping | |
CN110048118B (en) | High-nickel cobalt lithium manganate single crystal precursor, preparation method thereof and high-nickel cobalt lithium manganate single crystal positive electrode material | |
CN105161679B (en) | Lithium-rich anode material and its preparation method and application | |
CN115196691A (en) | Nickel-iron-manganese ternary precursor for sodium ion battery and preparation method and application thereof | |
CN110330060B (en) | Preparation method of spherical NCM811 type ternary cathode material with radial structure | |
CN111180688B (en) | Micron-scale hollow porous sodium-ion battery positive electrode material and preparation method thereof | |
CN107459069B (en) | A method for reducing the sulfur content of nickel-cobalt-aluminum precursor | |
CN108946827B (en) | Ultra-small particle size nickel-cobalt-manganese hydroxide and preparation method thereof | |
CN114349068B (en) | Preparation method of large-particle-size nickel-cobalt-aluminum ternary positive electrode material precursor | |
WO2024178793A1 (en) | Modified sodium-ion battery positive electrode precursor, and preparation method therefor and use thereof | |
CN108649205A (en) | A kind of anode material for lithium-ion batteries and its preparation with variable slope concentration gradient doped structure | |
CN110890541A (en) | Preparation method of surface-modified lithium-rich manganese-based positive electrode material and lithium ion battery | |
CN110817976B (en) | Positive electrode material precursor and preparation method and application thereof | |
CN112758991A (en) | Preparation method of core-shell structure ternary cathode material precursor | |
WO2024066892A1 (en) | Manganese-rich oxide precursor, preparation method therefor, and use thereof | |
CN114620777B (en) | Ultrahigh nickel ternary precursor and preparation method thereof | |
CN107285394A (en) | A kind of precursor for ternary anode material and preparation method thereof | |
CN108767216A (en) | Anode material for lithium-ion batteries and its synthetic method with the full concentration gradient of variable slope | |
CN116119739A (en) | Ion doped manganese-based sodium ion positive electrode material and preparation method and application thereof | |
CN116354417A (en) | Sodium ion precursor material and preparation method and application thereof | |
CN116854152A (en) | Sodium ion battery positive electrode material precursor, preparation method thereof, positive electrode material and sodium ion battery | |
CN108264096A (en) | A kind of preparation method of high density little particle nickel cobalt manganese hydroxide | |
CN114195204B (en) | A high sphericity manganese-rich carbonate precursor and its preparation method and application | |
CN114220959B (en) | Preparation method of component-controllable multielement doped high-nickel ternary positive electrode material | |
CN114031127B (en) | Mg-Ti co-doped high-nickel cobalt-free precursor and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address |
Address after: 644200 yangchunba Industrial Park, Jiang'an County, Yibin City, Sichuan Province Patentee after: YIBIN GUANGYUAN LITHIUM BATTERY CO.,LTD. Country or region after: China Patentee after: Yibin Lithium Treasure New Materials Co.,Ltd. Address before: 644200 yangchunba Industrial Park, Jiang'an County, Yibin City, Sichuan Province Patentee before: YIBIN GUANGYUAN LITHIUM BATTERY CO.,LTD. Country or region before: China Patentee before: Yibin Libao New Materials Co.,Ltd. |
|
CP03 | Change of name, title or address |