CN114465855B - 一种基于注意力机制与多特征融合的自动调制识别方法 - Google Patents

一种基于注意力机制与多特征融合的自动调制识别方法 Download PDF

Info

Publication number
CN114465855B
CN114465855B CN202210049075.3A CN202210049075A CN114465855B CN 114465855 B CN114465855 B CN 114465855B CN 202210049075 A CN202210049075 A CN 202210049075A CN 114465855 B CN114465855 B CN 114465855B
Authority
CN
China
Prior art keywords
samples
data
group
kth
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210049075.3A
Other languages
English (en)
Other versions
CN114465855A (zh
Inventor
刘新华
舒细兵
旷海兰
马小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN202210049075.3A priority Critical patent/CN114465855B/zh
Publication of CN114465855A publication Critical patent/CN114465855A/zh
Application granted granted Critical
Publication of CN114465855B publication Critical patent/CN114465855B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0012Modulated-carrier systems arrangements for identifying the type of modulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2415Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on parametric or probabilistic models, e.g. based on likelihood ratio or false acceptance rate versus a false rejection rate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/25Fusion techniques
    • G06F18/253Fusion techniques of extracted features
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/047Probabilistic or stochastic networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/145Network analysis or design involving simulating, designing, planning or modelling of a network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/147Network analysis or design for predicting network behaviour
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/08Feature extraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/12Classification; Matching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Computational Linguistics (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Probability & Statistics with Applications (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本发明公开了一种基于注意力机制与多特征融合的自动调制识别方法,该方法将信号三流输入网络,使用CNN和LSTM提取空间特征与时序特征,并通过注意力机制与高斯噪声微调特征向量,最后使用全连接层实现调制分类。本发明将公开数据集的数据进行信号预处理;构建基于注意力机制与多特征融合的自动调制识别网络;实时采集IQ数据,并数据预处理后送入网络识别调制方式。本发明充分考虑了不同网络之间的互补性以及不同信号表示反映的多种特征,利用CNN和LSTM的组合结构提取信号空间上和时间上的相关特征,提高了调制识别的精度,能够很好地运用到非合作通信系统中。

Description

一种基于注意力机制与多特征融合的自动调制识别方法
技术领域
本发明属于通信信号处理和人工智能领域,具体涉及一种基于注意力机制与多特征融合的自动调制识别方法。
背景技术
调制识别技术是无线通信领域中一项非常关键的技术,识别无线通信信号的调制方式是非协作通信、电子对抗、智能天线、软件无线电以及无线频谱管理等领域中的基础技术,因此该项技术在军用领域和民用领域都有十分广泛的应用和非常重要的意义。在军事领域,电子信息战作为新战场。在战场上截获敌方的通信信号之后,使用调制解调技术可以直接获取对方的通信内容,并且可以使用电子对抗技术对对方通信系统发起攻击,通信信号调制识别技术在其中起到基础性的作用,也是目前各国非常关注的领域。在民用领域,随着人们对信息传输的需求愈来愈高,信号的频谱资源也愈发稀缺,对于无线电频段的管理也越来越严格。调制识别技术可应用于认知无线电领域,对信号进行参数估计和解调,从而有效避免无线电干扰,并且对信号频谱进行优化,实现更加可靠和智能的无线电系统。
目前电磁环境日趋复杂,在非合作通信中实现信号调制识别的难度越来越高。信号调制识别的核心问题是在于特征提取和分类器。特征提取从信号的采样序列样本中提取表示原始信号的空间特征。通过特征提取之后,获取了信号调制的关键特征,然后设计分类器对于原始信号分类即可。无线电信号的信息基本上都存储在相位,幅度频率及其组合之中,比如IQ信号、AP信号等。
传统调制识别算法主要分为两大类:一是基于决策理论的最大似然假设检验法,二是基于传统机器学习的调制识别算法。虽然传统的通信信号识别算法精度高,但绝大多数算法依赖于作者在无线通信领域的专家经验知识,算法普遍采用分析接收信号的统计量或星座图特征的方法,在特定的应用场景下可具有优异的性能。然而,这些利用高阶统计量或星座图的调制识别方法往往只能在特定的通信场景中达到优异的性能,模型的泛化能力和通用性不强,无法实现迁移使用。同时,随着物联网、5G新技术研究的深入,无线通信系统变得日益成熟和复杂,这为进一步设计高效、可靠的信号调制自动识别器增加了不少难度。
深度学习作为近年来研究热点,并且在众多领域都有应用。在通信领域中,为解决调制识别分类器设计适应性差,强依赖专家先验知识等问题,提出使用深度学习能够极大程度得解决该问题。在信号调制领域中,O’Shea最先将深度学习技术应用在该领域。并讨论了良好数据集对模型学习、测试和评价的重要性,并在ubuntu上使用GNURadio平台和Python制作了调制识别公开数据集RML2016.10a,其中数据集信号为原始I/Q信号,每个样本采集的2x 128个序列。随后作者又在RML2018数据集中,提出了ResNet算法,并且在该数据集取得不错的效果。Jialang Xu提出MCLDNN算法,该算法是一种新的三流深度学习框架。在基准数据集上的实验表明,该框架具有高效的收敛速度和较高的识别精度,特别是对于16-QAM和64-QAM等高维调制方案调制的信号。P.Hu提出一种CGDNN网络,这是一种基于CNN和GRU的深度神经网络。实验结果表明,其收敛速度非常快,并且具有较为满意的识别精度。
发明内容
本发明的目的是提供基于注意力机制与多特征融合的无线信号自动调制识别方法,能够实现了高精度的无线信号调制识别。其目的在于,将数据多流输入,使用卷积神经网络提取IQ信号,AP信号以及单独的IQ分量的空间特征,使用特征融合将多个融合在一起并再次卷积进一步提取深层次特征,中间加入注意力机制与高斯噪声,优化特征向量。接着,使用长短时记忆网络提取信号的时序特征,最后使用softmax分类器进行多分类,完成网络训练即可。
为了实现上述目的,本发明所采用的技术方案为:
一种基于注意力机制与多特征融合的自动调制识别方法,其特征在于,包括如下步骤:
步骤1:引入多组IQ数据,将每组IQ数据通过I-Q分解方法得到每组I分量、每组Q分量,将每组IQ数据使用IQ与AP转换公式将IQ数据转换得到AP数据,通过每组IQ数据、每组AP数据、每组I分量、每组Q分量构建每组样本,人工标注训练集中每组样本的调整方式类别;
步骤2:构建注意力机制与多特征融合网络,将每组样本依次输入至注意力机制与多特征融合网络进行预测,得到每组样本的预测调整方式类别,结合每组样本的调整方式类别构建损失函数模型,通过Adam算法优化训练得到优化后注意力机制与多特征融合网络;
步骤3:实时采集IQ数据,将实时采集的IQ数据通过I-Q分解方法得到实时I分量、实时Q分量,将实时采集的IQ数据、实时I分量、实时Q分量通过化后注意力机制与多特征融合网络进行预测得到实时采集的IQ数据的调制方式类别;
作为优选,步骤1所述将每组IQ数据通过I-Q分解方法得到每组I分量、每组Q分量为:
其中,为第k组AP数据,/>为第k组AP数据的A分量转置,/>为第k组AP数据的P分量转置,/>为第k组IQ数据,/>为第k组IQ数据的I分量转置,/>为第k组IQ数据的Q分量转置
步骤1所述将每组IQ数据使用IQ与AP转换公式将IQ数据转换得到AP数据为:
其中,为第k组AP数据的A分量,/>为第k组AP数据的P分量,/>为第k组IQ数据的I分量,/>为第k组IQ数据的Q分量
步骤1所述多组IQ数据,定义为:k∈[1,K],/>表示第k组IQ数据,K表示总样本数;
步骤1所述多组AP数据,定义为:k∈[1,K],/>表示第k组AP数据,,K表示总样本数;
步骤1所述每组I分量,定义为:k∈[1,K],/>表示第k组I分量,,K表示总样本数;
步骤1所述每组Q分量,定义为:k∈[1,K],/>表示第k组Q分量,,K表示总样本数;
步骤1所述每组样本为:k∈[1,K],Datak表示第k组样本,,K表示总样本数;
步骤1所述每组样本的调整方式类别为:
yk,k∈[1,K]c∈[1,C]
yk=[yk,1,…,yk,c]
其中,yk表示第k组样本的标签分布,K表示总样本数,C为总标签数量;所述yk为onehot编码的样本的标签分布;yk,c表示第k组样本是否属于第c种标签,c∈[1,C],如果第k组样本属于标签第c种标签,则yk,c=1,否则yk,c=0
作为优选,步骤2所述注意力机制与多特征融合网络包括:
CNN模块、LSTM模块、特征融合模块、注意力机模块、分类器模块;
所述CNN模块,将第k组样本传入所述CNN模块,对原始的数据进行二维卷积得到IQ特征向量Ak,对原始的/>数据进行二维卷积得到AP特征向量Bk,对/>和/>分别进行一维卷积后得到第k组的一维卷积I特征向量/>和第k组的一维卷积Q特征向量/>并将/>和/>融合得到融合特征向量/>再将/>进行二维卷积得到第k组的变换后的特征向量Ck
将第k组样本的特征向量Ak,第k组样本的特征向量Bk,第k组样本的特征向量Ck输出至所述特征融合模块;
所述特征融合模块,分别对第k组样本的特征向量Ak、第k组样本的特征向量Bk、第k组样本的特征向量Ck添加高斯噪声进行增强处理,得到高斯增强的原始IQ数据的特征向量A′k、高斯增强的AP数据的特征向量B′k和高斯增强的变换后IQ数据的特征向量C′k,然后将A′k、B′k、C′k三者按照通道数维度进行融合得到第k组样本的融合特征,将第k组样本的融合特征再次进行卷积提取得到第k组样本的深层次空间特征,将第k组样本的深层次空间特征Mk输出至所述注意力机制模块;
所述注意力机制模块,将第k组样本的深层次空间特征Mk通过混合注意力机制微调,得到与M同样大小第k组样本的微调后空间特征向量Nk,并将第k组样本的空间特征向量Nk输出至所述LSTM模块。
所述LSTM模块,使用双层长短时记忆网络LSTM在第k组样本的特征向量Nk上进一步提取第k组样本的信号时序特征,得到第k组样本的时序特征向量Tk,并将第k组样本的时序特征向量Tk输出至所述分类器模块;
所述分类器模块:先将第k组样本的时序特征向量Tk经过双层Dropout处理随机抛弃神经元,,再经过Softmax分类器输出多标签概率分布p,取概率最大标签作为第k组样本的预测调整方式类别,从而实现调制识别分类;
步骤2所述损失函数模型为多组样本的交叉熵损失函数;
所述多组样本的交叉熵损失函数,定义为:
其中,K表示总样本数,C表示总标签数量,yk=[yk,1,…,yk,c],yk,c是符号函数,yk,c表示第k组样本是否属于第c种标签,c∈[1,C],如果第k组样本属于第c种标签,则yk,c=1,否则yk,c=0,pk,c表示观测样本k属于类别c的预测概率,c∈[1,C],pk=[pk,1,…,pk,c]是一个概率分布。
本发明在无线信号的调制识别任务中,提出一种基于注意力机制与多特征融合的自动调制识别方法。首先使用含多个卷积核的标准卷积运算从待识别信号中获取多种特征向量,并将它们按照通道数维度进行特征融合;通过混合注意力机制微调特征向量,加入高斯噪声防止过拟合,然后使用双层长短时记忆网络进一步提取时序特征;最后将重构后特征连接一层全连接层完成分类。本算法同现有算法相比,分类准确率高于当前最优算法;同时该网络训练参数和精度均优于CLDNN、ResNet等算法。本算法较现有深度学习算法于模型参数量和推理时间方面有着较大的改善。
附图说明
图1:为本发明一种基于注意力机制与多特征融合的自动调制识别方法的流程图;
图2:为本发明一种基于注意力机制与多特征融合的自动调制识别方法的网络结构示意图;
图3:为本发明算法在RML2016.10a数据集调制识别效果图;
图4:为本发明算法在RML2016.10b数据集调制识别效果图;
图5:为本发明算法在RML2016.10a数据集中每种调制方式在不同信噪比下识别效果图;
图6:为本发明算法在RML2016.10a数据集中SNR=18混淆矩阵识别图。
具体实施方式
为了使本发明专利的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明专利进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明专利,并不用于限定本发明专利。此外,下面所描述的本发明专利各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
下面结合图1至图6介绍本发明的具体实施方式。
如图1所示,为本发明具体实施方式方法流程图,一种基于注意力机制与多特征融合的自动调制识别方法,其特征在于,包括如下步骤:
步骤1:引入多组IQ数据,将每组IQ数据通过I-Q分解方法得到每组I分量、每组Q分量,将每组IQ数据使用IQ与AP转换公式将IQ数据转换得到AP数据,通过每组IQ数据、每组AP数据、每组I分量、每组Q分量构建每组样本,人工标注训练集中每组样本的调整方式类别;
步骤1所述将每组IQ数据通过I-Q分解方法得到每组I分量、每组Q分量为:
其中,为第k组AP数据,/>为第k组AP数据的A分量转置,/>为第k组AP数据的P分量转置,/>为第k组IQ数据,/>为第k组IQ数据的I分量转置,/>为第k组IQ数据的Q分量转置
步骤1所述将每组IQ数据使用IQ与AP转换公式将IQ数据转换得到AP数据为:
其中,为第k组AP数据的A分量,/>为第k组AP数据的P分量,/>为第k组IQ数据的I分量,/>为第k组IQ数据的Q分量
步骤1所述多组IQ数据,定义为:k∈[1,K],/>表示第k组IQ数据,K表示总样本数;
步骤1所述多组AP数据,定义为:k∈[1,K],/>表示第k组AP数据,,K表示总样本数;
步骤1所述每组I分量,定义为:k∈[1,K],/>表示第k组I分量,K=220000示总样本数;
步骤1所述每组Q分量,定义为:k∈[1,K],/>表示第k组Q分量,,K表示总样本数;
步骤1所述每组样本为:k∈[1,K],Datak表示第k组样本,K表示总样本数;
步骤1所述每组样本的调整方式类别为:
yk,k∈[1,K]c∈[1,C]
yk=[yk,1,…,yk,c]
其中,yk表示第k组样本的标签分布,K表示总样本数,C为总标签数量;所述yk为onehot编码的样本的标签分布;yk,c表示第k组样本是否属于第c种标签,c∈[1,C],如果第k组样本属于标签第c种标签,则yk,c=1,否则yk,c=0
步骤2:构建注意力机制与多特征融合网络,将每组样本依次输入至注意力机制与多特征融合网络进行预测,得到每组样本的预测调整方式类别,结合每组样本的调整方式类别构建损失函数模型,通过Adam算法优化训练得到优化后注意力机制与多特征融合网络;
步骤2所述注意力机制与多特征融合网络包括:
CNN模块、LSTM模块、特征融合模块、注意力机模块、分类器模块;
所述CNN模块,将第k组样本传入所述CNN模块,对原始的/>数据经过通道数为50,卷积核大小为(1,8)的二维卷积层得到IQ特征向量Ak,对原始的/>数据先后经过通道数为50,卷积核大小为(1,1)与通道数为50,卷积核大小为(1,3)的二维卷积层得到AP特征向量Bk,对/>和/>分别经过通道数为50,卷积核大小为8的的一维卷积层后得到第k组的一维卷积I特征向量/>和第k组的一维卷积Q特征向量/>并将/>融合得到融合特征向量/>再将/>经过通道数为50,卷积核大小为(1,8)的二维卷积层得到第k组的变换后的特征向量Ck
将第k组样本的特征向量Ak,第k组样本的特征向量Bk,第k组样本的特征向量Ck输出至所述特征融合模块;
所述特征融合模块,分别对第k组样本的特征向量Ak、第k组样本的特征向量Bk、第k组样本的特征向量Ck添加比例为0.2的高斯噪声进行增强处理,得到高斯增强的原始IQ数据的特征向量A′k、高斯增强的AP数据的特征向量B′k和高斯增强的变换后IQ数据的特征向量C′k,然后将A′k、B′k、C′k三者按照通道数维度进行融合得到第k组样本的融合特征,将第k组样本的融合特征再次经过通道数为100,卷积核大小为(2,5)的二维卷积层提取得到第k组样本的大小为(2,124,100)深层次空间特征Mk,将第k组样本的深层次空间特征Mk输出至所述注意力机制模块;
所述注意力机制模块,将第k组样本的深层次空间特征Mk通过混合注意力机制微调,得到与M同样大小第k组样本的微调后空间特征向量Nk,并将第k组样本的空间特征向量Nk输出至所述LSTM模块。
所述LSTM模块,使用双层长度为128的长短时记忆网络LSTM在第k组样本的特征向量Nk上进一步提取第k组样本的信号时序特征,得到第k组样本长度为128的时序特征向量Tk,并将第k组样本的时序特征向量Tk输出至所述分类器模块;
所述分类器模块:先将第k组样本的时序特征向量Tk经过双层比例为0.5的Dropout处理随机抛弃神经元,,再经过Softmax分类器输出多标签概率分布p,取概率最大标签作为第k组样本的预测调整方式类别,从而实现调制识别分类;
步骤2所述损失函数模型为多组样本的交叉熵损失函数;
所述多组样本的交叉熵损失函数,定义为:
其中,K表示总样本数,C表示总标签数量,yk=[yk,1,…,yk,c],yk,c是符号函数,yk,c表示第k组样本是否属于第c种标签,c∈[1,C],如果第k组样本属于第c种标签,则yk,c=1,否则yk,c=0,pk,c表示观测样本k属于类别c的预测概率,c∈[1,C],pk=[pk,1,…,pk,c]是一个概率分布;
步骤3:实时采集IQ数据,将实时采集的IQ数据通过I-Q分解方法得到实时I分量、实时Q分量,将实时采集的IQ数据、实时I分量、实时Q分量通过化后注意力机制与多特征融合网络进行预测得到实时采集的IQ数据的调制方式类别;
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (1)

1.一种基于注意力机制与多特征融合的自动调制识别方法,其特征在于,包括如下步骤:
步骤1:引入多组IQ数据,将每组IQ数据通过I-Q分解方法得到每组I分量、每组Q分量,将每组IQ数据使用IQ与AP转换公式将IQ数据转换得到AP数据,通过每组IQ数据、每组AP数据、每组I分量、每组Q分量构建每组样本,人工标注训练集中每组样本的调整方式类别;
步骤2:构建注意力机制与多特征融合网络,将每组样本依次输入至注意力机制与多特征融合网络进行预测,得到每组样本的预测调整方式类别,结合每组样本的调整方式类别构建损失函数模型,通过Adam算法优化训练得到优化后注意力机制与多特征融合网络;
步骤3:实时采集IQ数据,将实时采集的IQ数据通过I-Q分解方法得到实时I分量、实时Q分量,将实时采集的IQ数据、实时I分量、实时Q分量通过注意力机制与多特征融合网络进行预测得到实时采集的IQ数据的调制方式类别;
步骤1所述将每组IQ数据通过I-Q分解方法得到每组I分量、每组Q分量为:
其中,为第k组AP数据,/>为第k组AP数据的A分量转置,/>为第k组AP数据的P分量转置,/>为第k组IQ数据,/>为第k组IQ数据的I分量转置,/>为第k组IQ数据的Q分量转置
步骤1所述将每组IQ数据使用IQ与AP转换公式将IQ数据转换得到AP数据为:
其中,为第k组AP数据的A分量,/>为第k组AP数据的P分量,/>为第k组IQ数据的I分量,/>为第k组IQ数据的Q分量
步骤1所述多组IQ数据,定义为: 表示第k组IQ数据,K表示总样本数;
步骤1所述多组AP数据,定义为: 表示第k组AP数据,,K表示总样本数;
步骤1所述每组I分量,定义为: 表示第k组I分量,,K表示总样本数;
步骤1所述每组Q分量,定义为: 表示第k组Q分量,,K表示总样本数;
步骤1所述每组样本为:Datak表示第k组样本,,K表示总样本数;
步骤1所述每组样本的调整方式类别为:
yk,k∈[1,K]c∈[1,C]
yk=[yk,1,…,yk,c]
其中,yk表示第k组样本的标签分布,K表示总样本数,C为总标签数量;所述yk为onehot编码的样本的标签分布;yk,c表示第k组样本是否属于第c种标签,c∈[1,C],如果第k组样本属于标签第c种标签,则yk,c=1,否则yk,c=0;
步骤2所述注意力机制与多特征融合网络包括:
CNN模块、LSTM模块、特征融合模块、注意力机模块、分类器模块;
所述CNN模块,将第k组样本传入所述CNN模块,对原始的/>数据进行二维卷积得到IQ特征向量Ak,对原始的/>数据进行二维卷积得到AP特征向量Bk,对/>和/>分别进行一维卷积后得到第k组的一维卷积I特征向量/>和第k组的一维卷积Q特征向量/>并将/>和/>融合得到融合特征向量/>再将/>进行二维卷积得到第k组的变换后的特征向量Ck
将第k组样本的特征向量Ak,第k组样本的特征向量Bk,第k组样本的特征向量Ck输出至所述特征融合模块;
所述特征融合模块,分别对第k组样本的特征向量Ak、第k组样本的特征向量Bk、第k组样本的特征向量Ck添加高斯噪声进行增强处理,得到高斯增强的原始IQ数据的特征向量A′k、高斯增强的AP数据的特征向量B′k和高斯增强的变换后IQ数据的特征向量C′k,然后将A′k、B′k、C′k三者按照通道数维度进行融合得到第k组样本的融合特征,将第k组样本的融合特征再次进行卷积提取得到第k组样本的深层次空间特征,将第k组样本的深层次空间特征Mk输出至所述注意力机制模块;
所述注意力机制模块,将第k组样本的深层次空间特征Mk通过混合注意力机制微调,得到与M同样大小第k组样本的微调后空间特征向量Nk,并将第k组样本的空间特征向量Nk输出至所述LSTM模块;
所述LSTM模块,使用双层长短时记忆网络LSTM在第k组样本的特征向量Nk上进一步提取第k组样本的信号时序特征,得到第k组样本的时序特征向量Tk,并将第k组样本的时序特征向量Tk输出至所述分类器模块;
所述分类器模块:先将第k组样本的时序特征向量Tk经过双层Dropout处理随机抛弃神经元,再经过Softmax分类器输出多标签概率分布p,取概率最大标签作为第k组样本的预测调整方式类别,从而实现调制识别分类;
步骤2所述损失函数模型为多组样本的交叉熵损失函数;
所述多组样本的交叉熵损失函数,定义为:
其中,K表示总样本数,C表示总标签数量,yk=[yk,1,…,yk,c],yk,c是符号函数,yk,c表示第k组样本是否属于第c种标签,c∈[1,C],如果第k组样本属于第c种标签,则yk,c=1,否则yk,c=0,pk,c表示观测样本k属于类别c的预测概率,c∈[1,C],pk=[pk,1,…,pk,c]是一个概率分布。
CN202210049075.3A 2022-01-17 2022-01-17 一种基于注意力机制与多特征融合的自动调制识别方法 Active CN114465855B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210049075.3A CN114465855B (zh) 2022-01-17 2022-01-17 一种基于注意力机制与多特征融合的自动调制识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210049075.3A CN114465855B (zh) 2022-01-17 2022-01-17 一种基于注意力机制与多特征融合的自动调制识别方法

Publications (2)

Publication Number Publication Date
CN114465855A CN114465855A (zh) 2022-05-10
CN114465855B true CN114465855B (zh) 2023-09-01

Family

ID=81409645

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210049075.3A Active CN114465855B (zh) 2022-01-17 2022-01-17 一种基于注意力机制与多特征融合的自动调制识别方法

Country Status (1)

Country Link
CN (1) CN114465855B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112132266A (zh) * 2020-09-23 2020-12-25 中国人民解放军陆军工程大学 基于卷积循环网络的信号调制识别系统及调制识别方法
CN115238749B (zh) * 2022-08-04 2024-04-23 中国人民解放军军事科学院系统工程研究院 一种基于Transformer的特征融合的调制识别方法
CN115834310B (zh) * 2023-02-15 2023-05-09 四川轻化工大学 一种基于LGTransformer的通信信号调制识别方法
CN116488974B (zh) * 2023-03-20 2023-10-20 中国人民解放军战略支援部队航天工程大学 一种结合注意力机制的轻量化调制识别方法和系统
CN116680623B (zh) * 2023-08-03 2023-10-27 国网安徽省电力有限公司超高压分公司 特高压换流变压器状态监测方法及系统
CN117056708A (zh) * 2023-10-11 2023-11-14 成都大公博创信息技术有限公司 一种基于多尺度特征融合和cnn-lstm的ais信号识别方法
CN117081895B (zh) * 2023-10-16 2023-12-19 电子科技大学 一种基于自适应降噪的自动调制识别方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101722505B1 (ko) * 2016-03-03 2017-04-18 국방과학연구소 입력 신호의 변조 형태 인식 방법 및 장치
CN110490095A (zh) * 2019-07-31 2019-11-22 中国人民解放军战略支援部队信息工程大学 一种基于神经网络的多模态特征融合调制识别方法和系统
CN112702294A (zh) * 2021-03-24 2021-04-23 四川大学 一种基于深度学习的多层次特征提取的调制识别方法
CN113486724A (zh) * 2021-06-10 2021-10-08 重庆邮电大学 基于cnn-lstm多支流结构和多种信号表示的调制识别模型
CN113657491A (zh) * 2021-08-17 2021-11-16 中国人民解放军63892部队 一种用于信号调制类型识别的神经网络设计方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101722505B1 (ko) * 2016-03-03 2017-04-18 국방과학연구소 입력 신호의 변조 형태 인식 방법 및 장치
CN110490095A (zh) * 2019-07-31 2019-11-22 中国人民解放军战略支援部队信息工程大学 一种基于神经网络的多模态特征融合调制识别方法和系统
CN112702294A (zh) * 2021-03-24 2021-04-23 四川大学 一种基于深度学习的多层次特征提取的调制识别方法
CN113486724A (zh) * 2021-06-10 2021-10-08 重庆邮电大学 基于cnn-lstm多支流结构和多种信号表示的调制识别模型
CN113657491A (zh) * 2021-08-17 2021-11-16 中国人民解放军63892部队 一种用于信号调制类型识别的神经网络设计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
水下冲激噪声环境下基于多特征融合的信号调制方式识别;赵自璐;王世练;张炜;谢阳;厦门大学学报. 自然科学版;第56卷(第3期);416-422 *

Also Published As

Publication number Publication date
CN114465855A (zh) 2022-05-10

Similar Documents

Publication Publication Date Title
CN114465855B (zh) 一种基于注意力机制与多特征融合的自动调制识别方法
CN108234370B (zh) 基于卷积神经网络的通信信号调制方式识别方法
CN110113288B (zh) 一种基于机器学习的ofdm解调器的设计和解调方法
CN114567528B (zh) 基于深度学习的通信信号调制方式开集识别方法及系统
CN109120563B (zh) 一种基于神经网络集成的调制识别方法
CN112749633B (zh) 分离与重构的个体辐射源识别方法
CN112039820A (zh) 量子象群机制演化bp神经网络的通信信号调制识别方法
CN114881092A (zh) 一种基于特征融合的信号调制识别方法
CN115114958A (zh) 一种基于监督对比学习的电磁信号开集识别方法
CN114764577A (zh) 一种基于深度神经网络的轻量级调制识别模型及其方法
CN115982613A (zh) 一种基于改进卷积神经网络的信号调制识别系统及方法
CN115296759A (zh) 一种基于深度学习的干扰识别方法
Wu et al. Deep multi-scale representation learning with attention for automatic modulation classification
Zhang et al. Heterogeneous deep model fusion for automatic modulation classification
CN111507293A (zh) 基于图卷积模型的信号分类方法
CN116471154A (zh) 基于多域混合注意力的调制信号识别方法
CN116708104A (zh) 基于储备池计算的水下可见光通信系统调制格式识别方法
CN114422310B (zh) 一种基于联合分布矩阵与多输入神经网络的数字正交调制信号识别方法
CN115809426A (zh) 一种辐射源个体识别方法及系统
Yadav et al. Application of Machine Learning Framework for Next‐Generation Wireless Networks: Challenges and Case Studies
Yang et al. Conventional neural network-based radio frequency fingerprint identification using raw I/Q data
Feng et al. FCGCN: Feature Correlation Graph Convolution Network for Few-Shot Individual Identification
Shen et al. Deep learning based source number estimation with single-channel mixtures
Dai et al. Multi-objective genetic programming based automatic modulation classification
Yin et al. Few-Shot Domain Adaption-Based Specific Emitter Identification Under Varying Modulation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant