CN114460981A - A Numerical Simulation Method for Hydraulic Control of Water Distribution Project - Google Patents
A Numerical Simulation Method for Hydraulic Control of Water Distribution Project Download PDFInfo
- Publication number
- CN114460981A CN114460981A CN202210079779.5A CN202210079779A CN114460981A CN 114460981 A CN114460981 A CN 114460981A CN 202210079779 A CN202210079779 A CN 202210079779A CN 114460981 A CN114460981 A CN 114460981A
- Authority
- CN
- China
- Prior art keywords
- water
- channel
- increment
- node
- outlet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 371
- 238000009826 distribution Methods 0.000 title claims abstract description 159
- 238000000034 method Methods 0.000 title claims abstract description 88
- 238000004088 simulation Methods 0.000 title claims abstract description 12
- 238000004134 energy conservation Methods 0.000 claims abstract description 29
- 238000006467 substitution reaction Methods 0.000 claims abstract description 11
- 238000004364 calculation method Methods 0.000 claims description 35
- 230000008569 process Effects 0.000 claims description 20
- 238000011144 upstream manufacturing Methods 0.000 claims description 17
- 239000011159 matrix material Substances 0.000 claims description 10
- 230000008859 change Effects 0.000 claims description 9
- 230000005484 gravity Effects 0.000 claims description 8
- 230000001133 acceleration Effects 0.000 claims description 7
- 238000003379 elimination reaction Methods 0.000 claims description 7
- 101000927062 Haematobia irritans exigua Aquaporin Proteins 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 230000010354 integration Effects 0.000 claims description 5
- 230000014509 gene expression Effects 0.000 claims description 4
- 238000004458 analytical method Methods 0.000 abstract description 10
- 238000004422 calculation algorithm Methods 0.000 abstract description 5
- 230000008878 coupling Effects 0.000 abstract description 2
- 238000010168 coupling process Methods 0.000 abstract description 2
- 238000005859 coupling reaction Methods 0.000 abstract description 2
- 238000012546 transfer Methods 0.000 description 7
- 230000007704 transition Effects 0.000 description 6
- 238000013461 design Methods 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000003973 irrigation Methods 0.000 description 4
- 230000002262 irrigation Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000011438 discrete method Methods 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000013486 operation strategy Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D9/00—Level control, e.g. controlling quantity of material stored in vessel
- G05D9/12—Level control, e.g. controlling quantity of material stored in vessel characterised by the use of electric means
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Flow Control (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种配水枢纽水力控制的数值模拟方法,是一种水工工程的分析方法,是一种可以应用计算机对水工工程进行分析并辅助运行调度的方法。The invention relates to a numerical simulation method for hydraulic control of a water distribution junction, which is an analysis method for hydraulic engineering, and a method that can apply computer to analyze hydraulic engineering and assist in operation scheduling.
背景技术Background technique
调水工程、大中型灌区是优化水资源空间配置、缓解局部地区或农业灌溉水资源短缺问题的工程措施,其安全调度、运行是保障国家水资源安全的关键。工程的控制调节通常需要进行水力过渡过程计算,分析闸、泵、阀等设备一定操作策略下管涵渠隧的流量、水位、压力变化,使其满足规范规程、管道承压、设备限值等要求。Water transfer projects and large and medium-sized irrigation areas are engineering measures to optimize the spatial allocation of water resources and alleviate the shortage of water resources in local areas or agricultural irrigation. Their safe scheduling and operation are the key to ensuring the security of national water resources. The control and adjustment of the project usually requires the calculation of the hydraulic transition process, and the analysis of the flow, water level and pressure changes of the pipe, culvert, tunnel and tunnel under a certain operation strategy of gates, pumps, valves and other equipment, so as to meet the specifications, pipeline pressure, equipment limits, etc. Require.
配水枢纽是调水工程、大中型灌区中常见的一种水工建筑物,用于连接长距离引水工程和后续配水工程的管涵渠隧、以及主引水渠(管)和配水干、支渠(管)。若使用水库作为配水枢纽,可视为常水位边界,引水工程和配水工程的水力过渡过程分别计算。受项目整体布局、地形地质条件、移民搬迁等因素的制约,很多工程没有合适的库区作为配水枢纽,需要人工建造水池、水渠等设施。人工建造就必须考虑成本、环境等问题,将池渠限制在一定范围内。由于配水枢纽人工水池的体积有限,当供水流量或用户需求发生变化时,整个输水系统的沿程流量、水位、压力均会随之改变,将配水枢纽视作常水位边界则无法反映引水工程、配水工程真实的水力特性,对工程的运行调度有何影响及其影响程度,需要耦合引水工程、配水枢纽和配水工程三部分进行仿真分析。如何对配水枢纽进行仿真分析,以提供有效的数据,保证输水安全是一个需要解决的问题。A water distribution hub is a common hydraulic structure in water transfer projects and large and medium-sized irrigation areas. It is used to connect pipes, culverts and tunnels of long-distance water diversion projects and subsequent water distribution projects, as well as main diversion channels (pipes) and water distribution trunks and branch channels ( Tube). If the reservoir is used as the water distribution hub, it can be regarded as the boundary of the constant water level, and the hydraulic transition process of the water diversion project and the water distribution project are calculated separately. Restricted by factors such as the overall layout of the project, topographic and geological conditions, and resettlement relocation, many projects do not have suitable reservoir areas as water distribution hubs, and facilities such as pools and canals need to be constructed manually. Manual construction must consider issues such as cost and environment, and limit the pool canal within a certain range. Due to the limited volume of the artificial pool of the water distribution hub, when the water supply flow or user demand changes, the flow rate, water level and pressure of the entire water delivery system will also change. Considering the water distribution hub as the boundary of the constant water level, it cannot reflect the water diversion project. , The real hydraulic characteristics of the water distribution project, how it affects the operation and scheduling of the project and the degree of its impact, it is necessary to couple the three parts of the water diversion project, the water distribution hub and the water distribution project for simulation analysis. How to simulate and analyze the water distribution hub in order to provide effective data and ensure the safety of water delivery is a problem that needs to be solved.
发明内容SUMMARY OF THE INVENTION
为了克服现有技术的问题,本发明提出了一种配水枢纽水力控制的数值模拟方法。所述的方法研究有限容积配水枢纽复杂进出流条件下的水力特性,给出控制方程、离散方法、求解程序等内容,建立配水枢纽的理论模型,并结合典型算例对配水枢纽的水力控制进行仿真分析,解决引水工程、配水枢纽和配水工程联立求解的模型问题。In order to overcome the problems of the prior art, the present invention proposes a numerical simulation method for hydraulic control of a water distribution project. The described method studies the hydraulic characteristics of the limited volume water distribution project under complex inflow and outflow conditions, gives the control equations, discrete methods, solving procedures, etc., establishes the theoretical model of the water distribution project, and combines the typical calculation examples to carry out the hydraulic control of the water distribution project. Simulation analysis to solve the model problem of simultaneous solution of water diversion project, water distribution hub and water distribution project.
本发明的目的是这样实现的:一种配水枢纽水力控制的数值模拟方法,所述方法的所分析的配水枢纽包括:M条进水渠道、设有溢流道的配水池,以及N条出水渠道;沿各条进水渠道设置m+1个计算节点,各条进水渠道的计算节点从上游向下游编码;沿第1条出水渠道设置n+1个计算节点,出水渠道1的计算节点从上游向下游编码;沿第2~N条出水渠道设置n+1个计算节点,出水渠道2~N的计算节点从下游向上游编码;即:M条进水渠道的末端计算节点、2~N条出水渠道的末端计算节点和1条出水渠道的首端计算节点均为进水渠道或出水渠道与配水池衔接处的计算节点,其特征在于,所述的方法的步骤如下:The object of the present invention is achieved in this way: a numerical simulation method for hydraulic control of a water distribution junction, the water distribution junction analyzed by the method includes: M water inlet channels, a water distribution pool with overflow channels, and N water outlet channels channel; set m+1 computing nodes along each water inlet channel, and the computing nodes of each water inlet channel are coded from upstream to downstream; set n+1 computing nodes along the first water outlet channel, and the computing node of
步骤1,获取增量相关关系:利用双扫法的消元过程计算进水渠道1、进水渠道2、……、进水渠道M,出水渠道2、……、出水渠道N的矩阵B和列向量P的元素,获得末节点的流量增量与水位增量的相关关系,方程数量为M+N-1;计算公式如下:
X=BX+P (1)X=BX+P (1)
式中:ΔQ为当前迭代步的流量增量,下角标K代表计算节点编号,对于进水渠道,下角标的数值为0~m;对于出水渠道,下角标的数值为0~n;Δh为当前迭代步的水深增量;U、W、P为双扫法系数;U、W、P的下角标代表矩阵的行数变化,对于进水渠道,编号为0~2m-1;对于出水渠道,编号为0~2n-1;where: ΔQ is the flow increment of the current iteration step, and the subscript K represents the calculation node number. For the water inlet channel, the subscript value is 0~m; for the water outlet channel, the subscript value is 0~n; Δh is the water depth of the current iteration step Increment; U, W, and P are the coefficients of the double sweep method; the subscripts of U, W, and P represent the change of the number of rows in the matrix. For the water inlet channel, the number is 0~2m-1; 2n-1;
各元素由下述递推公式计算:Each element is calculated by the following recursive formula:
式中:c、b、D、a、e为系数;j为节点编号,j=1,2,……,K-2;In the formula: c, b, D, a, e are coefficients; j is the node number, j=1, 2, ..., K-2;
对于进水渠道1,末端计算节点的流量增量和水量增量满足如下关系式:For
ΔQIn1,m=UIn1,2m-2ΔyIn1,m+PIn1,2m-2 (5.1)ΔQ In1,m =U In1,2m-2 Δy In1,m +P In1,2m-2 (5.1)
对于进水渠道2~M,末端计算节点的流量增量和水量增量满足如下关系式:For
ΔQIn2,m=UIn2,2m-2ΔyIn2,m+PIn2,2m-2 (5.2)ΔQ In2,m =U In2,2m-2 Δy In2,m +P In2,2m-2 (5.2)
……...
ΔQInM,m=UInM,2m-2ΔyInM,m+PInM,2m-2 (5.M)ΔQ InM,m =U InM,2m-2 Δy InM,m +P InM,2m-2 (5.M)
对于出水渠道2~N,末端计算节点的流量增量和水量增量满足如下关系式:For
ΔQOut2,n=UOut2,2n-2ΔyOut2,n+POut2,2n-2 (6.2)ΔQ Out2,n =U Out2,2n-2 Δy Out2,n +P Out2,2n-2 (6.2)
……...
ΔQOutN,n=UOutN,2n-2ΔyOutN,n+POutN,2n-2 (6.N)ΔQ OutN,n =U OutN,2n-2 Δy OutN,n +P OutN,2n-2 (6.N)
由此,可获得M+N-1个关于流量增量和水量增量,ΔQIn1,m、ΔyIn1,m、……、ΔQInM,m、ΔyInM,m、ΔQOut2,n、ΔyOut2,n、……、ΔQOutN,n、ΔyOutN,n,相关关系的方程;下角标中的In表示进水渠道,Out表示出水渠道,后面的数字代表渠道编号,逗号后数字代表计算节点编号;Thus, M+N-1 can be obtained about the flow increment and the water quantity increment, ΔQ In1,m , Δy In1,m , . . . , ΔQ InM,m , Δy InM,m , ΔQ Out2,n , Δy Out2 ,n , ..., ΔQ OutN,n , Δy OutN,n , the equation of the correlation; In in the subscript represents the water inlet channel, Out represents the water outlet channel, the following number represents the channel number, and the number after the comma represents the calculation node number ;
步骤2,转换和积分:所有的进水、出水与配水池水位满足能量守恒方程,并利用牛顿—辛普森方法进行离散,方程数量为M+N;同时也满足质量守恒方程,积分并取二阶近似,方程数量为1;
进水渠道1出口节点与配水池的能量守恒方程:The energy conservation equation of the outlet node of
式中:yIn1,m为进水渠道1出口节点的测压管水头;QIn1,m为进水渠道1出口节点的流量;g为重力加速度;AIn1,m为进水渠道1出口节点的过流面积;ys为配水池的测压管水头;ζIn1为进水渠道1的水进入配水池的局部水头损失系数;Where: y In1,m is the piezometric head of the outlet node of the
进水渠道2~M出口节点与配水池的能量守恒方程:The energy conservation equation of the
式中:yIn2,m、……、yInM,m为进水渠道2~M出口节点的测压管水头;QIn2,m、……、QInM,m为进水渠道2~M出口节点的流量;g为重力加速度;AIn2,m、……、AInM,m为进水渠道2~M出口节点的过流面积;ζIn2、……、ζInM为进水渠道2~M的水进入配水池的局部水头损失系数;In the formula: y In2,m , ..., y InM,m is the piezometric head of the outlet node of the
配水池与出水渠道1进口节点的能量守恒方程:The energy conservation equation of the inlet node of the distribution tank and outlet channel 1:
式中:yOut1,0为出水渠道1进口节点的测压管水头;QOut1,0为出水渠道1进口节点的流量;AOut1,0为出水渠道1进口节点的过流面积;ζOut1为水进入出水渠道1的局部水头损失系数;In the formula: y Out1,0 is the piezometric head of the inlet node of the
配水池与出水渠道2~N进口节点的能量守恒方程:The energy conservation equation of the
……...
式中:yOut2,n、……、yOutN,n为出水渠道2~N进口节点的测压管水头;QOut2,n、……、QOutN,n为出水渠道2~N进口节点的流量;AOut2,n、……、AOutN,n为出水渠道2~N进口节点的过流面积;ζOut2、……、ζOutN为水进入出水渠道2~N的局部水头损失系数;In the formula: y Out2,n ,...,y OutN,n is the head of the piezometric pipe at the inlet node of the
配水池的质量守恒方程为:The mass conservation equation for the distribution tank is:
式中:A0为配水池的平面面积;Qw为溢流道的流量,计算公式为:In the formula: A 0 is the plane area of the water distribution tank; Q w is the flow rate of the overflow channel, and the calculation formula is:
式中:μ为流量系数;Bw为溢流堰宽度;Hw为溢流堰高程;where μ is the flow coefficient; B w is the overflow weir width; H w is the overflow weir elevation;
方程转换:Equation conversion:
对于进水渠道1,由式(7.1)可得:For
采用牛顿—辛普森方法,式(11)转化为:Using the Newton-Simpson method, equation (11) is transformed into:
FIn10+eIn1ΔyIn1,m+aIn1ΔQIn1,m+esΔys=0 (12.1)F In10 +e In1 Δy In1,m +a In1 ΔQ In1,m +e s Δy s =0 (12.1)
式中: Δys为配水池水位的增量;where: Δy s is the increment of the water level in the distribution pool;
对于进水渠道2~M,可获得:For
FIn20+eIn2ΔyIn2,m+aIn2ΔQIn2,m+esΔys=0 (12.2)F In20 +e In2 Δy In2,m +a In2 ΔQ In2,m +e s Δy s =0 (12.2)
……...
FInM0+eInMΔyInM,m+aInMΔQInM,m+esΔys=0 (12.M)F InM0 +e InM Δy InM,m +a InM ΔQ InM,m +e s Δy s =0 (12.M)
式中:……、where: ...,
……、……、 ..., ...,
由此,获得M个关于Δys、ΔQIn1,m、ΔyIn1,m、……、ΔQInM,m、ΔyInM,m的方程;Thereby, M equations for Δy s , ΔQ In1,m , Δy In1,m , . . . , ΔQ InM,m , Δy InM,m are obtained;
对于出水渠道1,由式(8.1)得:For the
采用牛顿—辛普森方法,式(13)转化为:Using the Newton-Simpson method, equation (13) is transformed into:
FOut10+eOut1ΔyOut1,0+aOut1ΔQOut1,0+esΔys=0 (14.1)F Out10 +e Out1 Δy Out1,0 +a Out1 ΔQ Out1,0 +e s Δy s =0 (14.1)
式中: where:
对于出水渠道2~N,获得For
FOut20+eOut2ΔyOut2,n+aOut2ΔQOut2,n+esΔys=0 (14.2)F Out20 +e Out2 Δy Out2,n +a Out2 ΔQ Out2,n +e s Δy s =0 (14.2)
……...
FOutN0+eOutNΔyOutN,n+aOutNΔQOutN,n+esΔys=0 (14.N)F OutN0 +e OutN Δy OutN,n +a OutN ΔQ OutN,n +e s Δy s =0 (14.N)
式中:……、where: ...,
……、 ...,
……、 ...,
对于配水池的质量守恒方程,由式(9)积分并取二阶近似得:For the mass conservation equation of the distribution tank, it can be obtained by integrating equation (9) and taking the second-order approximation:
式中:Δt为时间步长;后缀0表示物理量前一时间步的数值;In the formula: Δt is the time step; the
采用牛顿—辛普森方法,式(15)可转化为:Using the Newton-Simpson method, equation (15) can be transformed into:
式中:where:
由此,可获得1个关于Δys、ΔQIn1,m、ΔyIn1,m、……、ΔQInM,m、ΔyInM,m、ΔQOut1,0、ΔyOut1,0、ΔQOut2,n、ΔyOut2,n、……、ΔQOutN,n、ΔyOutN,n的方程;In this way, one can be obtained about Δy s , ΔQ In1,m , Δy In1,m , . Equations of Out2,n ,...,ΔQ OutN,n ,Δy OutN,n ;
步骤3,推导出水渠道1进口节点流量增量与水位增量的相关关系:对于当前迭代步,未知数包括:进水渠道1、进水渠道2、……、进水渠道M、出水渠道1、出水渠道2、……、出水渠道N的流量增量和水位增量,ΔQIn1,m、ΔyIn1,m、……、ΔQInM,m、ΔyInM,m、ΔQOut1,0、ΔyOut1,0、ΔQOut2,n、ΔyOut2,n、……、ΔQOutN,n、ΔyOutN,n,配水池的水位增量,Δys,共计2(M+N)+1;方程数量为2(M+N),经推导可得出水渠道1进口节点的流量增量ΔQOut1,0与水位增量ΔyOut1,0的相关关系;
步骤4,回代求解出水渠道1所有节点的流量增量与水位增量:利用回代过程求解出水渠道1所有节点的流量增量与水位增量,计算公式为:
步骤5,求解进水渠道出口节点、出水渠道进口节点的流量增量和水位增量以及配水池的水位增量:求解进水渠道1、进水渠道2、……、进水渠道M的出口节点,以及出水渠道2、……、出水渠道N进口节点的流量增量和水位增量,以及配水池的水位增量;利用步骤4得到的出水渠道1进口节点的流量增量ΔQOut1,0与水位增量ΔyOut1,0,代入前面建立的方程,确定进水1、进水2、……、进水M的出口节点,以及出水2、……、出水N进口节点的流量增量和水位增量,ΔQIn1,m、ΔyIn1,m、……、ΔQInM,m、ΔyInM,m、ΔQOut2,n、ΔyOut2,n、……、ΔQOutN,n、ΔyOutN,n,配水池的水位增量,Δys;Step 5, solve the flow increment and water level increment of the outlet node of the water inlet channel, the inlet node of the outlet channel, and the water level increment of the distribution tank: solve the outlet of the
步骤6,回代求解各渠道其他节点的流量增量和水位增量:分别回代求解进水渠道1、进水渠道2、……、进水渠道M、出水渠道2、……、出水渠道N所有节点的流量增量和水位增量,计算公式为:Step 6, back-substitution to solve the flow increment and water level increment of other nodes of each channel: Back-substitution to solve the
步骤7,计算各节点的流量和水位:计算进水渠道1、进水渠道2、……、进水渠道M、出水渠道1、出水渠道2、……、出水渠道N所有节点在当前迭代步的流量和水位,以及配水池在当前迭代步的水位;流量等于前一迭代步的数值加上流量增量,水位等于前一迭代步的数值加上水位增量。Step 7: Calculate the flow and water level of each node: Calculate the
进一步的,所述的进水渠道或出水渠道是有压流动,则采用窄缝法进行求解,缝隙宽度为:Further, if the water inlet channel or the water outlet channel is a pressure flow, the narrow gap method is used to solve the problem, and the gap width is:
B=gA/a2 (19)B=gA/a 2 (19)
式中:B为缝隙宽度;A为有压流动的截面积;a为水击波速。In the formula: B is the width of the gap; A is the cross-sectional area of the pressurized flow; a is the water hammer velocity.
本发明的优点和有益效果是:本发明通过理论分析构建了配水枢纽进流、出流、溢流复杂运行条件下的质量和能量守恒方程,给出了牛顿—辛普森离散算法、编码方式、Preissmann四点隐式差分算法的计算程序等内容,建立了配水枢纽的理论模型;针对可能碰到的多进水、多出水、有压无压耦合等工况,给出了数值求解方法,可为工程的运行调度提供参考。The advantages and beneficial effects of the present invention are as follows: the present invention constructs the mass and energy conservation equations under complex operating conditions of water distribution hub inflow, outflow and overflow through theoretical analysis, and provides Newton-Simpson discrete algorithm, coding method, Preissmann The calculation procedure of the four-point implicit difference algorithm, etc., establishes the theoretical model of the water distribution hub; for the possible working conditions such as multiple inflows, multiple outflows, pressure and non-pressure coupling, etc., the numerical solution method is given, which can be used for The operation scheduling of the project provides a reference.
附图说明Description of drawings
下面结合附图和实施例对本发明作进一步说明。The present invention will be further described below with reference to the accompanying drawings and embodiments.
图1是本发明实施例一所述方法所分析的配水枢纽的结构示意图;1 is a schematic structural diagram of a water distribution hub analyzed by the method described in
图2是本发明实施例一所述方法流程图;2 is a flowchart of the method according to
图3是本发明实施例一所分析的一进两出的配水枢纽的结构示意图;3 is a schematic structural diagram of a water distribution hub with one inlet and two outlets analyzed in
图4是本发明实施例一所述应用实例配水系统示意图;4 is a schematic diagram of the water distribution system of the application example described in
图5是本发明实施例一所述应用实例配水系统典型位置的流量和水位过程,其中(a)流量过程,(b)为水位过程;Fig. 5 is the flow rate and water level process of the typical position of the water distribution system of the application example described in the first embodiment of the present invention, wherein (a) the flow rate process, (b) is the water level process;
图6是本发明实施例一所述应用实例上游隧洞的水力特性,其中(a)流量过程,(b)为水位过程。6 is the hydraulic characteristics of the upstream tunnel of the application example according to the first embodiment of the present invention, wherein (a) flow process, (b) water level process.
具体实施方式Detailed ways
实施例一:Example 1:
本实施例是一种配水枢纽水力控制的数值模拟方法。所述方法的所分析的配水枢纽包括:M条进水渠道①、设有溢流道②的配水池③,以及N条出水渠道④,如图1所示。图1中的箭头表示了水流的方向。This embodiment is a numerical simulation method for hydraulic control of a water distribution hub. The water distribution hub analyzed by the method includes: M
本实施例所述的配水枢纽是调水工程、大中型灌区中常见的一种水工建筑物,用于连接长距离引水工程和后续配水工程的管涵渠隧、以及主引水渠(管)和配水干、支渠(管)。若使用水库作为配水枢纽,可视为常水位边界,引水工程和配水工程的水力过渡过程分别计算。受项目整体布局、地形地质条件、移民搬迁等因素的制约,很多工程没有合适的库区作为配水枢纽,需要进行修建。设计时,配水枢纽的体积选择一般有两个参照:i进水池的水下容积可按共用该进水池的水泵30倍~50倍设计流量确定;ii当输水规模不大或要求不高时,重力输水管道中间的水池容积可按不小于5min的最大设计水量确定。可见,修建配水枢纽的体积一般为30~300倍的设计流量。由于配水枢纽的体积小,当供水流量或用户需求发生变化时,整个输水系统的沿程流量、水位、压力均会随之改变,将配水枢纽视作常水位边界则无法反映引水工程、配水工程真实的水力特性。控制不当,无法适时适量的为用户输送需求的水量,可能会造成漫堤溢流、爆管、结构建筑物破坏等工程事故。这种情况下,需要耦合引水工程、配水枢纽和配水工程三部分进行仿真分析。The water distribution hub described in this embodiment is a common hydraulic structure in water transfer projects and large and medium-sized irrigation areas. It is used to connect the pipes, culverts, tunnels, and main diversion channels (pipes) of long-distance water diversion projects and subsequent water distribution projects. And water distribution trunk, branch channel (pipe). If the reservoir is used as the water distribution hub, it can be regarded as the boundary of the constant water level, and the hydraulic transition process of the water diversion project and the water distribution project are calculated separately. Restricted by the overall layout of the project, topographic and geological conditions, resettlement and relocation and other factors, many projects do not have suitable reservoir areas as water distribution hubs and need to be constructed. When designing, there are generally two references for the selection of the volume of the water distribution hub: i. The underwater volume of the inlet pool can be determined by 30 to 50 times the design flow of the water pump sharing the inlet pool; ii. When the scale of water delivery is not large or the requirements are not high , the volume of the pool in the middle of the gravity water pipeline can be determined according to the maximum design water volume of not less than 5min. It can be seen that the volume of a water distribution hub is generally 30 to 300 times the design flow. Due to the small size of the water distribution hub, when the water supply flow or user demand changes, the flow, water level, and pressure of the entire water delivery system will change accordingly. Considering the water distribution hub as the boundary of the constant water level, it cannot reflect the water diversion project and water distribution. The true hydraulic properties of the project. Improper control, unable to deliver the required amount of water to users in a timely and appropriate amount, may cause engineering accidents such as flooding, burst pipes, and structural building damage. In this case, it is necessary to couple the three parts of the water diversion project, the water distribution project and the water distribution project for simulation analysis.
本实施例的目的是研究有限容积配水枢纽复杂进出流条件下的水力特性,给出控制方程、离散方法、求解程序等内容,建立配水枢纽的理论模型,并结合典型算例对配水枢纽的水力控制进行仿真分析,解决引水工程、配水枢纽和配水工程联立求解的模型问题。The purpose of this example is to study the hydraulic characteristics of a limited volume water distribution hub under complex inflow and outflow conditions, to give control equations, discrete methods, solving procedures, etc., to establish a theoretical model of the water distribution Control the simulation analysis to solve the model problem of the simultaneous solution of the water diversion project, the water distribution project and the water distribution project.
本实施例所述的配水枢纽主要有三个要素组成:进水渠道、出水渠道和配水池。进水渠道和出水渠道可以是明渠或者是无压涵洞,也可以有压管道。进水渠道数量和出水渠道的数量可以相等,也可以不相等,在多数情况下,进水渠道的数量通常少于出水渠道的数量。所述配水池为人工建造的水池,按30~300倍的设计流量。The water distribution hub described in this embodiment is mainly composed of three elements: the water inlet channel, the water outlet channel and the water distribution pool. The inlet and outlet channels can be open channels or unpressurized culverts, or pressurized pipes. The number of inlet channels and the number of outlet channels may or may not be equal, and in most cases, the number of inlet channels is usually less than the number of outlet channels. The water distribution pool is an artificially constructed pool with a design flow rate of 30 to 300 times.
为方便计算,本实施例在进水渠道和出水渠道设置了计算节点:沿各条进水渠道设置m+1个计算节点,各条进水渠道的计算节点从上游向下游编码。沿第1条出水渠道设置n+1个计算节点,出水渠道1的计算节点从上游向下游编码;沿第2~N条出水渠道设置n+1个计算节点,出水渠道2~N的计算节点从下游向上游编码;即:M条进水渠道的末端计算节点、2~N条出水渠道的末端计算节点和1条出水渠道的首端计算节点均为进水渠道或出水渠道与配水池衔接处的计算节点,见图1。For the convenience of calculation, calculation nodes are set in the water inlet channel and the water outlet channel in this embodiment: m+1 calculation nodes are set along each water inlet channel, and the calculation nodes of each water inlet channel are coded from upstream to downstream. Set n+1 computing nodes along the first outlet channel, and the computing nodes of
配水枢纽通常是具有自由表面的明渠流动。控制方程为圣维南方程,包括动量方程和连续方程,求解方法主要有特征线法、显示差分法、隐式差分法等,其中,隐式差分法数值计算的稳定性好。因此,研究采用了工程计算中应用较为广泛的Preissmann四点隐式差分格式。Distribution hubs are usually open channel flows with free surfaces. The governing equations are Saint-Venant equations, including momentum equations and continuous equations. The main solving methods are the characteristic line method, the explicit difference method, and the implicit difference method. Among them, the implicit difference method has good numerical calculation stability. Therefore, the research adopts the Preissmann four-point implicit difference scheme which is widely used in engineering calculation.
(一)进水系统的能量守恒:(1) Energy conservation of the water inlet system:
进水渠道1、进水渠道2、……、进水渠道M与配水池的能量守恒方程如下。The energy conservation equations of the
进水渠道1的来水进入配水池,由非恒定流伯努利能量方程可得进水渠道1末节点与配水池的能量守恒方程:The incoming water from the
进水渠道1出口节点与配水池的能量守恒方程:The energy conservation equation of the outlet node of
式中:yIn1,m为进水渠道1出口节点的测压管水头;QIn1,m为进水渠道1出口节点的流量;g为重力加速度;AIn1,m为进水渠道1出口节点的过流面积;ys为配水池的测压管水头;ζIn1为进水渠道1的水进入配水池的局部水头损失系数;由于配水池的截面积一般远远大于渠道的截面积,配水池的流速水头可忽略。Where: y In1,m is the piezometric head of the outlet node of the
进水渠道2的来水进入配水池,由非恒定流伯努利能量方程可得进水渠道2末节点与配水池的能量守恒方程:The incoming water from the
式中:yIn2,m为进水渠道2出口节点的测压管水头;为进水渠道2出口节点的流量;AIn2,m为进水渠道2出口节点的过流面积;为进水渠道2~M的水进入配水池的局部水头损失系数。In the formula: y In2,m is the piezometric head of the outlet node of the
……(中间省略进水渠道3至进水渠道M-1的末节点与配水池的能量守恒方程)...(the energy conservation equation from the end node of the
进水渠道M的来水进入配水池,由非恒定流伯努利能量方程可得进水渠道M末节点与配水池的能量守恒方程:The incoming water from the inlet channel M enters the distribution tank, and the energy conservation equation between the end node of the inlet channel M and the distribution tank can be obtained from the unsteady flow Bernoulli energy equation:
式中:yInM,m为进水渠道M出口节点的测压管水头;QInM,m为进水渠道M出口节点的流量;AInM,m为进水渠道M出口节点的过流面积;ζInM为进水渠道M的水进入配水池的局部水头损失系数;Where: y InM,m is the piezometric head of the outlet node of the inlet channel M; Q InM,m is the flow rate of the outlet node of the inlet channel M; A InM,m is the flow area of the outlet node of the inlet channel M; ζ InM is the local head loss coefficient of the water from the inlet channel M entering the distribution tank;
(二)出水系统的能量守恒:(2) Energy conservation of the effluent system:
出水渠道1、出水渠道2、……、出水渠道N的能量守恒方程如下:The energy conservation equations of
配水池的水进入出水渠道1,由非恒定流伯努利能量方程可得配水池与出水渠道1进口节点的能量守恒方程:The water of the distribution tank enters the
式中:yOut1,0为出水渠道1进口节点的测压管水头;QOut1,0为出水渠道1进口节点的流量;AOut1,0为出水渠道1进口节点的过流面积;ζOut1为水进入出水渠道1的局部水头损失系数。In the formula: y Out1,0 is the piezometric head of the inlet node of the
配水池的水进入出水渠道2,由非恒定流伯努利能量方程可得配水池与出水渠道2进口节点的能量守恒方程The water in the distribution tank enters the
式中:yOut2,n为出水渠道2进口节点的测压管水头;QOut2,n为出水渠道2进口节点的流量;AOut2,n为出水渠道2进口节点的过流面积;ζOut2为水进入出水渠道2的局部水头损失系数。出水渠道2的计算节点从下游向上游编码。In the formula: y Out2,n is the piezometric head of the inlet node of the
……(中间省略进出渠道3至进水渠道M-1的末节点与配水池的能量守恒方程)...(the energy conservation equation between the end node of the inlet and
配水池的水进入出水渠道N,由非恒定流伯努利能量方程可得配水池与出水渠道N进口节点的能量守恒方程:The water of the distribution tank enters the outlet channel N, and the energy conservation equation of the inlet node of the distribution tank and the outlet channel N can be obtained from the unsteady flow Bernoulli energy equation:
式中:yOutN,n为出水渠道N进口节点的测压管水头;QOutN,n为出水渠道N进口节点的流量;AOutN,n为出水渠道N进口节点的过流面积;ζOutN为水进入出水渠道N的局部水头损失系数。出水渠道N的计算节点从下游向上游编码。Where: y OutN,n is the piezometric head of the inlet node of the outlet channel N; Q OutN,n is the flow of the inlet node of the outlet channel N; A OutN,n is the flow area of the inlet node N of the outlet channel; ζ OutN is The local head loss coefficient of water entering the outlet channel N. The compute nodes of the outlet channel N are coded from downstream to upstream.
(三)配水池的质量守恒:(3) Conservation of the quality of the distribution pool:
配水池水体的增量等于进流、出流和溢流之和,质量守恒方程为:The increment of the water body in the distribution tank is equal to the sum of the inflow, outflow and overflow, and the mass conservation equation is:
式中:A0为配水池的平面面积,m2;Qw为溢流道的流量,m3/s,计算公式为In the formula: A 0 is the plane area of the water distribution tank, m 2 ; Q w is the flow rate of the overflow channel, m 3 /s, and the calculation formula is
式中:μ为流量系数;Bw为溢流堰宽度,m;Hw为溢流堰高程,m。where μ is the flow coefficient; B w is the overflow weir width, m; H w is the overflow weir elevation, m.
(四)方程转换:(4) Equation conversion:
对于进水渠道1,由式(7.1)可得:For
采用牛顿—辛普森方法,式(11)可转化为:Using the Newton-Simpson method, equation (11) can be transformed into:
FIn10+eIn1ΔyIn1,m+aIn1ΔQIn1,m+esΔys=0 (12.1)F In10 +e In1 Δy In1,m +a In1 ΔQ In1,m +e s Δy s =0 (12.1)
式中: Δys为配水池水位的增量。where: Δy s is the increment of the water level in the distribution tank.
其他进水渠道的方程可采用类似方法进行转换。The equations for other influent channels can be transformed in a similar way.
由式(8.1)得:From formula (8.1) we get:
采用牛顿—辛普森方法,式(13)可转化为:Using the Newton-Simpson method, equation (13) can be transformed into:
FOut10+eOut1ΔyOut1,0+aOut1ΔQOut1,0+esΔys=0 (14.1)F Out10 +e Out1 Δy Out1,0 +a Out1 ΔQ Out1,0 +e s Δy s =0 (14.1)
式中: where:
其他出水渠道的方程可采用类似方法进行转换。The equations for other outlet channels can be transformed in a similar way.
对于配水池的质量守恒方程,由式(9)积分并取二阶近似得:For the mass conservation equation of the distribution tank, it can be obtained by integrating equation (9) and taking the second-order approximation:
式中:Δt为时间步长;后缀0表示物理量前一时间步的数值。In the formula: Δt is the time step; the
采用牛顿—辛普森方法,式(15)可转化为:Using the Newton-Simpson method, equation (15) can be transformed into:
式中:where:
其他节点的计算:Calculation of other nodes:
明渠一维非恒定流的连续性方程和动量方程为:The continuity equation and momentum equation of one-dimensional unsteady flow in an open channel are:
式中:A为过流面积,m2;t为时间变量,s;Q为流量,m3/s;x为空间变量,m;q为单位渠道长度的侧向流量,m3/s;β为断面流速分布不均引入的修正系数;g为重力加速度,m2/s;h为水深,m;S0为河床底坡;Sf为摩阻比降,计算公式为:Where: A is the flow area, m 2 ; t is the time variable, s; Q is the flow rate, m 3 /s; x is the spatial variable, m; q is the lateral flow per unit channel length, m 3 /s; β is the correction coefficient introduced by the uneven distribution of flow velocity in the section; g is the acceleration of gravity, m 2 /s; h is the water depth, m; S 0 is the bottom slope of the riverbed;
Sf=Q|Q|/K2 (22)S f =Q|Q|/K 2 (22)
式中:K为流量模数,n为渠道糙率;R为水力半径,m。利用Preissmann隐式格式,连续性和动量方程离散为:In the formula: K is the flow modulus, n is the channel roughness; R is the hydraulic radius, m. Using the Preissmann implicit format, the continuity and momentum equations are discretized as:
式中:y为水面高程;ψR为空间系数,不一定与ψ相同。In the formula: y is the water surface elevation; ψ R is the spatial coefficient, which is not necessarily the same as ψ.
代入连续性方程式(23)后,整理得:After substituting into the continuity equation (23), we get:
a2j+1Δhj+b2j+1ΔQj+c2j+1Δhj+1+d2j+1ΔQj+1=D2j+1 (25)a 2j+1 Δh j +b 2j+1 ΔQ j +c 2j+1 Δh j+1 +d 2j+1 ΔQ j+1 =D 2j+1 (25)
式中:b2j+1=-θ/Δx;d2j+1=θ/Δx;where: b 2j+1 =-θ/Δx; d 2j+1 =θ/Δx;
代入动量方程(24)后,整理得:After substituting into the momentum equation (24), we get:
e2j+2Δhj+a2j+2ΔQj+b2j+2Δhj+1+c2j+2ΔQj+1=D2j+2 (26)e 2j+2 Δh j +a 2j+2 ΔQ j +b 2j+2 Δh j+1 +c 2j+2 ΔQ j+1 =D 2j+2 (26)
式中: where:
边界条件:Boundary conditions:
常见的边界条件有三种:There are three common boundary conditions:
a.F=h-h(t)=0a.F=h-h(t)=0
b.F=Q-Q(t)=0b.F=Q-Q(t)=0
c.F=Q-f(h)=0c.F=Q-f(h)=0
对于a类边界,水深是时间的函数;对于b类边界,流量是时间的函数;对于c类边界,流量是水深的函数。例如,明渠下游为宽顶堰,其流量水位关系为:For type a boundaries, water depth is a function of time; for type b boundaries, flow is a function of time; for type c boundaries, flow is a function of water depth. For example, the downstream of the open channel is a wide-top weir, and the relationship between its flow and water level is:
式中:μ为流量系数;B为堰顶宽,m;h为堰上水头,m。In the formula: μ is the flow coefficient; B is the width of the top of the weir, m; h is the head of the weir, m.
采用牛顿—辛普森公式,上述三类边界条件可转化为:Using the Newton-Simpson formula, the above three types of boundary conditions can be transformed into:
FhΔh+FQΔQ=-F0 F h Δh+F Q ΔQ=-F 0
对于a类边界条件,For type a boundary conditions,
对于b类边界条件,For type b boundary conditions,
对于c类边界条件,For boundary conditions of type c,
通过Preissmann四点隐式差分将渠道内节点离散化,并利用牛顿—辛普森公式将边界条件线性化,方程的矩阵形式为:The nodes in the channel are discretized by Preissmann four-point implicit difference, and the boundary conditions are linearized by the Newton-Simpson formula. The matrix form of the equation is:
AX=D (31)AX=D (31)
式中:系数b0、c0和D0由渠道进口边界条件确定,b0=Fh、c0=FQ和D0=-F0;a2K-1、b2K-1和D2K-1由渠道出口边界条件确定,a2K-1=Fh、b2K-1=FQ和D2K-1=-F0。where: The coefficients b 0 , c 0 and D 0 are determined by the channel inlet boundary conditions, b 0 =F h , c 0 =F Q and D 0 =-F 0 ; a 2K-1 , b 2K-1 and D 2K-1 are given by The channel outlet boundary conditions are determined, a 2K-1 =F h , b 2K-1 =F Q and D 2K-1 =-F 0 .
上述非线性方程组的系数矩阵A是带形,其非零元素均位于对角线附近,可采用双扫法对上述方程组进行求解。假定系数b0≠0,采用消元法对上述方程进行变换:The coefficient matrix A of the above nonlinear equation system is in the shape of a strip, and its non-zero elements are all located near the diagonal. The above equation system can be solved by the double sweep method. Assuming that the coefficient b 0 ≠ 0, the above equation is transformed by the elimination method:
X=BX+P (1)X=BX+P (1)
式中: where:
各元素由下述递推公式计算:Each element is calculated by the following recursive formula:
由于上述线性方程组的矩阵B是一个对角线上元素为0的上三角矩阵,因此,采用下式的回代过程递推进行求解:Since the matrix B of the above linear equation system is an upper triangular matrix with 0 elements on the diagonal, it is solved by recursive back-substitution process of the following formula:
数值求解的具体过程可以描述为(流程如图2所示):The specific process of numerical solution can be described as (the process is shown in Figure 2):
步骤1,获取增量相关关系。利用双扫法的消元过程计算进水1、进水2、……、进水M、出水2、……、出水N的矩阵B和列向量P的元素,获得末节点的流量增量与水位增量的相关关系,方程数量为M+(N-1)。
步骤2,转换和积分。所有的进水、出水与配水池水位满足能量守恒方程,并利用牛顿—辛普森方法进行离散,方程数量为M+N;同时也满足质量守恒方程,积分并取二阶近似,方程数量为1。
步骤3,推导出水渠道1进口节点流量增量与水位增量的相关关系。对于某一迭代步,未知数包括:进水1、进水2、……、进水M、出水1、出水2、……、出水N的流量增量和水位增量,配水池的水位增量,共计2(M+N)+1;方程数量为2(M+N),经推导可得出水渠道1进口节点的流量增量与水位增量的相关关系。
步骤4,回代求解出水渠道1所有节点的流量增量与水位增量。
步骤5,求解进水渠道出口节点、出水渠道进口节点的流量增量和水位增量以及配水池的水位增量。Step 5, solve the flow increment and water level increment of the outlet node of the water inlet channel, the inlet node of the water outlet channel, and the water level increment of the water distribution tank.
步骤6,回代求解各渠道其他节点的流量增量和水位增量。Step 6, back-substitute to solve the flow increment and water level increment of other nodes of each channel.
步骤7,计算各节点的流量和水位。Step 7: Calculate the flow and water level of each node.
当计算节点的流量增量和水位增量小于设定误差时,当前时间步的计算结束,更新上游、下游边界,开始新一时间步的仿真计算;否则,利用新的流量和水位,开始新一迭代步,直到满足精度要求。When the flow increment and water level increment of the calculation node are less than the set error, the calculation of the current time step ends, the upstream and downstream boundaries are updated, and the simulation calculation of a new time step starts; otherwise, the new flow and water level are used to start a new time step. One iterative step until the accuracy requirement is met.
实际工程中还存在另一种特殊情况,即某些进水或出水是有压流动。此时,可采用窄缝法进行求解,或使用其他类似将有压化为等效无压的方法进行求解。There is another special case in practical engineering, that is, some influent or effluent flows under pressure. At this time, the narrow slit method can be used to solve the problem, or other similar methods can be used to convert the pressure into the equivalent pressureless method.
计算实例:Calculation example:
为进一步说明本实施例所述的方法,下面用“一进、两出、一溢(排)”的配水枢纽,见图3,进行具体说明,为方便说明进水渠道命名为渠道1,两个出水渠道分别命名为渠道2、3。渠道1的来水进入配水池,经闸(阀)门调控后分配给渠道2和渠道3,为了避免满流漫堤或排空水池,设有溢流道或放空管。溢流道、放空管均为水位—流量关系边界,本实施例以溢流道进行分析。In order to further illustrate the method described in this embodiment, a water distribution hub of "one inlet, two outlets, and one overflow (discharge)" is used below, as shown in Figure 3, for a specific description. The outlet channels are named as
控制方程:Governing equation:
渠道1的来水进入配水池,由非恒定流伯努利能量方程可得渠道1末节点与配水池的能量守恒方程:The incoming water from
式中:y1,m为渠道1末节点的测压管水头,m;Q1,m为渠道1末节点的流量,m3/s;g为重力加速度,m/s2;A1,m为渠道1末节点的过流面积,m2;ys为配水池的测压管水头,m;ζ1为水进入配水池的局部水头损失系数,包含断面变化、出水口、控制闸等。由于配水池的截面积一般远远大于渠道的截面积,配水池的流速水头可忽略。Where: y 1,m is the head of the piezometric pipe at the end node of
配水池的水进入渠道2,由非恒定流伯努利能量方程可得配水池与渠道2首节点的能量守恒方程:The water in the distribution pool enters
式中:y2,n为渠道2首节点的测压管水头,m;Q2,n为渠道2首节点的流量,m3/s;A2,n为渠道2首节点的过流面积,m2;ζ2为水进入渠道2的局部水头损失系数,包含断面变化、进水口、控制闸等。渠道2的计算节点从下游向上游编码。In the formula: y 2,n is the head of the piezometric pipe at the first node of
配水池的水进入渠道3,由非恒定流伯努利能量方程可得配水池与渠道3首节点的能量守恒方程:The water in the distribution tank enters
式中:y3,0为渠道3首节点的测压管水头,m;Q3,0为渠道3首节点的流量,m3/s;A3,0为渠道3首节点的过流面积,m2;ζ3为水进入渠道3的局部水头损失系数,包含断面变化、出水口、控制闸等。In the formula: y 3,0 is the head of the piezometric pipe at the first node of the
配水池水体的增量等于进流、出流和溢流之和,质量守恒方程为:The increment of the water body in the distribution tank is equal to the sum of the inflow, outflow and overflow, and the mass conservation equation is:
式中:A0为配水池的平面面积,m2;Qw为溢流道的流量,m3/s,计算公式为:In the formula: A 0 is the plane area of the water distribution tank, m 2 ; Q w is the flow rate of the overflow channel, m 3 /s, and the calculation formula is:
式中:μ为流量系数;Bw为溢流堰宽度,m;Hw为溢流堰高程,m。where μ is the flow coefficient; B w is the overflow weir width, m; H w is the overflow weir elevation, m.
求解算法:Solving algorithm:
由式(1a)得:From formula (1a) we get:
采用牛顿—辛普森方法,式(6a)可转化为:Using the Newton-Simpson method, equation (6a) can be transformed into:
F10+e1Δy1,m+a1ΔQ1,m+esΔys=0(7a)F 10 +e 1 Δy 1,m +a 1 ΔQ 1,m +e s Δy s =0(7a)
式中:Δ表示相应物理量在某一迭代步的增量; where: Δ represents the increment of the corresponding physical quantity in an iterative step;
由式(2a)得:From formula (2a), we get:
采用牛顿—辛普森方法,式(8a)可转化为:Using the Newton-Simpson method, equation (8a) can be transformed into:
F20+e2Δy2,n+a2ΔQ2,n+esΔys=0 (9a)F 20 +e 2 Δy 2,n +a 2 ΔQ 2,n +e s Δy s =0 (9a)
式中: where:
由式(3a)得:From formula (3a), we get:
采用牛顿—辛普森方法,式(10a)可转化为:Using the Newton-Simpson method, equation (10a) can be transformed into:
F30+e3Δy3,0+a3ΔQ3,0+esΔys=0 (11a)F 30 +e 3 Δy 3,0 +a 3 ΔQ 3,0 +e s Δy s =0 (11a)
式中: where:
由式(4a)积分并取二阶近似得:By integrating equation (4a) and taking the second-order approximation, we get:
整理得:Arranged:
式中:Δt为时间步长,s;下角标0表示物理量前一时间步的数值。In the formula: Δt is the time step, s; the
采用牛顿—辛普森方法,式(13a)可转化为:Using the Newton-Simpson method, equation (13a) can be transformed into:
F40+F4,ysΔys+F4,Q1,mΔQ1,m+F4,Q2,nΔQ2,n+F4,Q3,0ΔQ3,0=0 (14a)F 40 +F 4,ys Δy s +F 4,Q1,m ΔQ 1,m +F 4,Q2,n ΔQ 2,n +F 4,Q3,0 ΔQ 3,0 =0 (14a)
式中: where:
渠道1的进口通常是流量边界,由双扫法的消元过程可得末节点满足:The inlet of
ΔQ1,m=U1,2m-2Δy1,m+P1,2m-2 (15a)ΔQ 1,m =U 1,2m-2 Δy 1,m +P 1,2m-2 (15a)
式中:Ui,j、Pi,j为双扫法系数。In the formula: U i,j and P i,j are the coefficients of the double sweep method.
渠道2的出口为水位边界或水位—流量关系时,由出口向进口方向消元可得:When the outlet of
Δy2,n=U2,2n-2ΔQ2,n+P2,2n-2 (16a)Δy 2,n =U 2,2n-2 ΔQ 2,n +P 2,2n-2 (16a)
由式(7a)得:From formula (7a), we get:
式(17a)代入式(15a)得:Substitute equation (17a) into equation (15a) to get:
由式(9a)得:From formula (9a), we get:
式(19a)代入式(16a)得:Substitute equation (19a) into equation (16a) to get:
式(18a)和(20a)代入式(14a)得:Substitute equations (18a) and (20a) into equation (14a) to get:
式中: where:
式(21a)代入式(11a):Substitute equation (21a) into equation (11a):
b3,0Δy3,0+c3,0ΔQ3,0=D3,0 (22a)b 3,0 Δy 3,0 +c 3,0 ΔQ 3,0 =D 3,0 (22a)
式中:b3,0=e3; In the formula: b 3,0 =e 3 ;
对整个输水系统进行数值求解的程序为:The procedure for numerically solving the entire water delivery system is:
(1)利用双扫法的消元过程算出进水渠道和渠道出水1的矩阵B和列向量P的元素U1,i、W1,i、P1,i、U2,j、W2,j和P2,j(i=0,1,...,2m-2,j=0,1,...,2n-2);(1) Calculate the elements U 1,i , W 1,i , P 1,i , U 2,j , W 2 of the matrix B and column vector P of the inlet channel and
(2)利用式(22a)确定渠道1进口边界的双扫法系数,b3,0、c3,0和D3,0;(2) Use formula (22a) to determine the double sweep method coefficients of the inlet boundary of
(3)用双扫法求解渠道3的水深和流量增量;(3) Use the double sweep method to solve the water depth and flow increment of
(4)利用式(21a)、(20a)、(19a)、(18a)和(17a)依次求解Δys、ΔQ2,n、Δy2,n、ΔQ1,m和Δy1,m;(4) Solve Δy s , ΔQ 2,n , Δy 2,n , ΔQ 1,m and Δy 1,m sequentially by using equations (21a), (20a), (19a), (18a) and (17a);
(5)用双扫法的回代过程求解渠道1和渠道2的水深和流量增量。(5) Use the back-substitution process of the double sweep method to solve the water depth and flow increments of
应用实例:Applications:
一项调水工程通过输水渠隧1将水调至另一区域,如图4所示,中间的配水池将水分配给2条输水渠隧,进而输送至受水地区。A water transfer project transfers water to another area through
水利枢纽的水下泄进入输水渠隧1,后进入配水池,设计流量为70m3/s。配水池为矩形池体,长80m、宽46m,容积2.8万m3;配水池内水体经调控后进入输水渠隧2、输水渠隧3,水位较高时通过溢流堰进行泄流,如图4所示。The water discharge from the water conservancy project enters the
输水渠隧2和输水渠隧3的配水流量存在47m3/s+23m3/s和40m3/s+30m3/s两种情况。配水流量由47m3/s+23m3/s切换为40m3/s+30m3/s时,渠隧2闸门由全开减小为2.1m,渠隧3闸门开度由1.7m到全开,动作速率均为0.2m/min,配水池和配水工程的水力过渡过程特性如图5所示。渠隧2的5km、10km处分别在闸门动作103min和136min后,达到目标流量40m3/s;储水池在闸门动作15min后,达到目标流量30m3/s。配水池水位由258.88m平稳地降低为258.74m,渠隧2闸后水位由258.33m降低为257.78m,储水池水位由256.79m增加为258.10m。配水池上游渠隧1的水力过渡过程特性如图6所示。配水流量调节过程中,配水池上游15km范围内渠隧1的流量和水位均随之变化。上游5km处的流量先增大至70.14m3/s,之后缓慢恢复至70.00m3/s,水位由260.84m降低至260.79m,流量和水位的变化幅度随距离的增加而减小。配水流量调节过程中,渠隧1、渠隧2、渠隧3的流量平稳过渡,明流隧洞未发生满流现象,配水池未发生溢流。There are two cases of water distribution flow of the
由算例知,配水流量调节过程中,调水工程的沿程流量和水位均会随之改变;同样地,调水工程的调节也会影响用户的来水过程、可用水量等内容。若将有限容积的配水枢纽作为常水位边界,则无法分析整个输水系统的水力过渡过程,难以量化真实的流量、水位、压力变化特性。对工程运行安全以及调度方案编制的影响程度,则需要具体问题、具体分析。From the calculation example, in the process of water distribution flow adjustment, the flow and water level along the water transfer project will change accordingly; similarly, the adjustment of the water transfer project will also affect the user's water inflow process, available water and other content. If the limited volume of the water distribution hub is used as the boundary of the constant water level, it is impossible to analyze the hydraulic transition process of the entire water delivery system, and it is difficult to quantify the real flow, water level, and pressure variation characteristics. Specific problems and specific analysis are needed to determine the degree of impact on project operation safety and scheduling scheme preparation.
实施例二:Embodiment 2:
本实施例是上述实施例的改进,是上述实施例关于进水管道和出水管道的细化,本实施例所述的进水渠道或出水渠道是有压流动,则采用窄缝法进行求解,缝隙宽度为:This embodiment is an improvement of the above-mentioned embodiment, and is the refinement of the above-mentioned embodiment about the water inlet pipe and the water outlet pipe. The water inlet channel or the water outlet channel described in this embodiment is a pressure flow, and the narrow slit method is used to solve it. The gap width is:
B=gA/a2 (18)B=gA/a 2 (18)
式中:B为缝隙宽度;A为有压流动的截面积;a为水击波速。In the formula: B is the width of the gap; A is the cross-sectional area of the pressurized flow; a is the water hammer velocity.
本实施例所述的窄缝法进行求解,即假设管道顶部有一条非常窄缝隙,既不增加管道的截面积,也不增加水力半径,方式极为简单,能够达到十分的精确计算。The narrow slit method described in this embodiment is used to solve the problem, that is, it is assumed that there is a very narrow slit at the top of the pipeline, neither the cross-sectional area of the pipeline nor the hydraulic radius is increased, the method is extremely simple, and very accurate calculation can be achieved.
最后应说明的是,以上仅用以说明本发明的技术方案而非限制,尽管参照较佳布置方案对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案(比如配水系统的形式、各种公式的运用、步骤的先后顺序等)进行修改或者等同替换,而不脱离本发明技术方案的精神和范围。Finally, it should be noted that the above is only used to illustrate the technical solutions of the present invention and not to limit it. Although the present invention has been described in detail with reference to the preferred arrangement solutions, those of ordinary skill in the art should understand that the technical solutions of the present invention (such as The form of the water distribution system, the use of various formulas, the sequence of steps, etc.) can be modified or equivalently replaced without departing from the spirit and scope of the technical solution of the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210079779.5A CN114460981B (en) | 2022-01-24 | 2022-01-24 | A numerical simulation method for hydraulic control of water distribution hubs |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210079779.5A CN114460981B (en) | 2022-01-24 | 2022-01-24 | A numerical simulation method for hydraulic control of water distribution hubs |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114460981A true CN114460981A (en) | 2022-05-10 |
CN114460981B CN114460981B (en) | 2024-12-27 |
Family
ID=81411426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210079779.5A Active CN114460981B (en) | 2022-01-24 | 2022-01-24 | A numerical simulation method for hydraulic control of water distribution hubs |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114460981B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103290805A (en) * | 2012-02-10 | 2013-09-11 | 贺学术 | Method for regulating river water by utilizing sea power |
WO2017201812A1 (en) * | 2016-05-26 | 2017-11-30 | 中国水利水电科学研究院 | Method for acquiring canal flow rate |
CN110078140A (en) * | 2019-04-18 | 2019-08-02 | 云南合续环境科技有限公司 | A kind of apparatus control method and apparatus control system |
CN111178712A (en) * | 2019-12-18 | 2020-05-19 | 中国水利水电科学研究院 | Rescue early warning method and system for diversion project accident |
WO2020124635A1 (en) * | 2018-12-18 | 2020-06-25 | 华南理工大学 | Load-enhanced fluidized reaction equipment, system and method for wastewater treatment |
-
2022
- 2022-01-24 CN CN202210079779.5A patent/CN114460981B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103290805A (en) * | 2012-02-10 | 2013-09-11 | 贺学术 | Method for regulating river water by utilizing sea power |
WO2017201812A1 (en) * | 2016-05-26 | 2017-11-30 | 中国水利水电科学研究院 | Method for acquiring canal flow rate |
WO2020124635A1 (en) * | 2018-12-18 | 2020-06-25 | 华南理工大学 | Load-enhanced fluidized reaction equipment, system and method for wastewater treatment |
CN110078140A (en) * | 2019-04-18 | 2019-08-02 | 云南合续环境科技有限公司 | A kind of apparatus control method and apparatus control system |
CN111178712A (en) * | 2019-12-18 | 2020-05-19 | 中国水利水电科学研究院 | Rescue early warning method and system for diversion project accident |
Non-Patent Citations (1)
Title |
---|
陈建福;宫让勤;孙绍艳;: "三峡地下电站32号机甩负荷试验实测与程序计算对比", 中国科技信息, no. 13, 1 July 2013 (2013-07-01), pages 98 - 99 * |
Also Published As
Publication number | Publication date |
---|---|
CN114460981B (en) | 2024-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021253902A1 (en) | Method for calculating head loss coefficient and branch pipe flow distribution of multi-point water intake port | |
CN110543731B (en) | Water-sand separate scheduling simulation method and system for high-sand-content river reservoir | |
CN115423346B (en) | Real-time measuring and calculating method for flood season adjustable capacity of open channel water transfer project series gate group | |
CN105678067B (en) | Dynamic forecast control method and system for urban river flood control and drainage | |
US20230108059A1 (en) | Method for calculating head loss coefficient and branch pipe flow distribution of multi-point water intake | |
CN112101818B (en) | Sponge city flood optimal scheduling method suitable for complex hydraulic connection | |
CN102183895B (en) | Novel modeling and controlling method of drain pipe network hydraulics system | |
CN102002925A (en) | Artificially turning method of sandy river engineering project mobile bed model and artificially turning diversion trench | |
CN111046574A (en) | A calculation method for flood control and drainage of lake and river gate pump system in plain lake area | |
CN102722611B (en) | Method for carrying out parallelization numerical simulation on hydrodynamic force conditions of river provided with cascade hydropower station | |
CN103455725A (en) | Non-steady flow simulating method for pipe network system | |
CN113343595B (en) | An inversion model of an accident in an open channel water delivery system and a method for determining the accident flow and location | |
CN113779671B (en) | Open channel water transfer engineering hydrodynamic force real-time calculation method based on space-time step length self-adaptive technology | |
CN102191758A (en) | Method and system for automatically controlling water level of inverted siphon in open channel | |
CN111461419B (en) | A method for generating joint water-sediment scheduling schemes for navigable rivers and reservoirs | |
CN102890732B (en) | Hydrodynamic condition parallel numerical simulation method for channel with various structures | |
CN104182634B (en) | Cascade hydropower station combined operation water level control section optimization method | |
CN108104052A (en) | Tidal reach tributary inlet door ejectment water hinge entirety fluid flowing model test method | |
CN114460981A (en) | A Numerical Simulation Method for Hydraulic Control of Water Distribution Project | |
CN103852113B (en) | A kind of flume and its metering method suitable for U-shaped channel | |
CN110008513B (en) | Novel flat-bottom catenary open channel and method for solving hydraulic optimal section of novel flat-bottom catenary open channel | |
CN105404760A (en) | Rainwater design discharge calculation method in constant and non-uniform flow condition | |
CN201974703U (en) | Automatic inverted siphon water level control device for open channel | |
CN204343255U (en) | Structure of canal system hydraulic engineering through high-fall valley | |
CN118261073A (en) | Distributed two-dimensional coupling simulation method and system suitable for rain and flood disasters |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |