CN114459514A - 啁啾频率编码的高速光纤光栅传感系统及方法 - Google Patents

啁啾频率编码的高速光纤光栅传感系统及方法 Download PDF

Info

Publication number
CN114459514A
CN114459514A CN202111577129.5A CN202111577129A CN114459514A CN 114459514 A CN114459514 A CN 114459514A CN 202111577129 A CN202111577129 A CN 202111577129A CN 114459514 A CN114459514 A CN 114459514A
Authority
CN
China
Prior art keywords
optical fiber
fiber
mode
grating
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111577129.5A
Other languages
English (en)
Other versions
CN114459514B (zh
Inventor
冯月
张栩瑞
杨添宇
徐涛
张自豪
张文博
王超
沈涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University of Science and Technology
Original Assignee
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Science and Technology filed Critical Harbin University of Science and Technology
Priority to CN202111577129.5A priority Critical patent/CN114459514B/zh
Publication of CN114459514A publication Critical patent/CN114459514A/zh
Application granted granted Critical
Publication of CN114459514B publication Critical patent/CN114459514B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35316Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35329Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using interferometer with two arms in transmission, e.g. Mach-Zender interferometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Communication System (AREA)
  • Optical Transform (AREA)

Abstract

本发明公开了啁啾频率编码的高速光纤光栅传感系统及方法,属于光纤传感领域。传感系统包括锁模激光器、色散补偿光纤、掺饵光纤放大器、光纤耦合器一号、单模光纤一号、光纤延时器、光纤耦合器二号、光纤环形器、单模光纤二号、光纤光栅、光电探测器、示波器。锁模激光器和色散补偿光纤实现光信号波长到时间的映射,光纤耦合器一号、单模光纤一号、光纤延时器、光纤耦合器二号构成马赫曾德干涉结构进行光脉冲啁啾频率编码,编码信号经光纤光栅反射后经光纤环形器、光电探测器送入示波器进行检测,并获得实时传感数据。与现有传感技术相比,本发明成功实现高稳定性、高分辨率以及超快解调速度等优越性能。

Description

啁啾频率编码的高速光纤光栅传感系统及方法
技术领域
本发明属于光纤传感技术领域,具体涉及一种啁啾频率编码的高速光纤光栅传感系统及方法。
技术背景
光纤光栅属于无源滤波器件,纤芯内的折射率发生轴向周期性变化,只允许特定波长的光透射或反射。光纤光栅对于温度、应变等外界环境变化较敏感,在光纤通信、光纤传感等领域有着广泛的应用。光纤光栅传感主要是通过测量波长漂移量得到反射谱的中心波长的位置变化,进而实现对被测量的传感。
传统的光纤解调方法通过将波长偏移更改为光学强度交替来实现高速解调,或者将波长偏移转换为光学相变。但传统的解调方法存在着解调速度慢、抗外界干扰能力差、容易受到光源功率波动等缺点,难以满足目前对于高精度超快解调的要求。
采用波长到时间的映射可以克服传输速度的限制实现高速传感,已经用于实时光谱和成像领域。啁啾是指信号的频率随时间发生变化,通过对脉冲编码能够提高通信的稳定性。因此以啁啾频率编码的光纤光栅传感系统在超快高分辨率传感领域有着广阔的发展空间。
发明内容
针对现有技术的缺陷及改进需要,本发明提供了一种啁啾频率编码的高速光纤光栅传感系统及方法,其目的在于结合波长到时间的映射和啁啾频率编码,利用光纤光栅作为传感单元,以提高解调速度和传感系统稳定性,以此制备出高分辨率超快光纤光栅传感装置。
为达上述目的,本发明采用如下技术方案:
提供了啁啾频率编码的高速光纤光栅传感系统及方法,其特征在于:包括锁模激光器(1)、色散补偿光纤(2)、掺饵光纤放大器(3)、光纤耦合器一号(4)、单模光纤一号(5)、光纤延时器(6)、光纤耦合器二号(7)、光纤环形器(8)、单模光纤二号(9)、光纤光栅(10)、光电探测器(11)、示波器(12),其中:
所述色散补偿光纤(2)两端分别连接锁模激光器(1)的输出端和掺铒光纤放大器(3)的输入端;
所述光纤耦合器一号(4)内包含I1、O1、O2三个端口,I1端与掺饵光纤放大器(3)的输出端相连接,O1、O2两端分别连接单模光纤一号(5)、光纤延时器(6)的输入端,光纤耦合器二号(7)内包含I2、I3、O3三个端口,I2、I3两端分别连接单模光纤一号(5)、光纤延时器(6)的输出端,O3端为输出端;
所述光纤环形器(8)内包含P1、P2、P3三个端口,P1端与光纤耦合器二号(7)输出端O3相连接,P2端与单模光纤二号(9)相连接,P3端与光电探测器(11)相连接;
所述示波器(12)为采样示波器,对光电探测器(11)输出电信号进行实时探测。
所述的一种啁啾频率编码的高速光纤光栅传感系统,其特征在于:所述的锁模激光器(1)产生50MHz超短飞秒脉冲光信号,脉冲宽度为550fs。
所述的一种啁啾频率编码的高速光纤光栅传感系统,其特征在于:所述的色散补偿光纤(2)长度为38km,色散系数为-16×106s/m2,输出光脉冲宽度为6.17ns。
所述的一种啁啾频率编码的高速光纤光栅传感系统,其特征在于:所述的光纤耦合器一号(4)、单模光纤一号(5)、光纤延时器(6)、光纤耦合器二号(7)构成马赫曾德干涉结构实现光脉冲啁啾频率编码。
所述的一种啁啾频率编码的高速光纤光栅传感系统,其特征在于:所述的单模光纤一号(5),长度为2085m,色散系数为16×106s/m2,光纤延时器(6)具有27ns固定时延,光纤耦合器一号(4),光纤耦合器二号(7)分光比为1:1。
所述的一种啁啾频率编码的高速光纤光栅传感系统,其特征在于:所述的单模光纤二号(9)提供远距离光纤传感功能,其长度范围为1km~100km。
所述的一种啁啾频率编码的高速光纤光栅传感系统,其特征在于:所述的光纤光栅(10)为中心波长位于1552.52nm的光纤布拉格光栅。
一种啁啾频率编码的高速光纤光栅传感方法,其特征在于:通过锁模激光器和色散补偿光纤连接所构成的时间拉伸系统实现光信号波长到时间的映射,通过单模光纤和时间延迟器所构成的干涉系统对拉伸后光脉冲信号进行啁啾频率编码,啁啾编码信号通过光环形器进入光纤布拉格光栅,光纤布拉格光栅反射光谱携带与波长一一对应的频率信息,经光纤环形器后由光电探测器接收,再送入示波器实现数据高速采集并输出,最终通过短时傅里叶变换的方法提取输出信号所携带频率信息进而获得光纤布拉格光栅反射中心波长。
所述的一种啁啾频率编码的高速光纤光栅方法,其特征在于:通过啁啾频率编码使得系统具有光纤光栅布拉格波长高速时域解调功能。
所述的一种啁啾频率编码的高速光纤光栅方法,其特征在于:输出时域信号携带频率信息与光纤光栅布拉格波长一一对应,不受远距离传输过程中所产生的额外时延影响。
总体而言,按照本发明的啁啾频率编码的高速光纤光栅传感系统及方法与现有技术相比,主要具备以下的技术优点:
1.通过锁模激光器和色散补偿光纤连接所构成的时间拉伸系统实现光信号波长到时间的映射;通过马赫曾德干涉结构实现光脉冲啁啾频率编码,采用短时傅里叶变换方法获取光纤光栅反射波的中心波长,实现高解调速度、高稳定性、高分辨率传感;
2.提供远距离光纤传感功能的同时输出时域信号携带频率信息与光纤光栅布拉格波长一一对应,不受远距离传输过程中所产生的额外时延影响;
3.按照本发明所构造的光纤光栅传感器采用光纤光栅材料作为传感单元,整体体积较小,抗电磁干扰能力强,系统稳定性强、便于操控、可重复性好,可以用于大规模的生产应用。
附图说明
图1为本发明啁啾频率编码的高速光纤光栅传感系统的结构示意图。
具体实施方法
下面结合说明书附图进一步说明本发明的具体实施方式。
如图1,本实施方式所述的啁啾频率编码的高速光纤光栅传感系统及方法,其特征在于:包括锁模激光器(1)、色散补偿光纤(2)、掺饵光纤放大器(3)、光纤耦合器一号(4)、单模光纤一号(5)、光纤延时器(6)、光纤耦合器二号(7)、光纤环形器(8)、单模光纤二号(9)、光纤光栅(10)、光电探测器(11)、示波器(12),其中:
所述色散补偿光纤(2)两端分别连接锁模激光器(1)的输出端和掺铒光纤放大器(3)的输入端;
所述光纤耦合器一号(4)内包含I1、O1、O2三个端口,I1端与掺饵光纤放大器(3)的输出端相连接,O1、O2两端分别连接单模光纤一号(5)、光纤延时器(6)的输入端,光纤耦合器二号(7)内包含I2、I3、O3三个端口,I2、I3两端分别连接单模光纤一号(5)、光纤延时器(6)的输出端,O3端为输出端;
所述光纤环形器(8)内包含P1、P2、P3三个端口,P1端与光纤耦合器二号(7)输出端O3相连接,P2端与单模光纤二号(9)相连接,P3端与光电探测器(11)相连接;
所述示波器(12)为采样示波器,对光电探测器(11)输出电信号进行实时探测。
所述的锁模激光器(1)产生50MHz超短飞秒脉冲光信号,脉冲宽度为550fs。
所述的色散补偿光纤(2)长度为38km,色散系数为-16×106s/m2,输出光脉冲宽度为6.17ns。
所述的光纤耦合器一号(4)、单模光纤一号(5)、光纤延时器(6)、光纤耦合器二号(7)构成马赫曾德干涉结构实现光脉冲啁啾频率编码。
所述的单模光纤一号(5),长度为2085m,色散系数为16×106s/m2,光纤延时器(6)具有27ns固定时延,光纤耦合器一号(4),光纤耦合器二号(7)分光比为1:1。
所述的单模光纤二号(9)提供远距离光纤传感功能,其长度范围为1km~100km。
所述的光纤光栅(10)为中心波长位于1552.52nm的光纤布拉格光栅。
所述的一种啁啾频率编码的高速光纤光栅传感方法,其特征在于:通过锁模激光器和色散补偿光纤连接所构成的时间拉伸系统实现光信号波长到时间的映射,通过单模光纤和时间延迟器所构成的干涉系统对拉伸后光脉冲信号进行啁啾频率编码,啁啾编码信号通过光环形器进入光纤布拉格光栅,光纤布拉格光栅反射光谱携带与波长一一对应的频率信息,经光纤环形器后由光电探测器接收,再送入示波器实现数据高速采集并输出,最终通过短时傅里叶变换的方法提取输出信号所携带频率信息进而获得光纤布拉格光栅反射中心波长。
所述的一种啁啾频率编码的高速光纤光栅方法,其特征在于:通过啁啾频率编码使得系统具有光纤光栅布拉格波长高速时域解调功能。
所述的一种啁啾频率编码的高速光纤光栅方法,其特征在于:输出时域信号携带频率信息与光纤光栅布拉格波长一一对应,不受远距离传输过程中所产生的额外时延影响。
工作原理:
工作过程:将光路按照光路图搭建好,并尽量使系统稳定,然后将光纤光栅置于环境中,打开锁模激光器开关,信号光由锁模激光器(1)和色散补偿光纤(2)连接所构成的时间拉伸系统进行光信号波长到时间的映射后传输至掺饵光纤放大器(3);光信号通过光纤耦合器一号(4)后50%光信号传输至单模光纤一号(5),50%光信号传输至光纤延时器(6),二者输出信号经光纤耦合器二号(7)耦合输出,通过单模光纤一号(5)和光纤延时器(6)所构成的干涉系统进行啁啾频率编码,啁啾编码信号由光纤环形器(8)的P1端至P2端送至光纤光栅(10),反射波通过光纤环形器(8)的P2端至P3端传至光电探测器(11),光电探测器(11)接收后最终送入至示波器(12)进行检测。
测量原理:光纤光栅(10)可以看作是具有窄带光源特性的滤波器或者反射镜,能够反射特定波长的光,其他波长的光将会透射过去。反射光的波长满足下式:
λ=2neffΛ
式中neff表示光纤光栅的有效折射率,Λ表示光纤光栅的栅格周期长度,反射波波长的移位量满足下式:
Δλ=2ΔneffΛ+2neffΔΛ
光纤光栅反射光的中心波长取决于光栅的条纹间距,光栅的条纹间距取决于施加的应变和温度。外界温度或应变等物理量的变化与所导致的光栅栅距变化呈线性关系,光栅反射波长随栅距变化而线性变化,所以通过检测光纤光栅波长的变化可以测出被测量的变化,进而获得待测数据。
通过以下仿真模拟验证本发明的效果:
由锁模激光器(1)产生50MHz超短飞秒脉冲光信号,在锁模激光器(1)后设置一个38km长的色散补偿光纤(2),其色散系数为-16×106s/m2。传输的脉冲时间从550fs扩展到6.17ns。单模光纤一号(5)长为2085m。光纤耦合器一号(4)、单模光纤一号(5)、光纤延时器(6)、光纤耦合器二号(7)构成马赫曾德干涉结构进行光脉冲啁啾频率编码,因此获得了在展宽脉冲窗口内7GHz至29GHz的线性啁啾微波波形。经光纤光栅(10)反射后,中心波长从1559.0nm移动至1547.7nm,采用光纤环形器(8)进行光路引导,通过波长-时间的映射方法,通过检测时移获取传感信息。根据波长—时间的映射结果,通过选择时间分辨率为1ps的示波器(12)可以在50MHz的速度下实现0.0017nm的检测分辨率。为了识别每个反射脉冲的中心频率,采用光学短时傅立叶变换(STFT)来计算中心频率,计算结果为28.33GHz,39.51GHz,50.48GHz,62.78GHz,73.55GHz,85.14GHz,96.21GHz,and 10120GHz。因此,可以证明所提出的高速和高分辨率传感系统的有效性能。

Claims (10)

1.一种啁啾频率编码的高速光纤光栅传感系统,其特征在于:包括锁模激光器(1)、色散补偿光纤(2)、掺饵光纤放大器(3)、光纤耦合器一号(4)、单模光纤一号(5)、光纤延时器(6)、光纤耦合器二号(7)、光纤环形器(8)、单模光纤二号(9)、光纤光栅(10)、光电探测器(11)、示波器(12),其中:
所述色散补偿光纤(2)两端分别连接锁模激光器(1)的输出端和掺铒光纤放大器(3)的输入端;
所述光纤耦合器一号(4)内包含I1、O1、O2三个端口,I1端与掺饵光纤放大器(3)的输出端相连接,O1、O2两端分别连接单模光纤一号(5)、光纤延时器(6)的输入端,光纤耦合器二号(7)内包含I2、I3、O3三个端口,I2、I3两端分别连接单模光纤一号(5)、光纤延时器(6)的输出端,O3端为输出端;
所述光纤环形器(8)内包含P1、P2、P3三个端口,P1端与光纤耦合器二号(7)输出端O3相连接,P2端与单模光纤二号(9)相连接,P3端与光电探测器(11)相连接;
所述示波器(12)为采样示波器,对光电探测器(11)输出电信号进行实时探测。
2.根据权利要求1所述的一种啁啾频率编码的高速光纤光栅传感系统,其特征在于:所述的锁模激光器(1)产生50MHz超短飞秒脉冲光信号,脉冲宽度为550fs。
3.根据权利要求1所述的一种啁啾频率编码的高速光纤光栅传感系统,其特征在于:所述的色散补偿光纤(2)长度为38km,色散系数为-16×106s/m2,输出光脉冲宽度为6.17ns。
4.根据权利要求1所述的一种啁啾频率编码的高速光纤光栅传感系统,其特征在于:所述的光纤耦合器一号(4)、单模光纤一号(5)、光纤延时器(6)、光纤耦合器二号(7)构成马赫曾德干涉结构实现光脉冲啁啾频率编码。
5.根据权利要求1所述的一种啁啾频率编码的高速光纤光栅传感系统,其特征在于:所述的单模光纤一号(5),长度为2085m,色散系数为16×106s/m2,光纤延时器(6)具有27ns固定时延,光纤耦合器一号(4),光纤耦合器二号(7)分光比为1:1。
6.根据权利要求1所述的一种啁啾频率编码的高速光纤光栅传感系统,其特征在于:所述的单模光纤二号(9)提供远距离光纤传感功能,其长度范围为1km~100km。
7.根据权利要求1所述的一种啁啾频率编码的高速光纤光栅传感系统,其特征在于:所述的光纤光栅(10)为中心波长位于1552.52nm的光纤布拉格光栅。
8.一种啁啾频率编码的高速光纤光栅传感方法,其特征在于:通过锁模激光器和色散补偿光纤连接所构成的时间拉伸系统实现光信号波长到时间的映射,通过单模光纤和时间延迟器所构成的干涉系统对拉伸后光脉冲信号进行啁啾频率编码,啁啾编码信号通过光环形器进入光纤布拉格光栅,光纤布拉格光栅反射光谱携带与波长一一对应的频率信息,经光纤环形器后由光电探测器接收,再送入示波器实现数据高速采集并输出,最终通过短时傅里叶变换的方法提取输出信号所携带频率信息进而获得光纤布拉格光栅反射中心波长。
9.根据权利要求8所述的一种啁啾频率编码的高速光纤光栅方法,其特征在于:通过啁啾频率编码使得系统具有光纤光栅布拉格波长高速时域解调功能。
10.根据权利要求8所述的一种啁啾频率编码的高速光纤光栅方法,其特征在于:输出时域信号携带频率信息与光纤光栅布拉格波长一一对应,不受远距离传输过程中所产生的额外时延影响。
CN202111577129.5A 2021-12-20 2021-12-20 啁啾频率编码的高速光纤光栅传感系统及方法 Active CN114459514B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111577129.5A CN114459514B (zh) 2021-12-20 2021-12-20 啁啾频率编码的高速光纤光栅传感系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111577129.5A CN114459514B (zh) 2021-12-20 2021-12-20 啁啾频率编码的高速光纤光栅传感系统及方法

Publications (2)

Publication Number Publication Date
CN114459514A true CN114459514A (zh) 2022-05-10
CN114459514B CN114459514B (zh) 2024-01-30

Family

ID=81406523

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111577129.5A Active CN114459514B (zh) 2021-12-20 2021-12-20 啁啾频率编码的高速光纤光栅传感系统及方法

Country Status (1)

Country Link
CN (1) CN114459514B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115102618A (zh) * 2022-06-23 2022-09-23 贵州电网有限责任公司 基于可调光纤f-p腔和啁啾光纤光栅的光纤编码方法
CN115112038A (zh) * 2022-07-01 2022-09-27 西北核技术研究所 一种高精度分布式应变测量光学系统及测量方法
CN115102618B (zh) * 2022-06-23 2024-07-16 贵州电网有限责任公司 基于可调光纤f-p腔和啁啾光纤光栅的光纤编码方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100724020B1 (ko) * 2006-04-07 2007-06-04 한국과학기술연구원 가변 첩 광섬유 격자 기반 단층 촬영용 광간섭 신호 발생기
CN105444793A (zh) * 2015-11-16 2016-03-30 上海交通大学 基于高速脉冲激光器的光纤布拉格光栅传感装置
CN205899031U (zh) * 2016-08-03 2017-01-18 中国工程物理研究院流体物理研究所 一种干涉测速系统
CN106840221A (zh) * 2017-01-06 2017-06-13 武汉理工大学 基于色散马赫曾德尔干涉的光纤光栅解调装置及方法
CN107655505A (zh) * 2017-11-14 2018-02-02 邓泽松 一种基于光纤光栅传感解调装置的传感解调方法
CN108955940A (zh) * 2018-07-19 2018-12-07 南京航空航天大学 一种光纤光栅温度传感解调方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100724020B1 (ko) * 2006-04-07 2007-06-04 한국과학기술연구원 가변 첩 광섬유 격자 기반 단층 촬영용 광간섭 신호 발생기
CN105444793A (zh) * 2015-11-16 2016-03-30 上海交通大学 基于高速脉冲激光器的光纤布拉格光栅传感装置
CN205899031U (zh) * 2016-08-03 2017-01-18 中国工程物理研究院流体物理研究所 一种干涉测速系统
CN106840221A (zh) * 2017-01-06 2017-06-13 武汉理工大学 基于色散马赫曾德尔干涉的光纤光栅解调装置及方法
CN107655505A (zh) * 2017-11-14 2018-02-02 邓泽松 一种基于光纤光栅传感解调装置的传感解调方法
CN108955940A (zh) * 2018-07-19 2018-12-07 南京航空航天大学 一种光纤光栅温度传感解调方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
沈涛 等: "马赫-曾德尔干涉集成化的全光纤磁场与温度传感器", 《光学精密工程》, vol. 26, no. 6, pages 1338 - 1345 *
王向宇: "光纤光栅传感的解调方法", 《光通信技术》, no. 2, pages 16 - 18 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115102618A (zh) * 2022-06-23 2022-09-23 贵州电网有限责任公司 基于可调光纤f-p腔和啁啾光纤光栅的光纤编码方法
CN115102618B (zh) * 2022-06-23 2024-07-16 贵州电网有限责任公司 基于可调光纤f-p腔和啁啾光纤光栅的光纤编码方法
CN115112038A (zh) * 2022-07-01 2022-09-27 西北核技术研究所 一种高精度分布式应变测量光学系统及测量方法

Also Published As

Publication number Publication date
CN114459514B (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
CN102109362B (zh) 融合光纤布里渊频移器的分布式光纤布里渊传感器
Silva et al. A reflective optical fiber refractometer based on multimode interference
CN102323239B (zh) 一种基于非对称双芯光纤的折射率传感器
CN101592551B (zh) 一种基于Sagnac干涉仪的保偏光纤拍长测试方法及测试装置
CN101598773A (zh) 一种磁感应强度传感头及磁感应强度测量方法及其装置
Dey et al. Analysis and performance of edge filtering interrogation scheme for FBG sensor using SMS fiber and OTDR
WO2016080415A1 (ja) 測定装置およびセンサシステム
Chen et al. Terahertz-range weak reflection fiber optic structures for sensing applications
CN102279164A (zh) 一种双波长双光路的光纤光栅低含水率差分测量方法和装置
CN105093136A (zh) 一种全光纤微弱磁场测量装置
CN101949743B (zh) 一种新型布里渊光时域分析仪
CN114459514B (zh) 啁啾频率编码的高速光纤光栅传感系统及方法
CN111811554A (zh) 基于光腔衰荡大范围高精度光纤光栅传感方法及装置
CN101419317B (zh) 一种基于光纤Bragg光栅的双边缘滤波器
CN201885732U (zh) 一种融合光纤布里渊频移器的分布式光纤布里渊传感器
Jia et al. The transformer winding temperature monitoring system based on fiber bragg grating
CN117554719A (zh) 一种高精度输电线路温度和应变监测方法
CN107356412B (zh) 一种基于稀土掺杂光纤折射率的测量系统的测量方法
CN104729750A (zh) 一种基于布里渊散射分布式光纤温度传感器
CN212482511U (zh) 一种基于光腔衰荡大范围高精度光纤光栅传感的装置
CN107402118B (zh) 一种稀土掺杂光纤折射率的测量系统
CN114460043B (zh) 基于光子时间拉伸的高速稳定光纤折射率传感系统及方法
CN111537010A (zh) 基于otdr的f-p干涉型传感头多点测量方法及装置
CN102226763B (zh) 一种基于awg的星状拓扑准分布式多点折射率传感系统
Brinkmeyer et al. Methods for experimental characterization of UV-written gratings and waveguides

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant