CN114458869A - 一种新型复合驱动式自适应工业管道机器人 - Google Patents

一种新型复合驱动式自适应工业管道机器人 Download PDF

Info

Publication number
CN114458869A
CN114458869A CN202210013898.0A CN202210013898A CN114458869A CN 114458869 A CN114458869 A CN 114458869A CN 202210013898 A CN202210013898 A CN 202210013898A CN 114458869 A CN114458869 A CN 114458869A
Authority
CN
China
Prior art keywords
main body
transmission shaft
body shell
robot
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210013898.0A
Other languages
English (en)
Inventor
涂文锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN202210013898.0A priority Critical patent/CN114458869A/zh
Publication of CN114458869A publication Critical patent/CN114458869A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/26Pigs or moles, i.e. devices movable in a pipe or conduit with or without self-contained propulsion means
    • F16L55/28Constructional aspects
    • F16L55/30Constructional aspects of the propulsion means, e.g. towed by cables
    • F16L55/38Constructional aspects of the propulsion means, e.g. towed by cables driven by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/26Pigs or moles, i.e. devices movable in a pipe or conduit with or without self-contained propulsion means
    • F16L55/28Constructional aspects
    • F16L55/30Constructional aspects of the propulsion means, e.g. towed by cables
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L2101/00Uses or applications of pigs or moles
    • F16L2101/30Inspecting, measuring or testing

Abstract

本发明涉及机器人领域,具体涉及一种新型复合驱动式自适应工业管道机器人包括旋转平台、叶片、主体壳、支座、支撑杆以及行进轮,所述主体壳两端设有旋转平台,所述叶片固定于旋转平台,所述主体壳内装有底板,所述底板上分别设有舵机、传动轴、轴承座和数据处理器模块,所述传动轴与旋转平台连接,所述传动轴固定在轴承座,所述传动轴上设有与舵机啮合的直齿轮组,所述行进轮通过支撑杆与支座固定于主体壳外侧,且行进轮上设有编码器;所述支撑杆的中部位置上设有连接环,且通过连接环和拉簧将支撑杆连接;本发明以液体驱动为主、电调节为辅的复合驱动方式,控制运行速度,且行进距离远、可适应一定范围管径变化、过弯性能好,结构合理。

Description

一种新型复合驱动式自适应工业管道机器人
技术领域
本发明涉及机器人领域,具体涉及一种新型复合驱动式自适应工业管道机器人。
背景技术
油气管道运输作为全球5大运输方式之一,在国民经济中占有重要地位,由于油气管道的输出介质的易燃易爆性,极易引起重大事故,因此需要定期的检查维护,而过去通常采用人工开挖、巡检的方式,这种方法耗时耗力危险性高。目前现有的管道机器人中,主要分为流体驱动式和自驱动式两类,但在油气管道检测实际情况,两种方法都有其各自的优势和难以弥补的缺陷,流体驱动式机器人利用液体压力驱动可以实现长距离行走,但是却难以控制行进速度以完成复杂检测;而自驱动式机器人根据能源供给方式可无缆式和有缆式,无缆式受限于能源供给无法实现长距离行走,有缆式虽无驱动能源限制,但由于缆线与管壁的摩擦力随着行进距离而增大,对机器人驱动力提出了很大要求,无法满足长远距离行走的需求。
发明内容
本发明克服现有技术的不足,提出一种新型复合驱动式自适应工业管道机器人,能够实现自主调节机器人运行速度,适应一定范围管径变化,能够长远距离平稳行进。
为了实现本发明的目的,本发明采用的技术方案为:
本发明公开了一种新型复合驱动式自适应工业管道机器人包括旋转平台、叶片、主体壳、支座、支撑杆以及行进轮,所述主体壳的两端设有旋转平台,所述叶片通过旋转平台固定于主体壳两端,所述主体壳内部装有底板,所述底板上分别设有舵机、传动轴、轴承座以及数据处理器模块,所述传动轴与旋转平台连接,所述传动轴固定在轴承座,且传动轴固定于机器人主体周向中心位置;所述传动轴上设有与舵机啮合的直齿轮组,所述行进轮通过支撑杆与支座固定于主体壳外侧,且行进轮上设有编码器;所述支撑杆的中部位置上设有连接环,且通过连接环和拉簧将两侧的支撑杆连接起来。
所述支座、支撑杆、行进轮和拉簧组成支撑变径单元,其中行进轮通过所连接的编码器对机器人速度进行测定,行进轮的末端通过支撑杆和支座固定在主体壳上,支撑变径单元在主体壳上以周向120°等差分布,在主体壳上形成三组支撑变径单元。
所述旋转平台和叶片组成控速机构,六片叶片组成控速单元,且控速机构左右对称分布在主体壳的两端;所述叶片的转轴通过第一轴承、第二轴承配合固定于旋转平台和旋转平台中心的轴承套上,所述轴承套的中心位置设有第三轴承,所述传动轴两端使用第三轴承配合穿过轴承套中心孔,使轴承套固定于旋转平台周向中心位置,所述叶片的转轴上设有小锥齿轮,所述传动轴的两端分别设有大锥齿轮,所述小锥齿轮与大锥齿轮组成传动比为3:1的锥齿轮组。
所述舵机所产生的力矩通过直齿轮组、传动轴、大锥齿轮和小锥齿轮传递至叶片。
本发明的有益效果在于:
(1)实时自主调节机器人运行速度,实现机器人运行速度稳定。本发明在机器人行进轮处安装增量编码器,对机器人行进速度即时检测后速度信号传递至数据处理装置进行判定,其结果反馈至舵机,舵机产生动力矩通过齿轮组传递至叶片,叶片绕自身轴旋转改变机器人轴向有效承受液体力面积,使机器人的加速或减速,保证机器人在管道中行进速度平稳。
(2)适应一定范围管径变化,过弯能力可靠。本发明或发明在机器人主体上安装三组周向呈120°等差分布的支撑变径机构,保证了机器人行走的稳定性,支撑变径机构前后两支撑轮使用拉簧连接,拉簧根据机器人整体重量和支撑杆结构强度计算选取,利用拉簧特性保证了机器人可在管内实现一定自适应变径;通过分析机器人的长宽变化尺寸计算转弯半径,确保机器人可在管道中过弯能力。
(3)复合驱动式动力供给方式,实现机器人长远距离平稳行进。本发明或发明有效克服自驱动管道机器人的速度控制不稳定导致的功能模块无法正常运行和电驱动管道机器人行进距离受限的问题,采用复合驱动结合原有驱动方式的优势,利用了叶片结构的自适应特点解决了相应的问题,实现了管道机器人检测长距离石油管道的目的。该机器人结构可靠、操作简单,实用性强,通过连接装置可搭载不同功能模块。
附图说明
图1是本发明的整体结构示意图。
图2是本发明控速结构内部左侧示意图。
图3是本发明控速结构内部右侧示意图。
图4是本发明支撑变径结构在管道中位置分布示意图。
图5是本发明在管道中行进姿态示意图。
图中:1.旋转平台,2.叶片,3.主体壳,4.支座,5.支撑杆,6.行进轮,7.编码器,8.拉簧,9.连接环,10.传动轴,11.轴承座,12.底板,13.舵机,14.直齿轮组,15.数据处理器,16.大锥齿轮,17.小锥齿轮,18第一轴承,19.第二轴承,20.第三轴承,21.轴承套,22.管道。
具体实施方式
下面结合附图和实施例对本发明进一步说明:
参见图1-图5。
本发明公开了一种新型复合驱动式自适应工业管道机器人包括旋转平台1、叶片2、主体壳3、支座4、支撑杆5以及行进轮6,所述主体壳3的两端设有旋转平台1,所述叶片2通过旋转平台1固定于主体壳3两端,所述主体壳3内部装有底板12,所述底板12上分别设有舵机13、传动轴10、轴承座11以及数据处理器模块15,所述传动轴15与旋转平台1连接,所述传动轴10固定在轴承座11,且传动轴10固定于机器人主体周向中心位置;所述传动轴10上设有与舵机13啮合的直齿轮组14,所述行进轮6通过支撑杆5与支座4固定于主体壳3外侧,且行进轮6上设有编码器7;所述支撑杆5的中部位置上设有连接环9,且通过连接环9和拉簧8相连将两侧的支撑杆5连接起来。
所述支座4、支撑杆5、行进轮6和拉簧8组成支撑变径单元,其中行进轮6通过所连接的编码器7对机器人速度进行测定,行进轮6的末端通过支撑杆5和支座4固定在主体壳3上,支撑变径单元在主体壳3上以周向120°等差分布,在主体壳3上形成三组支撑变径单元。
所述旋转平台1和叶片2组成控速机构,六片叶片2组成控速单元,且控速机构左右对称分布在主体壳3的两端;所述叶片2的转轴通过第一轴承18、第二轴承19配合固定于旋转平台1和旋转平台1中心的轴承套21上,所述轴承套21的中心位置设有第三轴承20,所述传动轴10两端使用第三轴承20配合穿过轴承套21中心孔,使轴承套21固定于旋转平台1周向中心位置,所述叶片2的转轴上设有小锥齿轮17,所述传动轴10的两端分别设有大锥齿轮16,所述小锥齿轮17与大锥齿轮16组成传动比为3:1的锥齿轮组。
所述拉簧8根据机器人整体重量和支撑杆5结构强度计算进行选取。
所述舵机13所产生的力矩通过直齿轮组14、传动轴10、大锥齿轮16和小锥齿轮17传递至叶片2。
实施例:
当机器人在管道中行进时,增量编码器7通过对行进轮6的行走的圈数进行脉冲计数,增量编码器7将脉冲计数模拟信号通过AD转换为数字信号,传送给单片机主控板15。单片机主控板15将接收到的脉冲数电信号通过一定程序算法转化为机器人前进速度信号。
结合附图1至图3,当主控板15检测到机器人速度脱离预设平缓速度区间时,主控板15传送电信号给舵机13,控制舵机13转动一定角度。舵机13通过传动轴10、直齿轮组14与锥齿轮组16-17和叶片2相连接,当舵机13旋转一定角度时,叶片2随之旋转一定角度。
在机器人可调控速度区间内,机器人叶片2旋转角度存在如下事实。由于叶片2控速结构的实质在于改变轴向有效承受液体力面积,叶片2仅在0-90°区间内转动才有实际效果,舵机13与叶片2之间传动比为3:1,舵机13输出轴有效旋转区间为0-270°。
结合附图5,舵机13控制叶片2转动角度调控机器人速度时。为避免系统延迟响应,机器人脱离平稳前进速度区间后,增量编码器7将脉冲电信号通过单片机主控板15转化为速度信号,主控板15直接控制舵机13转动预置角度(±30°),判断机器人行进速度是否达到预期要求,否则重复此操作,直到舵机13旋转角度到达预设有效区间最大值。
进行教学演示时,首先切断管道内流体的输入,将管道机器人放入至管道中并通入流体,液体介质在管中流动时会对机器人产生推动力,推动使机器人前行。机器人前行时,支撑轮6上啮合的增量编码器7通过计算行进轮6的转过圈数,从而测出行进轮6前进速度,即机器人前进速度,并将速度值反馈给机体内部的主控板15。当主控板15检测到速度异常,需要调节速度时,由单片机发出指令,控制舵机13转动相应角度,并通过传动轴10和齿轮组将动力传送到叶片,带动叶片旋转相应角度,机器人速度随之改变,实现机器人的自主速度调节;遇到管道内因为沉积物等因素造成管道内凹凸不平的情况时,三组支撑变径机构通过拉簧8的伸缩自适应管道内障碍物的影响,保持机器人的稳定前进。
进行教学演示时,在遇到管道变径的情况,机器人的支撑变径结构之间的拉簧8会相应拉伸和收缩,实现一定范围的变径,受机器人整体结构和拉簧最大伸长量影响,机器人的变径范围为270-330mm。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等同变换或直接或间接运用在相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (5)

1.一种新型复合驱动式自适应工业管道机器人,其特征在于:包括旋转平台(1)、叶片(2)、主体壳(3)、支座(4)、支撑杆(5)以及行进轮(6),所述主体壳(3)的两端设有旋转平台(1),所述叶片(2)通过旋转平台(1)固定于主体壳(3)两端,所述主体壳(3)内部装有底板(12),所述底板(12)上分别设有舵机(13)、传动轴(10)、轴承座(11)以及数据处理器模块(15),所述传动轴(10)与旋转平台(1)连接,所述传动轴(10)固定在轴承座(11),且传动轴(10)固定于机器人主体周向中心位置;所述传动轴(10)上设有与舵机(13)啮合的直齿轮组(14),所述行进轮(6)通过支撑杆(5)与支座(4)固定于主体壳(3)外侧,且行进轮(6)上设有编码器(7);所述支撑杆(5)的中部位置上设有连接环(9),且通过连接环(9)和拉簧(8)将两侧的支撑杆(5)连接起来。
2.根据权利要求1所述的一种新型复合驱动式自适应工业管道机器人,其特征在于:所述支座(4)、支撑杆(5)、行进轮(6)和拉簧(8)组成支撑变径单元,其中行进轮(6)通过所连接的编码器(7)对机器人速度进行测定,行进轮(6)的末端通过支撑杆(5)和支座(4)固定在主体壳(3)上,支撑变径单元在主体壳(3)上以周向120°等差分布,在主体壳(3)上形成三组支撑变径单元。
3.根据权利要求1所述的一种新型复合驱动式自适应工业管道机器人,其特征在于:所述旋转平台(1)和叶片(2)组成控速机构,六片叶片(2)组成控速单元,且控速机构左右对称分布在主体壳(3)的两端;所述叶片(2)的转轴通过第一轴承(18)、第二轴承(19)配合固定于旋转平台(1)和旋转平台(1)中心的轴承套(21)上,所述轴承套(21)的中心位置设有第三轴承(20),所述传动轴(10)两端使用第三轴承(20)配合穿过轴承套(21)中心孔,使轴承套(21)固定于旋转平台(1)周向中心位置,所述叶片(2)的转轴上设有小锥齿轮(17),所述传动轴(10)的两端分别设有大锥齿轮(16),所述小锥齿轮(17)与大锥齿轮(16)组成传动比为3:1的锥齿轮组。
4.根据权利要求2所述的一种新型复合驱动式自适应工业管道机器人,其特征在于:所述拉簧(8)根据机器人整体重量和支撑杆(5)结构强度计算进行选取。
5.根据权利要求3所述的一种新型复合驱动式自适应工业管道机器人,其特征在于:所述舵机(13)所产生的力矩通过直齿轮组(14)、传动轴(10)、大锥齿轮(16)和小锥齿轮(17)传递至叶片(2)。
CN202210013898.0A 2022-01-07 2022-01-07 一种新型复合驱动式自适应工业管道机器人 Pending CN114458869A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210013898.0A CN114458869A (zh) 2022-01-07 2022-01-07 一种新型复合驱动式自适应工业管道机器人

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210013898.0A CN114458869A (zh) 2022-01-07 2022-01-07 一种新型复合驱动式自适应工业管道机器人

Publications (1)

Publication Number Publication Date
CN114458869A true CN114458869A (zh) 2022-05-10

Family

ID=81410276

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210013898.0A Pending CN114458869A (zh) 2022-01-07 2022-01-07 一种新型复合驱动式自适应工业管道机器人

Country Status (1)

Country Link
CN (1) CN114458869A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114812978A (zh) * 2022-05-12 2022-07-29 中国矿业大学 一种可变量程的阀门泄漏检测装置
CN115126962A (zh) * 2022-06-13 2022-09-30 燕山大学 仿生无动力管道机器人及控制方法
CN115415868A (zh) * 2022-09-30 2022-12-02 太原理工大学 一种可调整位姿的手动适应小口径钢管内壁的修磨机器人

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114812978A (zh) * 2022-05-12 2022-07-29 中国矿业大学 一种可变量程的阀门泄漏检测装置
CN115126962A (zh) * 2022-06-13 2022-09-30 燕山大学 仿生无动力管道机器人及控制方法
CN115415868A (zh) * 2022-09-30 2022-12-02 太原理工大学 一种可调整位姿的手动适应小口径钢管内壁的修磨机器人
CN115415868B (zh) * 2022-09-30 2023-09-22 太原理工大学 一种可调整位姿的手动适应小口径钢管内壁的修磨机器人

Similar Documents

Publication Publication Date Title
CN114458869A (zh) 一种新型复合驱动式自适应工业管道机器人
CN106946097B (zh) 线缆拉力自调节绞盘及其控制方法
CN206206900U (zh) 六轮同步涵管内壁检测机器人
CN103867848B (zh) 一种螺旋驱动式管道机器人
CN104555769B (zh) 一种电驱动主动升沉补偿海洋绞车
CN101631712B (zh) 用于轮式车辆列的转向系统和方法
CN106439387A (zh) 一种自适应管径的管道机器人
CN105135151A (zh) 一种具有主动适应和自适应功能的履带式管道机器人
CN107270027A (zh) 一种优化的支撑轮式管道内检测机器人
CN216952244U (zh) 一种新型复合驱动式自适应工业管道机器人
CN107676570B (zh) 复杂工况下自适应管道机器人
CN111776100B (zh) 具有六连杆机构的外管道爬行机器人
CN104613274A (zh) 一种自适应管道探测机器人
CN105923105A (zh) 船舶可调导链轮
CN108194763B (zh) 大变径轮式t型管道机器人
CN206234551U (zh) 一种自适应管径的管道机器人
CN206861147U (zh) 一种差速式自适应管道机器人
CN106979433A (zh) 一种螺旋推进式管道机器人
CN112066155B (zh) 一种可差速支撑轮式管道机器人
CN107191738A (zh) 一种管道内视频检测装置
CN208011159U (zh) 大变径轮式t型管道机器人
CN115436754A (zh) 一种用于地下电力管道缆线故障检测的智能巡检机器人
CN211502038U (zh) 一种主动式螺旋驱动管道机器人
CN211399003U (zh) 一种管道检测机器人
CN102059536B (zh) 一种管磨机筒体转胎行走驱动装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Tu Wenfeng

Inventor after: Yang Haojie

Inventor after: Xiao He

Inventor after: Zhang Yu

Inventor after: Liu Ying

Inventor after: Qiu Xueling

Inventor before: Tu Wenfeng

CB03 Change of inventor or designer information