CN114456392A - Benzoyl polysilazane and preparation method thereof - Google Patents

Benzoyl polysilazane and preparation method thereof Download PDF

Info

Publication number
CN114456392A
CN114456392A CN202210246706.0A CN202210246706A CN114456392A CN 114456392 A CN114456392 A CN 114456392A CN 202210246706 A CN202210246706 A CN 202210246706A CN 114456392 A CN114456392 A CN 114456392A
Authority
CN
China
Prior art keywords
stirring
hours
reaction
mixed solution
tetrahydrofuran
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210246706.0A
Other languages
Chinese (zh)
Other versions
CN114456392B (en
Inventor
侯振华
吴迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Xinda Hangke New Material Technology Co ltd
Original Assignee
Jiangxi Xinda Hangke New Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Xinda Hangke New Material Technology Co ltd filed Critical Jiangxi Xinda Hangke New Material Technology Co ltd
Priority to CN202210246706.0A priority Critical patent/CN114456392B/en
Publication of CN114456392A publication Critical patent/CN114456392A/en
Application granted granted Critical
Publication of CN114456392B publication Critical patent/CN114456392B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/60Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/62Nitrogen atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

The invention relates to benzoyl polysilazane and a preparation method thereof, in particular to a structure shown in a formula (I). The polysilazane of the invention designs and synthesizes the compound shown in the formula (I) with a novel structure, the compound has benzoyl, compared with the similar compound of monophenyl, the compound has the characteristic of high porcelain yield, can be used for preparing high-performance materials such as ceramics, ceramic coatings, fibers and the like, and has wide application.

Description

Benzoyl polysilazane and preparation method thereof
Technical Field
The invention belongs to the technical field of high polymer materials, and particularly relates to benzoyl polysilazane and a preparation method of the benzoyl polysilazane.
Background
Polysilazane is a series of compounds whose main chain uses Si-N bond as repeating unit, on one hand, the Si-N bond has larger bond energy and higher thermal stability, on the other hand, the main chain of the molecule or the tail end of the molecule contains carbon-carbon triple bond, so that it can be cross-linked and solidified at a certain temperature to obtain thermosetting resin with good compactness, and further raise the heat resistance of the resin. Thus. Polysilazane as the ceramic precursor can be prepared into silicon nitride (Si3N4) and silicon carbon nitride (SixNyCz) ceramics, which have excellent properties of high temperature resistance, wear resistance, corrosion resistance, etc., and can be made into ceramic coatings, ceramic fibers, nanomaterials, magnetic ceramics, Ceramic Matrix Composites (CMC), ultra-high temperature materials, bulk ceramics, catalysts, porous materials, lithium battery anodes, 3D printing materials, adhesives for ceramics, multilayer connection of computer chips, etc. Therefore, it is necessary to design the polysilazane to have a better performance.
Disclosure of Invention
The invention aims to solve the defects in the prior art and provides benzoyl polysilazane and a preparation method thereof.
To achieve the object of the present invention, in one aspect, the present invention provides a benzoylpolysilazane having a structure represented by the following formula (I),
Figure BDA0003545025530000011
wherein m and n are each independently a natural number; preferably m, n are each independently a natural number between 1 and 10.
In another aspect, the present invention provides a process for the preparation of a compound of formula (I) comprising the reaction steps of:
1) under the protection of inert gas, mixing n-butyllithium and an organic solvent according to a volume ratio of 1: 1-1: 25, then dropwise adding the mixture into a mixed solution of the organic solvent and 4,4' - (1,1, 2-trichloroethane-1, 2-diyl) bis (chlorobenzene), and stirring for reaction to obtain a mixed solution;
2) under the protection of inert gas, slowly dripping the obtained mixed solution into organic solution of organosilane while stirring, and reacting to obtain chlorosilane oligomers;
3) dissolving the obtained chlorosilane oligomer and an organic solvent according to the weight ratio of 1: 1-1: 125, introducing ammonia gas, and stirring to react to obtain polysilazane.
Preferably, the organic solvent is one or more selected from alkanes with 6-8 carbon atoms, aromatic hydrocarbons, tetrahydrofuran and diethyl ether.
Preferably, the inert gas is nitrogen or argon.
Preferably, the reaction of step 1) is carried out by stirring at-80 ℃ to-35 ℃ for 1-8 hours, and then continuing stirring at-10 ℃ to 60 ℃ for 1-36 hours.
Preferably, the reaction in step 2) is carried out by stirring for 1-12 hours at-50 ℃ to 50 ℃, and then continuously stirring for reaction for 2-30 hours at 0 ℃ to 80 ℃.
Preferably, the reaction in step 3) is carried out at 10-50 ℃ by stirring and introducing ammonia gas for reaction for 1-15 hours.
Preferably, the reaction in step 3) is carried out by stirring and introducing ammonia gas at 10-50 ℃ for reaction for 1-15 hours, and then stirring and reacting for 1-12 hours at 20-100 ℃.
The preparation method of benzoyl polysilazane is characterized by comprising the following reaction steps:
1) under the protection of nitrogen, mixing n-butyllithium and tetrahydrofuran according to the volume ratio of 1: 1-1: 25, then dropwise adding the mixture into a mixed solution of tetrahydrofuran and 2,3, 3-trichloro-1-phenylpropane-1-one, and stirring for reaction to obtain a mixed solution;
2) under the protection of nitrogen, slowly dripping the obtained mixed solution into tetrahydrofuran solution of organosilane under stirring at a temperature of between-5 and-18 ℃ to react to obtain chlorosilane oligomers;
3) dissolving the obtained chlorosilane oligomer and tetrahydrofuran according to the weight ratio of 1: 1-1: 125, introducing ammonia gas at 30 ℃, and stirring to react to obtain polysilazane.
Compared with the prior art, the invention has the beneficial effects that:
the inventor of the invention unexpectedly discovers that the modified polysilazane shown as the formula (I) has benzoyl, has the characteristic of high porcelain yield compared with similar monophenyl compounds, can be used for preparing high-performance materials such as ceramics, ceramic coatings, fibers and the like, and has wide application.
Detailed Description
The following representative examples are intended to better illustrate the present invention and are not intended to limit the scope of the present invention. The materials used in the following examples are all commercially available unless otherwise specified.
Example 1
170ml of tetrahydrofuran and 65ml of n-butyllithium (2.5mol/L) were charged in a 500ml three-necked flask, and a mixed solution of 65ml of tetrahydrofuran and 49.3g of 2,3, 3-trichloro-1-phenylpropan-1-one was slowly dropped into the three-necked flask at-78 ℃ under a nitrogen atmosphere. Keeping the low temperature for continuously stirring and reacting for 1.5 hours after the dropwise adding is finished, gradually increasing the temperature to 30 ℃, and continuously stirring and reacting for 7 hours to obtain a mixed solution.
Adding 125ml of tetrahydrofuran and 50.9g of dimethyldichlorosilane into a 500ml three-necked bottle, keeping the system at-5 ℃ by using a low-temperature bath, slowly dripping the mixed solution under the protection of nitrogen, continuously stirring for 4 hours at-5 ℃ after dripping is finished, heating to 30 ℃, continuously stirring for reacting for 6 hours, standing for layering, transferring the supernatant into another clean and dry 500ml three-necked bottle under the protection of nitrogen, washing the precipitate with tetrahydrofuran for three times, combining the filtrates, and spin-drying to obtain the brownish red viscous liquid chlorosilane oligomer. By measuring the chlorine content, m in formula (I) averages 5.
And (3) dissolving 17.0g of chlorosilane oligomers prepared in the steps by using 300ml of toluene, stirring at the temperature of 30 ℃, introducing ammonia gas for reaction for 12 hours until the ammonia gas is not absorbed by the system, and then continuously introducing ammonia for 2 hours. Standing and settling, transferring the supernatant to another clean and dry 500ml three-neck flask, washing the precipitate with toluene for three times, combining the filtrates, and evaporating the solvent to obtain the brown viscous liquid polysilazane. In the formula (I), n is 5 on average.
The yield of the polysilazane prepared by the embodiment is as high as 93 percent; the strength of the SiCN fiber prepared by the method reaches 3.5GPa, and the modulus reaches 304 GPa. After high-temperature oxidation at 1000 ℃ for 400 hours, the strength retention rate reaches 91 percent.
Example 2
170ml of tetrahydrofuran and 65ml of n-butyllithium (2.5mol/L) were charged in a 500ml three-necked flask, and a mixed solution of 65ml of tetrahydrofuran and 46.3g of 2,3, 3-trichloro-1-phenylpropan-1-one was slowly dropped into the three-necked flask at-78 ℃ under a nitrogen atmosphere. Keeping the low temperature for continuously stirring and reacting for 2 hours after the dropwise adding is finished, gradually raising the temperature to 20 ℃, and continuously stirring and reacting for 8 hours to obtain a mixed solution.
Adding 125ml of tetrahydrofuran and 55.3g of dimethyldichlorosilane into a 500ml three-necked bottle, keeping the system at-15 ℃ by using a low-temperature bath, slowly dripping the mixed solution under the protection of nitrogen, continuously stirring for 3 hours at-5 ℃ after dripping is finished, heating to 20 ℃, continuously stirring for reaction for 10 hours, standing for layering, transferring the supernatant to another clean and dry 500ml three-necked bottle under the protection of nitrogen, washing the precipitate with tetrahydrofuran for three times, combining the filtrates, and spin-drying to obtain the brownish red viscous liquid chlorosilane oligomer. By measuring the chlorine content, m in formula (I) averages 6.
And (3) dissolving 19.0g of chlorosilane oligomers prepared in the steps by using 300ml of toluene, stirring at the temperature of 30 ℃, introducing ammonia gas for reaction for 12 hours until the ammonia gas is not absorbed by the system, and then continuously introducing ammonia for 2 hours. Standing and settling, transferring the supernatant to another clean and dry 500ml three-neck flask, washing the precipitate with toluene for three times, combining the filtrates, and evaporating the solvent to obtain the brown viscous liquid polysilazane. In the formula (I), n is 4 on average.
The yield of the polysilazane prepared by the embodiment is up to 91%; the strength of the SiCN fiber prepared by the method reaches 3.1GPa, and the modulus reaches 311 GPa. After high-temperature oxidation at 1000 ℃ for 400 hours, the strength retention rate reaches 88 percent.
Example 3
170ml of tetrahydrofuran and 65ml of n-butyllithium (2.5mol/L) were charged in a 500ml three-necked flask, and a mixed solution of 65ml of tetrahydrofuran and 47.1g of 2,3, 3-trichloro-1-phenylpropan-1-one was slowly dropped into the three-necked flask at-78 ℃ under a nitrogen atmosphere. Keeping the low temperature for continuously stirring and reacting for 2 hours after the dropwise adding is finished, gradually raising the temperature to 20 ℃, and continuously stirring and reacting for 8 hours to obtain a mixed solution.
Adding 125ml of tetrahydrofuran and 57.5g of dimethyldichlorosilane into a 500ml three-necked bottle, keeping the system at-10 ℃ by using a low-temperature bath, slowly dripping the mixed solution under the protection of nitrogen, continuously stirring for 3 hours at-5 ℃ after dripping is finished, heating to 20 ℃, continuously stirring for reaction for 10 hours, standing for layering, transferring the supernatant to another clean and dry 500ml three-necked bottle under the protection of nitrogen, washing the precipitate with tetrahydrofuran for three times, combining the filtrates, and spin-drying to obtain the brownish red viscous liquid chlorosilane oligomer. By measuring the chlorine content, m in formula (I) averages 7.
And (3) dissolving 23.0g of chlorosilane oligomers prepared in the steps by using 300ml of toluene, stirring at the temperature of 30 ℃, introducing ammonia gas for reaction for 12 hours until the ammonia gas is not absorbed by the system, and then continuously introducing ammonia for 2 hours. Standing and settling, transferring the supernatant to another clean and dry 500ml three-neck flask, washing the precipitate with toluene for three times, combining the filtrates, and evaporating the solvent to obtain the brown viscous liquid polysilazane. In the formula (I), n is 4 on average.
The yield of the polysilazane prepared by the embodiment is up to 91%; the strength of the SiCN fiber prepared by the method reaches 3.7GPa, and the modulus reaches 320 GPa. After high-temperature oxidation at 1000 ℃ for 400 hours, the strength retention rate reaches 88 percent.
Comparative example 1
170ml of tetrahydrofuran and 65ml of n-butyllithium (2.5mol/L) were added to a 500ml three-necked flask, and a mixed solution of 65ml of tetrahydrofuran and 31.2g of (1,2, 2-trichloroethyl) benzene was slowly dropped into the three-necked flask at-78 ℃ under a nitrogen atmosphere. Keeping the low temperature for continuously stirring and reacting for 2 hours after the dropwise adding is finished, gradually increasing the temperature to 20 ℃, and continuously stirring and reacting for 10 hours to obtain a mixed solution.
125ml of tetrahydrofuran and 49.9g of dimethyldichlorosilane are added into a 500ml three-necked bottle, the system is kept at-5 ℃ by a low-temperature bath, the mixed solution is slowly dripped under the protection of nitrogen, after the dripping is finished, the mixed solution is continuously stirred for 4 hours at-5 ℃, the temperature is increased to 20 ℃, the mixed solution is continuously stirred and reacts for 6 hours, the mixed solution is kept stand and layered, the supernatant is transferred into another clean and dry 500ml three-necked bottle under the protection of nitrogen, the precipitate is washed for three times by tetrahydrofuran, the filtrate is combined, and the chlorosilane oligomer of brownish red viscous liquid is obtained by spin drying. By measuring the chlorine content, m in formula (I) averages 5.
And (3) dissolving 17.0g of chlorosilane oligomers prepared in the steps by using 300ml of toluene, stirring at the temperature of 30 ℃, introducing ammonia gas for reaction for 12 hours until the ammonia gas is not absorbed by the system, and then continuously introducing ammonia for 2 hours. Standing and settling, transferring the supernatant to another clean and dry 500ml three-neck flask, washing the precipitate with toluene for three times, combining the filtrates, and evaporating the solvent to obtain the brown viscous liquid polysilazane. In the formula (I), n is 3 on average.
The polysilazane prepared in this example gave a ceramic yield of 81%; the SiCN fiber prepared by the method has the strength of 2.1GPa and the modulus of 263 GPa. After high-temperature oxidation at 1000 ℃ for 400 hours, the strength retention rate is 67%.
Although the present invention has been described in detail above, those skilled in the art will appreciate that various modifications and changes can be made to the present invention without departing from the spirit and scope of the invention. The scope of the invention is not to be limited by the above detailed description but is only limited by the claims.

Claims (10)

1. A benzoylpolysilazane characterized by having a structure represented by the following formula (I),
Figure FDA0003545025520000011
wherein m and n are each independently a natural number.
2. A benzoylpolysilazane according to claim 1, wherein m and n are each independently a natural number from 1 to 10.
3. A method of preparing a benzoylpolysilazane of claim 1, comprising the steps of:
1) under the protection of inert gas, mixing n-butyllithium and an organic solvent according to a volume ratio of 1: 1-1: 25, then dropwise adding the mixture into a mixed solution of the organic solvent and 2,3, 3-trichloro-1-phenylpropane-1-one, and stirring for reaction to obtain a mixed solution;
2) under the protection of inert gas, slowly dripping the obtained mixed solution into organic solution of organosilane while stirring, and reacting to obtain chlorosilane oligomers;
3) dissolving the obtained chlorosilane oligomer and an organic solvent according to the weight ratio of 1: 1-1: 125, introducing ammonia gas, and stirring to react to obtain polysilazane.
4. The method for preparing benzoylpolysilazane according to claim 3, wherein the organic solvent is one or more selected from the group consisting of alkanes having 6 to 8 carbon atoms, aromatic hydrocarbons, tetrahydrofuran, and diethyl ether.
5. The method of claim 3, wherein the inert gas is nitrogen or argon.
6. The method of claim 3, wherein the reaction of step 1) is performed by stirring at-80 ℃ to-35 ℃ for 1-8 hours, and then at-10 ℃ to 60 ℃ for 1-36 hours.
7. The method for preparing benzoylpolysilazane according to claim 3, wherein the reaction in step 2) is performed by stirring at-50 ℃ to 50 ℃ for 1 to 12 hours, and then at 0 ℃ to 80 ℃ for 2 to 30 hours.
8. The method for preparing benzoylpolysilazane according to claim 3, wherein the reaction in step 3) is performed by introducing ammonia gas at 10 to 50 ℃ for 1 to 15 hours while stirring.
9. The method for preparing benzoylpolysilazane according to claim 3, wherein the reaction in step 3) is performed by introducing ammonia gas at 10 ℃ to 50 ℃ under stirring for 1-15 hours, and then continuing the reaction at 20 ℃ to 100 ℃ under stirring for 1-12 hours.
10. The method for preparing benzoylpolysilazane according to claim 3, comprising the following steps:
1) under the protection of nitrogen, mixing n-butyllithium and tetrahydrofuran according to the volume ratio of 1: 1-1: 25, then dropwise adding the mixture into a mixed solution of tetrahydrofuran and 2,3, 3-trichloro-1-phenylpropane-1-one, and stirring for reaction to obtain a mixed solution;
2) under the protection of nitrogen, slowly dripping the obtained mixed solution into tetrahydrofuran solution of organosilane under stirring at a temperature of between-5 and-18 ℃ to react to obtain chlorosilane oligomers;
3) dissolving the obtained chlorosilane oligomer and tetrahydrofuran according to the weight ratio of 1: 1-1: 125, introducing ammonia gas at 30 ℃, and stirring to react to obtain polysilazane.
CN202210246706.0A 2022-03-14 2022-03-14 Benzoyl polysilazane and preparation method thereof Active CN114456392B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210246706.0A CN114456392B (en) 2022-03-14 2022-03-14 Benzoyl polysilazane and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210246706.0A CN114456392B (en) 2022-03-14 2022-03-14 Benzoyl polysilazane and preparation method thereof

Publications (2)

Publication Number Publication Date
CN114456392A true CN114456392A (en) 2022-05-10
CN114456392B CN114456392B (en) 2022-12-30

Family

ID=81416988

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210246706.0A Active CN114456392B (en) 2022-03-14 2022-03-14 Benzoyl polysilazane and preparation method thereof

Country Status (1)

Country Link
CN (1) CN114456392B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5030702A (en) * 1987-12-04 1991-07-09 Hoechst Aktiengesellschaft Polysilazanes, processes for their preparation, ceramic materials which contain silicon nitride and can be prepared from them, and preparation thereof
US5268496A (en) * 1992-05-27 1993-12-07 Wacker-Chemie Gmbh Process for the preparation of polysilazanes
CN1865320A (en) * 2005-05-20 2006-11-22 中国科学院化学研究所 Diacetylene-containing poly-siloxane and method for preparing same
CN103724627A (en) * 2013-11-19 2014-04-16 华东理工大学 Synthesis of novel aminophenylacetenyl-terminated polysilazane
CN103881101A (en) * 2014-03-18 2014-06-25 天津大学 Polycarbosilazane precursor for silicon carbonitride ceramic and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5030702A (en) * 1987-12-04 1991-07-09 Hoechst Aktiengesellschaft Polysilazanes, processes for their preparation, ceramic materials which contain silicon nitride and can be prepared from them, and preparation thereof
US5268496A (en) * 1992-05-27 1993-12-07 Wacker-Chemie Gmbh Process for the preparation of polysilazanes
CN1865320A (en) * 2005-05-20 2006-11-22 中国科学院化学研究所 Diacetylene-containing poly-siloxane and method for preparing same
CN103724627A (en) * 2013-11-19 2014-04-16 华东理工大学 Synthesis of novel aminophenylacetenyl-terminated polysilazane
CN103881101A (en) * 2014-03-18 2014-06-25 天津大学 Polycarbosilazane precursor for silicon carbonitride ceramic and preparation method thereof

Also Published As

Publication number Publication date
CN114456392B (en) 2022-12-30

Similar Documents

Publication Publication Date Title
CN105384940B (en) A kind of synthetic method of spinning-grade polyaluminocarbosilane precursor
US8466076B2 (en) Polysilane-polycarbosilanes with reduced chlorine content based on methylchloropolysilanes, and spinning dopes and ceramic moldings produced therefrom
CN102675649A (en) Novel polycarbosilane and preparation method thereof
CN109438712B (en) Boron modified polycarbosilane resin and preparation method thereof
US6133396A (en) Highly processable hyperbranched polymer precursors to controlled chemical and phase purity fully dense SiC
KR20100000065A (en) Polycarbosilane and method of producing it
CN102093564B (en) Preparation of thermosetting polysilane resin as precursor of silicon carbide ceramics
CN114456392B (en) Benzoyl polysilazane and preparation method thereof
CN114561016B (en) Benzenepyridazoline and preparation method thereof
CN112500574B (en) Ti-containing Si-C-N ceramic precursor and synthesis method and application thereof
CN111548497B (en) Silyne hybrid resin, cured product, ceramic material, composite material and preparation method
CN103724627B (en) Polysilazane-aniline acetylene-terminated polysilazane and preparation method thereof
CN109762010B (en) Sulfur-containing silicon aryne resin and composite material and preparation method thereof
CN114456390B (en) Fluorine-containing polysilazane and preparation method thereof
CN114456391B (en) Hydrophobic and oleophobic organic polysilazane and preparation method thereof
CN113667129B (en) Spinning-grade polycarbosilane and preparation method thereof
CN108315837B (en) Boron-doped silicon carbide fiber and preparation method thereof
CN114106339A (en) Preparation method of polymetallic carbosilane precursor
Clade et al. A new type of precursor for fibers in the system Si–C
CN1281661C (en) Alkynyl-containing poly-siloxane and method for preparing same
CN114456389B (en) Modified organic polysilazane and preparation method thereof
CN111592652A (en) Preparation method of modified polymethylsilane
CN114891213B (en) Polyimide, copolymer resin, composite material, preparation method and application
CN114573821B (en) Liquid hyperbranched polycarbosilane, preparation method and application thereof
CN114196027A (en) High-strength silicon carbide fiber precursor modified polycarbosilane and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant