CN114437721B - Rare earth ion Tb 3+ Doped LiTaO 3 Multi-band emission pressure luminescent material and preparation method and application thereof - Google Patents
Rare earth ion Tb 3+ Doped LiTaO 3 Multi-band emission pressure luminescent material and preparation method and application thereof Download PDFInfo
- Publication number
- CN114437721B CN114437721B CN202011222077.5A CN202011222077A CN114437721B CN 114437721 B CN114437721 B CN 114437721B CN 202011222077 A CN202011222077 A CN 202011222077A CN 114437721 B CN114437721 B CN 114437721B
- Authority
- CN
- China
- Prior art keywords
- preparation
- rare earth
- terbium
- litao
- lithium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims abstract description 44
- 229910052761 rare earth metal Inorganic materials 0.000 title claims abstract description 25
- 238000002360 preparation method Methods 0.000 title claims abstract description 21
- 239000000126 substance Substances 0.000 claims abstract description 4
- 238000004020 luminiscence type Methods 0.000 claims description 34
- -1 rare earth ion Chemical class 0.000 claims description 25
- 239000000843 powder Substances 0.000 claims description 19
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 14
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 claims description 14
- 238000001354 calcination Methods 0.000 claims description 13
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 11
- 229910052771 Terbium Inorganic materials 0.000 claims description 11
- 150000001875 compounds Chemical class 0.000 claims description 11
- 229910052744 lithium Inorganic materials 0.000 claims description 11
- 229910052715 tantalum Inorganic materials 0.000 claims description 11
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims description 6
- 229910052808 lithium carbonate Inorganic materials 0.000 claims description 6
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 5
- 238000004746 piezoluminescence Methods 0.000 claims description 5
- TXLQIRALKZAWHN-UHFFFAOYSA-N dilithium carbanide Chemical compound [Li+].[Li+].[CH3-].[CH3-] TXLQIRALKZAWHN-UHFFFAOYSA-N 0.000 claims description 3
- 238000009826 distribution Methods 0.000 claims description 3
- IDBFBDSKYCUNPW-UHFFFAOYSA-N lithium nitride Chemical compound [Li]N([Li])[Li] IDBFBDSKYCUNPW-UHFFFAOYSA-N 0.000 claims description 3
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 claims description 3
- 229910001947 lithium oxide Inorganic materials 0.000 claims description 3
- 238000001748 luminescence spectrum Methods 0.000 claims description 3
- 238000012544 monitoring process Methods 0.000 claims description 3
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 claims description 3
- JQBILSNVGUAPMM-UHFFFAOYSA-K terbium(3+);triacetate Chemical compound [Tb+3].CC([O-])=O.CC([O-])=O.CC([O-])=O JQBILSNVGUAPMM-UHFFFAOYSA-K 0.000 claims description 3
- UFPWIQQSPQSOKM-UHFFFAOYSA-H terbium(3+);trisulfate Chemical compound [Tb+3].[Tb+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O UFPWIQQSPQSOKM-UHFFFAOYSA-H 0.000 claims description 3
- LKNRQYTYDPPUOX-UHFFFAOYSA-K trifluoroterbium Chemical compound F[Tb](F)F LKNRQYTYDPPUOX-UHFFFAOYSA-K 0.000 claims description 3
- RXMPZTJTBOMFBC-UHFFFAOYSA-M [O-2].[OH-].O.O.O.O.O.[Tb+3] Chemical compound [O-2].[OH-].O.O.O.O.O.[Tb+3] RXMPZTJTBOMFBC-UHFFFAOYSA-M 0.000 claims 1
- 230000035882 stress Effects 0.000 description 29
- 238000001228 spectrum Methods 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 8
- 239000011812 mixed powder Substances 0.000 description 8
- 239000002994 raw material Substances 0.000 description 8
- 239000012071 phase Substances 0.000 description 7
- 238000001816 cooling Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 239000005083 Zinc sulfide Substances 0.000 description 4
- 238000000295 emission spectrum Methods 0.000 description 4
- 229910052984 zinc sulfide Inorganic materials 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910003668 SrAl Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000004570 mortar (masonry) Substances 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 229910001936 tantalum oxide Inorganic materials 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 238000005303 weighing Methods 0.000 description 3
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 2
- 229910012463 LiTaO3 Inorganic materials 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 239000005084 Strontium aluminate Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 238000010671 solid-state reaction Methods 0.000 description 1
- FNWBQFMGIFLWII-UHFFFAOYSA-N strontium aluminate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Sr+2].[Sr+2] FNWBQFMGIFLWII-UHFFFAOYSA-N 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910001428 transition metal ion Inorganic materials 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7743—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing terbium
- C09K11/7744—Chalcogenides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Luminescent Compositions (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种稀土离子Tb3+掺杂的LiTaO3多波段发射压力发光材料及其制备方法和应用,属于光功能材料技术领域和应力发光领域。The invention relates to a rare earth ion Tb 3+ doped LiTaO 3 multi-band emission pressure luminescence material and a preparation method and application thereof, belonging to the technical field of optical functional materials and the field of stress luminescence.
背景技术Background technique
应力发光材料在外界机械应力作用下(如摩擦,冲击,压缩,拉伸,弯曲,扭曲,刮擦,磨碎,切割、开裂,等等)能够将储存的能量以发光的形式释放出来,在应力感应、机械力驱动的照明与显示、人工智能皮肤、结构件安全和健康诊断等众多领域具有广阔的应用前景,引起了国内外研究学者广泛关注。应力发光现象最早于1605年在糖结晶块中被发现并记录下来。1998年,Akiyama等人报道了在Sr3Al2O6:Eu,Dy荧光粉中肉眼可见的绿色应力发光,发光强度接近糖结晶块的500倍(Applied Physics Letters,1998,3046(73):3046-3048)。1999年,徐超男等人报道了在ZnS:Mn纳米颗粒薄膜中的橙色应力发光(Journal ofthe American Ceramic Society,1999,82(9):2342-2344)。随后应力发光在多种材料中相继被报道出来。Under the action of external mechanical stress (such as friction, impact, compression, stretching, bending, twisting, scraping, grinding, cutting, cracking, etc.), the stress luminescent material can release the stored energy in the form of luminescence. Stress sensing, lighting and display driven by mechanical force, artificial intelligence skin, safety and health diagnosis of structural parts and many other fields have broad application prospects, and have attracted extensive attention from domestic and foreign researchers. The phenomenon of stress luminescence was first discovered and recorded in sugar crystal blocks in 1605. In 1998, Akiyama et al. reported green stress luminescence visible to the naked eye in Sr 3 Al 2 O 6 :Eu,Dy phosphor, and the luminous intensity was close to 500 times that of sugar crystal blocks (Applied Physics Letters, 1998, 3046(73): 3046-3048). In 1999, Chaonan Xu et al. reported orange stress luminescence in ZnS:Mn nanoparticle films (Journal of the American Ceramic Society, 1999, 82(9):2342-2344). Subsequently, stress luminescence has been reported in a variety of materials.
目前已有的比较有效的无机应力发光基质有铝酸锶(SrAl2O4)、铌酸锂(LiNbO3)、硫化锌(ZnS)和硫氧锌钙(CaZnOS)。应力发光的产生依赖于基质材料和所选择的掺杂发光离子,比如在SrAl2O4中,主要通过掺杂二价铕离子(Eu2+)来实现绿色应力发光;在LiNbO3中,主要通过掺杂三价镨离子(Pr3+)实现红色应力发光;在ZnS中,主要通过掺杂过渡金属离子(Mn2+,Cu2+)实现红色和绿色应力发光。然而上述材料的制备技术尚待改进,一方面,SrAl2O4:Eu2+和CaZnOS的合成条件复杂,需要气氛处理,使得制造成本进一步提高,不利于商业化推广应用,且合成产物的防水性能较差,吸收空气中的水分会大大降低光学性能,限制了实际应用;另一方面,已有的应力发光材料大多数是单一波段发光,通常只表现出单发射峰,而且大部分材料在单次施加压力之后应力发光会消失,需要再次用紫外激发才能使其恢复应力发光性能。因此,开发高效稳定、多波段发射且可持续实现应力发光的应力发光材料具有重要意义。At present, the more effective inorganic stress luminescence substrates include strontium aluminate (SrAl 2 O 4 ), lithium niobate (LiNbO 3 ), zinc sulfide (ZnS) and calcium zinc oxysulfide (CaZnOS). The generation of stress luminescence depends on the host material and the selected dopant luminescent ions. For example, in SrAl 2 O 4 , green stress luminescence is mainly achieved by doping divalent europium ions (Eu 2+ ); in LiNbO 3 , the main Red stress luminescence is achieved by doping trivalent praseodymium ions (Pr 3+ ); in ZnS, red and green stress luminescence are mainly achieved by doping transition metal ions (Mn 2+ , Cu 2+ ). However, the preparation technology of the above materials needs to be improved. On the one hand, the synthesis conditions of SrAl 2 O 4 :Eu 2+ and CaZnOS are complex and require atmosphere treatment, which further increases the manufacturing cost, which is not conducive to commercialization and application, and the waterproofness of the synthesized products The performance is poor, and the absorption of moisture in the air will greatly reduce the optical performance, which limits the practical application; After a single application of pressure, the stress luminescence will disappear, and it needs to be excited again with ultraviolet light to restore the stress luminescence performance. Therefore, it is of great significance to develop stress-luminescent materials with high efficiency, stability, multi-band emission and sustainable stress-luminescence.
发明内容Contents of the invention
为了克服现有技术上的不足,本发明的目的在于提供了一种稀土离子Tb3+掺杂的LiTaO3多波段压力发光材料及其制备方法和应用。In order to overcome the deficiencies in the prior art, the purpose of the present invention is to provide a rare earth ion Tb 3+ doped LiTaO 3 multi-band pressure luminescent material and its preparation method and application.
一方面,本发明提供了一种稀土离子Tb3+掺杂的LiTaO3多波段发射压力发光材料,所述稀土离子Tb3+掺杂的LiTaO3多波段发射压力发光材料的化学通式为Li1-xTaO3:xTb3+,其中0.005≤x≤0.03。In one aspect, the present invention provides a rare earth ion Tb 3+ doped LiTaO 3 multi-band emission piezoluminescent material, the chemical general formula of the rare earth ion Tb 3+ doped LiTaO 3 multi-band emission piezoluminescent material is Li 1-x TaO 3 :xTb 3+ , where 0.005≤x≤0.03.
在本公开中,掺杂的三价稀土离子Tb3+进入LiTaO3基质晶格中时,取代一价Li+离子格位,为异价取代价态的不平衡使得其在禁带中产生局域化的能态,即陷阱能级。其应力发光机理为辐照后电子受激跃迁,载流子被陷阱能级俘获并稳定存储。当再次施加外加应力时,陷阱能级由于几何结构扭曲而向导带移动,使得载流子能够跃迁至导带,最后回到基态,实现应力发光,对应Tb3+的宇称禁戒的f-f跃迁特征发射。In this disclosure, when the doped trivalent rare earth ions Tb 3+ enter the LiTaO 3 host lattice, they replace the monovalent Li + ion site, and the imbalance of the asymmetric substitution valence makes it produce a partial in the forbidden band. The localized energy state is the trap level. The stress luminescence mechanism is that electrons are excited to transition after irradiation, and the carriers are captured by the trap energy level and stored stably. When the external stress is applied again, the trap energy level moves to the conduction band due to the distortion of the geometric structure, so that the carriers can jump to the conduction band, and finally return to the ground state to realize stress luminescence, corresponding to the parity forbidden ff transition of Tb 3+ feature launch.
较佳的,0.005≤x≤0.02,而且应力发光强度先增强,再减弱,在x=0.01时达到最佳。Preferably, 0.005≤x≤0.02, and the intensity of the stress luminescence increases first, then decreases, and reaches the optimum when x=0.01.
较佳的,所述稀土离子Tb3+掺杂的LiTaO3多波段发射压力发光材料的压力发光光谱从蓝光到橙光呈多波段发射,发射中心波长分别为487nm、541nm、583nm和618nm,分别对应于Tb3+的5D4→7F6、7F5、7F4和7F3跃迁。而且,本发明中所得稀土离子Tb3+掺杂的LiTaO3多波段发射压力发光材料在0~2000N之间多次循环施加压力后仍然具有优异的发光性能,具有发光强度高,灵敏度高,可恢复等优点(即具有优异的压力发光循环稳定性)。Preferably, the pressure luminescence spectrum of the rare earth ion Tb 3+ doped LiTaO 3 multi-band emission pressure luminescence material is multi-band emission from blue light to orange light, and the emission center wavelengths are 487nm, 541nm, 583nm and 618nm, respectively. Corresponding to 5 D 4 → 7 F 6 , 7 F 5 , 7 F 4 and 7 F 3 transitions of Tb 3+ . Moreover, the rare earth ion Tb 3+ doped LiTaO 3 multi-band emission pressure luminescent material obtained in the present invention still has excellent luminescent performance after repeated pressure application between 0 and 2000N, has high luminous intensity, high sensitivity, and can Advantages such as recovery (i.e., excellent pressure-luminescence cycling stability).
另一方面,本发明提供了一种上述的稀土离子Tb3+掺杂的LiTaO3压力发光材料的制备方法,包括:On the other hand, the present invention provides a kind of preparation method of above-mentioned rare earth ion Tb 3+ doped LiTaO 3 piezoluminescence material, comprising:
(1)将锂源、钽源和铽源按照元素按摩尔比为Li:Ta:Tb=1-x:1:x称量并混合,在空气气氛下500~900℃进行预烧,得到预烧粉体;(1) The lithium source, tantalum source and terbium source are weighed and mixed according to the molar ratio of the elements as Li:Ta:Tb=1-x:1:x, and pre-calcined at 500-900°C in an air atmosphere to obtain a pre-calcined burning powder;
(2)将所得预烧粉体在空气气氛中1000~1400℃下进行煅烧,得到所述稀土离子Tb3+掺杂的LiTaO3压力发光材料。(2) Calcining the obtained calcined powder in an air atmosphere at 1000-1400° C. to obtain the LiTaO 3 piezoluminescent material doped with rare earth ions Tb 3+ .
在本发明中,将锂源、钽源和铽源混合后进行预烧,目的在于促进扩散。然后再进行煅烧使其发生固相反应,最终得到稀土离子Tb3+掺杂的LiTaO3压力发光材料。In the present invention, the lithium source, the tantalum source and the terbium source are mixed and then calcined to promote diffusion. Calcination is then carried out to cause a solid-state reaction to occur, and finally a LiTaO 3 piezoluminescent material doped with rare earth ions Tb 3+ is obtained.
较佳的,所述锂源为含锂化合物,优选为氧化锂、碳酸锂、氮化锂和碳化锂中的至少一种。Preferably, the lithium source is a lithium-containing compound, preferably at least one of lithium oxide, lithium carbonate, lithium nitride and lithium carbide.
较佳的,所述钽源为含钽的化合物,优选为五氧化二钽和钽粉中的至少一种。Preferably, the tantalum source is a compound containing tantalum, preferably at least one of tantalum pentoxide and tantalum powder.
较佳的,所述铽源为含铽的化合物,优选为七氧化四铽、乙酸铽、硫酸铽、氟化铽和铽粉中的至少一种。Preferably, the terbium source is a terbium-containing compound, preferably at least one of tetrabium heptoxide, terbium acetate, terbium sulfate, terbium fluoride and terbium powder.
较佳的,所述预烧的升温速率为3~10℃/分钟。Preferably, the heating rate of the pre-burning is 3-10° C./minute.
较佳的,所述预烧的时间为2~8小时。Preferably, the pre-burning time is 2-8 hours.
较佳的,所述煅烧的升温速率为2~10℃/分钟。Preferably, the heating rate of the calcination is 2-10° C./min.
较佳的,所述煅烧的时间为5~15小时。Preferably, the calcination time is 5-15 hours.
再一方面,本发明提供了一种上述的稀土离子Tb3+掺杂的LiTaO3压力发光材料在生物体、机械部件和建筑物的应力分布监测和失效预警、应力传感器、应力显示器、超精密器件中的应用。In yet another aspect, the present invention provides a stress distribution monitoring and failure warning, a stress sensor, a stress display , an ultra - precise device applications.
有益效果:Beneficial effect:
本发明中,提供了一种新型多波段发射压力发光材料及其制备方法,即以三价稀土离子Tb3+掺杂的LiTaO3,采用二步热处理固相合成方法,制备工艺简单,无需气氛处理,制备条件易控制;In the present invention, a novel multi-band emission pressure luminescent material and its preparation method are provided, that is, LiTaO 3 doped with trivalent rare earth ions Tb 3+ , adopting a two-step heat treatment solid-phase synthesis method, the preparation process is simple, and no atmosphere is required Treatment and preparation conditions are easy to control;
本发明中,LiTaO:Tb3+压力发光材料其发光光谱涵盖从蓝光到橙光多波段发射(487nm,541nm,583nm和618nm),在0~2000N多次循环施加压力之后仍然具有发光性能,具有发光强度高,灵敏度高,可恢复等优点。In the present invention, the luminescent spectrum of LiTaO:Tb 3+ pressure luminescent material covers multi-band emission from blue light to orange light (487nm, 541nm, 583nm and 618nm), and it still has luminescent performance after multiple cycles of pressure from 0 to 2000N. High luminous intensity, high sensitivity, recoverable and so on.
附图说明Description of drawings
图1为实施例1-4所制得的掺杂不同Tb3+浓度的Li1-xTaO3:xTb3+(x=0.005、0.01、0.015及0.02)压力发光材料的X射线衍射图(XRD),图中最下方插入LiTaO3相的标准X射线衍射谱;Fig. 1 is the X-ray diffraction pattern of Li 1-x TaO 3 :xTb 3+ (x=0.005, 0.01, 0.015 and 0.02) piezoluminescence materials doped with different Tb 3+ concentrations prepared in Examples 1-4 ( XRD), the standard X-ray diffraction spectrum of the LiTaO3 phase is inserted at the bottom of the figure;
图2为实施例1-4所制得的掺杂不同Tb3+浓度的Li1-xTaO3:xTb3+(x=0.005、0.01、0.015及0.02)应力发光材料在2000N压力下的发光光谱;Figure 2 shows the luminescence of Li 1-x TaO 3 :xTb 3+ (x=0.005, 0.01, 0.015 and 0.02) stress luminescent materials doped with different Tb 3+ concentrations prepared in Examples 1-4 under a pressure of 2000N spectrum;
图3为实施例1所制得的Li0.995TaO3:0.005Tb3+(x=0.005)压力发光材料在0~2000N的循环外压力下的发光强度图;Fig. 3 is a diagram of the luminous intensity of the Li 0.995 TaO 3 :0.005Tb 3+ (x=0.005) pressure luminescent material prepared in Example 1 under the pressure outside the cycle of 0-2000N;
图4为实施例2所制得的Li0.995TaO3:0.01Tb3+(x=0.01)压力发光材料在0~2000N的循环外压力下的发光强度图;Fig. 4 is a diagram of the luminous intensity of the Li 0.995 TaO 3 :0.01Tb 3+ (x=0.01) pressure luminescent material prepared in Example 2 under the pressure outside the cycle of 0-2000N;
图5为实施例3所制得的Li0.995TaO3:0.015Tb3+(x=0.015)压力发光材料在0~2000N的循环外压力下的发光强度图;Fig. 5 is a diagram of the luminous intensity of the Li 0.995 TaO 3 :0.015Tb 3+ (x=0.015) pressure luminescent material prepared in Example 3 under the pressure outside the cycle of 0-2000N;
图6为实施例4所制得的Li0.995TaO3:0.02Tb3+(x=0.02)压力发光材料在0~2000N的循环外压力下的发光强度图。Fig. 6 is a diagram of the luminous intensity of the Li 0.995 TaO 3 :0.02Tb 3+ (x=0.02) pressure luminescent material prepared in Example 4 under the pressure outside the cycle of 0-2000N.
具体实施方式Detailed ways
以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。The present invention will be further described below through the following embodiments. It should be understood that the following embodiments are only used to illustrate the present invention, not to limit the present invention.
在本公开中,稀土离子Tb3+掺杂的LiTaO3多波段发射压力发光材料的化学通式可为Li1-xTaO3:xTb3+,其中稀土离子Tb3+的摩尔数x取值范围为0.005≤x≤0.03,优选为0.005≤x≤0.02,更优选为0.0075≤x≤0.015,最优选为x=0.01。In the present disclosure, the general chemical formula of the rare earth ion Tb 3+ doped LiTaO 3 multi-band emission piezoluminescent material can be Li 1-x TaO 3 :xTb 3+ , wherein the molar number x of the rare earth ion Tb 3+ takes the value The range is 0.005≤x≤0.03, preferably 0.005≤x≤0.02, more preferably 0.0075≤x≤0.015, most preferably x=0.01.
以下示例性地说明本发明提供的稀土离子Tb3+掺杂的LiTaO3多波段发射压力发光材料的制备方法。The preparation method of the rare earth ion Tb 3+ doped LiTaO 3 multi-band emission pressure luminescent material provided by the present invention is exemplarily described below.
选取原料。选用含锂、钽和铽的化合物作为原料。含锂的化合物可为氧化锂、碳酸锂、氮化锂和碳化锂中的任意一种。含钽的化合物原料为五氧化二钽和钽粉中的任意一种。含铽的化合物原料为七氧化四铽、乙酸铽、硫酸铽、氟化铽和铽粉中的任意一种。Choose ingredients. Compounds containing lithium, tantalum and terbium are selected as raw materials. The lithium-containing compound may be any one of lithium oxide, lithium carbonate, lithium nitride and lithium carbide. The raw material of the compound containing tantalum is any one of tantalum pentoxide and tantalum powder. The raw material of the compound containing terbium is any one of tetrabium heptoxide, terbium acetate, terbium sulfate, terbium fluoride and terbium powder.
配料。将含锂、钽和铽的化合物原料按摩尔比为1-x:1:x称量和混合,其中x取值范围为0.005≤x≤0.03,混合均匀后,得到混合粉体。ingredients. The compound raw materials containing lithium, tantalum and terbium are weighed and mixed in a molar ratio of 1-x:1:x, wherein the range of x is 0.005≤x≤0.03, and mixed uniformly to obtain a mixed powder.
预烧。将混合粉体,在空气气氛下、500~900℃进行预烧,到预烧粉体。优选,预烧完成之后,冷却后取出再次研磨。作为一个预烧的示例,将原料严格按照摩尔比称量,混合均匀后,放入马弗炉中按3~10℃/min的升温速率从室温升至500~900℃,在空气气氛下预处理2~8h,冷却后得到预烧粉体。pre-burn. The mixed powder is pre-fired in an air atmosphere at 500-900°C until the powder is pre-fired. Preferably, after pre-burning is completed, it is taken out after cooling and ground again. As an example of pre-burning, weigh the raw materials strictly according to the molar ratio, mix them evenly, put them into the muffle furnace and increase the temperature from room temperature to 500-900°C at a rate of 3-10°C/min. Pretreat for 2-8 hours, and obtain calcined powder after cooling.
煅烧。将预烧粉体再在空气气氛下进行煅烧,煅烧温度1000~1400℃;最后随炉冷却至室温。将预烧粉再次研磨,放入马弗炉中按2~10℃/min的升温速率从室温升至煅烧温度1000~1500℃,在空气气氛下煅烧5~15h。calcined. The calcined powder is then calcined in an air atmosphere at a calcining temperature of 1000-1400°C; finally cooled to room temperature with the furnace. Grind the calcined powder again, put it into a muffle furnace, raise the temperature from room temperature to a calcination temperature of 1000-1500 ℃ at a rate of 2-10 ℃/min, and calcine in an air atmosphere for 5-15 hours.
在本发明中,所得LiTaO3:Tb3+的压力发光光谱涵盖从蓝光到橙光多波段发射(487nm、541nm、583nm和618nm),在0~2000N多次循环施加压力之后仍然具有发光性能,具有发光强度高,灵敏度高,可恢复等优点,在生物体、机械部件和建筑物的应力分布监测和失效预警、应力传感器、应力显示器、超精密器件加工等应用场景具有重要的实际应用价值。同时,本发明的制备条件温和,操作比较简单,易于实现规模生产。In the present invention, the pressure luminescence spectrum of the obtained LiTaO 3 : Tb 3+ covers multi-wavelength emission from blue light to orange light (487nm, 541nm, 583nm and 618nm), and it still has luminescence performance after multiple cycles of pressure from 0 to 2000N, With the advantages of high luminous intensity, high sensitivity, and recoverability, it has important practical application value in application scenarios such as stress distribution monitoring and failure warning of organisms, mechanical parts and buildings, stress sensors, stress displays, and ultra-precision device processing. At the same time, the preparation condition of the present invention is mild, the operation is relatively simple, and it is easy to realize large-scale production.
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。Examples are given below to describe the present invention in detail. It should also be understood that the following examples are only used to further illustrate the present invention, and should not be construed as limiting the protection scope of the present invention. Some non-essential improvements and adjustments made by those skilled in the art according to the above contents of the present invention all belong to the present invention scope of protection. The specific process parameters and the like in the following examples are only examples of suitable ranges, that is, those skilled in the art can make a selection within a suitable range through the description herein, and are not limited to the specific values exemplified below.
实施例1Example 1
按各元素摩尔配比Li:Ta:Tb=0.995:1:0.005(相当于Tb掺杂量x=0.005),选取碳酸锂、氧化钽和七氧化四铽为原料,分别称取量为0.3676g、2.2097g和0.0094g。在玛瑙研钵中充分研磨1小时,使其混合均匀得到混合粉体。将混合粉体放入马弗炉中,按5℃/min的升温速率从室温升至600℃,在空气气氛下预处理2h,冷却后得到预烧粉。将预烧粉再次研磨,放入马弗炉中按3℃/min的升温速率从室温升至煅烧温度1100℃,在空气气氛下煅烧5h,随炉冷却至室温,即得Li0.995TaO3:0.005Tb3+(x=0.005)压力发光粉体。合成粉体结晶度高,见图1所示的XRD衍射相分析结果。检测得知本实施例所制得的压力发光材料在2000N的压力下,其发光发射峰为线状光谱,且具有487nm处的蓝光发射,541nm处的绿光发射,583nm处的黄光发射以及618nm处的橙光发射,见图2所示的压力发射光谱分析结果。According to the molar ratio of each element Li:Ta:Tb=0.995:1:0.005 (equivalent to Tb doping amount x=0.005), lithium carbonate, tantalum oxide and tetraterbium heptoxide were selected as raw materials, and the weighing amount was 0.3676g , 2.2097g and 0.0094g. Fully grind in an agate mortar for 1 hour to make it mix uniformly to obtain a mixed powder. Put the mixed powder into a muffle furnace, raise the temperature from room temperature to 600°C at a rate of 5°C/min, pretreat for 2 hours in an air atmosphere, and obtain calcined powder after cooling. Grind the calcined powder again, put it into a muffle furnace from room temperature to a calcination temperature of 1100°C at a rate of 3°C/min, calcinate in an air atmosphere for 5 hours, and cool down to room temperature with the furnace to obtain Li 0.995 TaO 3 : 0.005Tb 3+ (x=0.005) pressure luminescence powder. The synthetic powder has high crystallinity, as shown in the XRD diffraction phase analysis results shown in Figure 1. It is detected that the pressure luminescent material prepared in this embodiment has a luminous emission peak of a line spectrum under a pressure of 2000N, and has blue light emission at 487nm, green light emission at 541nm, yellow light emission at 583nm and Orange light emission at 618nm, see the pressure emission spectrum analysis results shown in Figure 2.
实施例2Example 2
在实施例1的基础上,增大Tb3+掺杂量。按各元素摩尔配比Li:Ta:Tb=0.99:1:0.01(相当于Tb掺杂量x=0.01),选取碳酸锂、氧化钽和七氧化四铽为原料,分别称取量为0.3621g、2.2097g和0.0187g,在玛瑙研钵中充分研磨1小时,使其混合均匀得到混合粉体。将混合粉体放入马弗炉中,按5℃/min的升温速率从室温升至600℃,在空气气氛下预处理2h,冷却后得到预烧粉。将预烧粉再次研磨,放入马弗炉中按3℃/min的升温速率从室温升至煅烧温度1100℃,在空气气氛下煅烧5h,随炉冷却至室温,即得Li0.990TaO3:0.01Tb3+(x=0.01)压力发光粉体。合成粉体结晶度高,见图1所示的XRD衍射相分析结果。检测得知本实施例所制得的压力发光材料在2000N的压力下,其发光发射峰为线状光谱,且具有487nm处的蓝光发射,541nm处的绿光发射,583nm处的黄光发射以及618nm处的橙光发射,见图2所示的压力发射光谱分析结果。且压力发光强度相较于实施例1有显著增强。On the basis of Example 1, the Tb 3+ doping amount is increased. According to the molar ratio of each element Li:Ta:Tb=0.99:1:0.01 (equivalent to Tb doping amount x=0.01), lithium carbonate, tantalum oxide and tetraterbium heptoxide were selected as raw materials, and the weighing amount was 0.3621g , 2.2097g and 0.0187g were fully ground in an agate mortar for 1 hour, and mixed evenly to obtain a mixed powder. Put the mixed powder into a muffle furnace, raise the temperature from room temperature to 600°C at a rate of 5°C/min, pretreat for 2 hours in an air atmosphere, and obtain calcined powder after cooling. Grind the calcined powder again, put it into a muffle furnace from room temperature to a calcination temperature of 1100°C at a rate of 3°C/min, calcinate in an air atmosphere for 5 hours, and cool down to room temperature with the furnace to obtain Li 0.990 TaO 3 : 0.01Tb 3+ (x=0.01) pressure luminescence powder. The synthetic powder has high crystallinity, as shown in the XRD diffraction phase analysis results shown in Figure 1. It is detected that the pressure luminescent material prepared in this embodiment has a luminous emission peak of a line spectrum under a pressure of 2000N, and has blue light emission at 487nm, green light emission at 541nm, yellow light emission at 583nm and Orange light emission at 618nm, see the pressure emission spectrum analysis results shown in Figure 2. And the pressure luminescence intensity is significantly enhanced compared with Example 1.
实施例3Example 3
本实施例3中稀土离子Tb3+掺杂的LiTaO3多波段发射压力发光材料的制备过程参照实施例2,区别在于:x=0.015。见图1所示的XRD衍射相分析结果。检测得知本实施例3所制得的压力发光材料在2000N的压力下,其发光发射峰为线状光谱,且具有487nm处的蓝光发射,541nm处的绿光发射,583nm处的黄光发射以及618nm处的橙光发射,见图2所示的压力发射光谱分析结果。In Example 3, the preparation process of the rare earth ion Tb 3+ doped LiTaO 3 multi-band emission piezoluminescence material refers to Example 2, the difference is: x=0.015. See the XRD diffraction phase analysis results shown in Figure 1. It is detected that the pressure luminescent material prepared in Example 3 has a luminous emission peak of a line spectrum under a pressure of 2000N, and has blue light emission at 487nm, green light emission at 541nm, and yellow light emission at 583nm. As well as the orange light emission at 618 nm, see the pressure emission spectrum analysis results shown in FIG. 2 .
实施例4Example 4
在实施例2的基础上,进一步增大Tb3+掺杂量。按各元素摩尔配比Li:Ta:Tb=0.9801:0.02(相当于Tb掺杂量x=0.02),选取碳酸锂、氧化钽和七氧化四铽为原料,分别称取量为0.3584g、2.2097g和0.0374g,在玛瑙研钵中充分研磨1小时,使其混合均匀得到混合粉体。将混合粉体放入马弗炉中按5℃/min的升温速率从室温升至600℃,在空气气氛下预处理2h,冷却后得到预烧粉。将预烧粉再次研磨,放入马弗炉中按3℃/min的升温速率从室温升至煅烧温度1100℃,在空气气氛下煅烧5h,随炉冷却至室温,即得Li0.980TaO3:0.02Tb3+(x=0.02)压力发光粉体。见图1所示的XRD衍射相分析结果。检测得知本实施例所制得的压力发光材料在2000N的压力下,其发光发射峰为线状光谱,且具有487nm处的蓝光发射,541nm处的绿光发射,583nm处的黄光发射以及618nm处的橙光发射,见图2所示的压力发射光谱分析结果。On the basis of Example 2, the Tb 3+ doping amount is further increased. According to the molar ratio of each element Li:Ta:Tb=0.9801:0.02 (equivalent to Tb doping amount x=0.02), lithium carbonate, tantalum oxide and tetraterbium heptoxide were selected as raw materials, and the weighing amounts were 0.3584g and 2.2097g respectively. g and 0.0374g, fully grind it in an agate mortar for 1 hour, and make it mix uniformly to obtain a mixed powder. Put the mixed powder into a muffle furnace from room temperature to 600°C at a rate of 5°C/min, pretreat it in an air atmosphere for 2 hours, and obtain calcined powder after cooling. Grind the calcined powder again, put it into a muffle furnace and increase the temperature from room temperature to 1100 °C at a rate of 3 °C/min, calcinate in an air atmosphere for 5 hours, and cool to room temperature with the furnace to obtain Li 0.980 TaO 3 : 0.02Tb 3+ (x=0.02) pressure luminescence powder. See the XRD diffraction phase analysis results shown in Figure 1. It is detected that the pressure luminescent material prepared in this embodiment has a luminous emission peak of a line spectrum under a pressure of 2000N, and has blue light emission at 487nm, green light emission at 541nm, yellow light emission at 583nm and Orange light emission at 618nm, see the pressure emission spectrum analysis results shown in Figure 2.
图1为实施例1-4所制得的掺杂不同Tb3+浓度的Li1-xTaO3:xTb3+(x=0.005、0.01、0.015、0.02)压力发光材料的X射线衍射图(XRD),图中最下方插入LiTaO3相的标准X射线衍射谱,从图中可知合成样品的衍射峰与标准卡片很好的对应,即合成的样品为纯相。Fig. 1 is the X-ray diffraction pattern of Li 1-x TaO 3 :xTb 3+ (x=0.005, 0.01, 0.015, 0.02) piezoluminescence materials doped with different Tb 3+ concentrations prepared in Examples 1-4 ( XRD), the standard X-ray diffraction spectrum of the LiTaO3 phase is inserted at the bottom of the figure. From the figure, it can be seen that the diffraction peaks of the synthesized sample correspond well to the standard card, that is, the synthesized sample is a pure phase.
图2为实施例1-4所制得的掺杂不同Tb3+浓度的Li1-xTaO3:xTb3+(x=0.005、0.01、0.0015及0.02)应力发光材料在2000N压力下的发光光谱,从图中可知其发光发射峰为线状光谱,且具有487nm处的蓝光发射,541nm处的绿光发射,583nm处的黄光发射以及618nm处的橙光发射,四个峰分别对应Tb3+离子的特征发射,且发光强度随着掺杂浓度呈先升后降的趋势。Figure 2 shows the luminescence of Li 1-x TaO 3 :xTb 3+ (x=0.005, 0.01, 0.0015 and 0.02) stress luminescent materials doped with different Tb 3+ concentrations prepared in Examples 1-4 under a pressure of 2000N It can be seen from the figure that its luminous emission peak is a linear spectrum, and has blue light emission at 487nm, green light emission at 541nm, yellow light emission at 583nm and orange light emission at 618nm. The four peaks correspond to Tb The characteristic emission of 3+ ions, and the luminous intensity increases first and then decreases with the doping concentration.
图3、4、5、6为实施例1-4所制得的掺杂不同Tb3+浓度的Li1-xTaO3:xTb3+(x=0.005、0.01、0.015及0.02)压力发光材料在0~2000N的10次循环外压力下的发光强度图,从图中可知,第一次施加载荷时应力发光最强,后面随着施加载荷次数增加而逐步降低,但是仍然具有一定发射强度。表明在应力作用下,材料能够发射出强烈的压力发光,且在十次循环压缩之后仍然具有一定发光强度,即压力发光强度能得到恢复,说明材料具有优异的发光可恢复性。同时,在大应力施加结束之后,压力发光的余辉迅速衰减,具有及时性。对比发现,Li1-xTaO3:xTb3+(x=0.01)具有最优的循环性能,施加10次压力之后仍然具有最高的发光强度。Figures 3, 4, 5, and 6 are Li 1-x TaO 3 :xTb 3+ (x=0.005, 0.01, 0.015, and 0.02) piezoluminescent materials doped with different Tb 3+ concentrations prepared in Examples 1-4 The luminous intensity diagram under 10 cycles of external pressure from 0 to 2000N can be seen from the figure that the stress luminescence is the strongest when the load is applied for the first time, and gradually decreases with the increase in the number of applied loads, but still has a certain emission intensity. It shows that under the action of stress, the material can emit strong pressure luminescence, and still has a certain luminescence intensity after ten cycles of compression, that is, the pressure luminescence intensity can be restored, indicating that the material has excellent luminescence recoverability. At the same time, after the large stress is applied, the afterglow of the pressure luminescence decays rapidly, which is timely. By comparison, it is found that Li 1-x TaO 3 :xTb 3+ (x=0.01) has the best cycle performance, and still has the highest luminous intensity after 10 times of pressure.
最后有必要在此说明的是:以上实施例只用于对本发明的技术方案作进一步详细说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。Finally, it is necessary to explain here that: the above examples are only used to further describe the technical solutions of the present invention in detail, and cannot be interpreted as limiting the protection scope of the present invention. Essential improvements and adjustments all belong to the protection scope of the present invention.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011222077.5A CN114437721B (en) | 2020-11-05 | 2020-11-05 | Rare earth ion Tb 3+ Doped LiTaO 3 Multi-band emission pressure luminescent material and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011222077.5A CN114437721B (en) | 2020-11-05 | 2020-11-05 | Rare earth ion Tb 3+ Doped LiTaO 3 Multi-band emission pressure luminescent material and preparation method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114437721A CN114437721A (en) | 2022-05-06 |
CN114437721B true CN114437721B (en) | 2023-04-07 |
Family
ID=81362015
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011222077.5A Active CN114437721B (en) | 2020-11-05 | 2020-11-05 | Rare earth ion Tb 3+ Doped LiTaO 3 Multi-band emission pressure luminescent material and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114437721B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109135741A (en) * | 2018-07-20 | 2019-01-04 | 同济大学 | A kind of tantalic acid alkali elastic stress luminescent material and preparation method thereof |
CN110511754A (en) * | 2019-08-23 | 2019-11-29 | 同济大学 | A tantalate-based light-excited luminescent material and its preparation method |
CN111205866A (en) * | 2020-02-19 | 2020-05-29 | 五邑大学 | Bi-doped visible-near-infrared long-afterglow fluorescent material and preparation method thereof |
-
2020
- 2020-11-05 CN CN202011222077.5A patent/CN114437721B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109135741A (en) * | 2018-07-20 | 2019-01-04 | 同济大学 | A kind of tantalic acid alkali elastic stress luminescent material and preparation method thereof |
CN110511754A (en) * | 2019-08-23 | 2019-11-29 | 同济大学 | A tantalate-based light-excited luminescent material and its preparation method |
CN111205866A (en) * | 2020-02-19 | 2020-05-29 | 五邑大学 | Bi-doped visible-near-infrared long-afterglow fluorescent material and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
Emission and storage properties of LiTaO3:Tb31 phosphor;M. Nikl;《Journal of Applied Physics》;19960315;第79卷(第6期);2853-2856 * |
Also Published As
Publication number | Publication date |
---|---|
CN114437721A (en) | 2022-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | Pr3+-doped Li2SrSiO4 red phosphor for white LEDs | |
CN103146385B (en) | Double-doped double-perovskite red fluorescent powder and preparation method thereof | |
CN101818062A (en) | Praseodym or praseodym-europim doped strontium lithium silicate yellow-red fluorescent powder and preparation method thereof | |
Zhao et al. | A novel high thermal stability Ba2CaWO6: Mn4+ far-red emitting phosphor with a double-perovskite structure for plant growth LEDs | |
CN114395393A (en) | Eu (Eu)3+Doped red fluorescent powder and preparation method thereof | |
CN112940723A (en) | Bi3+、Eu3+Ion co-activated lutecium salt fluorescent powder and preparation method thereof | |
CN109988575B (en) | A kind of Eu3+ ion-activated vanadium phosphoniobate red phosphor, preparation method and application thereof | |
CN103788953B (en) | A kind of europkium-activated tellurate red fluorescence powder and preparation method thereof | |
CN106701073A (en) | Mn4+ ion doped titanate-based red fluorescent powder and preparation method thereof | |
CN114437721B (en) | Rare earth ion Tb 3+ Doped LiTaO 3 Multi-band emission pressure luminescent material and preparation method and application thereof | |
CN104893724A (en) | New garnet-based efficient yellow fluorescent powder | |
CN103320131B (en) | A kind of phosphate-based red fluorescent powder, preparation method and application | |
CN116554866A (en) | A kind of red stress-luminescent phosphor and preparation method thereof | |
CN102746844B (en) | A CaIn2O4-based up-conversion luminescent material and its preparation method | |
CN112480918B (en) | Manganese-doped deep red light fluorescent powder material and preparation method thereof | |
CN105419798B (en) | A kind of preparation method and application of orange red antimonate luminescent materials | |
CN112322292B (en) | Eu3+ doped fluorescent material and preparation method thereof | |
CN108893108A (en) | A kind of double-perovskite type silicate blue fluorescent powder and preparation method thereof | |
CN114540031A (en) | Mn (manganese)4+Ion-doped tellurate red fluorescent powder and preparation method and application thereof | |
CN110129046B (en) | Tb3+Doped fluoroniobium tantalate fluorescent powder and synthesis and application thereof | |
CN108531177B (en) | A Eu3+ ion-activated bismuth oxyhalide lithium red phosphor and its preparation and application | |
CN116875307B (en) | A tetravalent manganese ion activated titanate-based red luminescent material and preparation method thereof | |
CN106118653B (en) | One kind (Zn1-xMx)3V2O8Preparation method | |
CN115418227B (en) | A light conversion material based on ultraviolet-visible light excitation to realize near-infrared emission and its preparation method | |
CN114574205B (en) | Antimony aluminate fluorescent powder and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |