CN114437226A - Methods of making bispecific antibodies - Google Patents

Methods of making bispecific antibodies Download PDF

Info

Publication number
CN114437226A
CN114437226A CN202011223835.5A CN202011223835A CN114437226A CN 114437226 A CN114437226 A CN 114437226A CN 202011223835 A CN202011223835 A CN 202011223835A CN 114437226 A CN114437226 A CN 114437226A
Authority
CN
China
Prior art keywords
seq
cysteine
kappa
heavy
amino acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011223835.5A
Other languages
Chinese (zh)
Inventor
姜有为
徐飞
李发慧
郑奔
刘金贵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Genekine Biotech Co ltd
Original Assignee
Hangzhou Genekine Biotech Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Genekine Biotech Co ltd filed Critical Hangzhou Genekine Biotech Co ltd
Priority to CN202011223835.5A priority Critical patent/CN114437226A/en
Priority to PCT/CN2021/129107 priority patent/WO2022095977A1/en
Publication of CN114437226A publication Critical patent/CN114437226A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/468Immunoglobulins having two or more different antigen binding sites, e.g. multifunctional antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'

Abstract

The present invention provides a method for increasing the rate of correct heavy and light chain pairing in the production of bispecific antibodies, comprising the step of eliminating the native interchain disulfide bond by amino acid substitution in the CH1-CL domain of one Fab arm, while forming an engineered interchain disulfide bond by amino acid substitution. The method of the invention further comprises the step of reversing the charge of a pair of amino acids of the CH1-CL domain of the Fab arm by amino acid substitution. The method of the invention can obviously improve the correct pairing rate of the heavy chain and the light chain in the production of the bispecific antibody, and is suitable for various antibody types.

Description

Methods of making bispecific antibodies
Technical Field
The invention relates to the field of biotechnology; in particular, the present invention relates to novel methods for making bispecific antibodies and uses thereof.
Background
The recombinant monoclonal antibody (mAb) can be combined with antigen with high efficiency and high specificity, and provides exciting opportunities for the fields of biomedicine and biotechnology. Many therapeutic monoclonal antibodies have been successfully used to treat a variety of diseases, including cancer, immune diseases and infections. Furthermore, bispecific antibodies (bsAbs) targeting more than one antigen have shown great potential, which will maximize the benefits of antibody therapy.
Antibodies are proteins (commonly called immunoglobulins, abbreviated as Ig) that recognize and specifically bind to antigens. In most mammals, including humans and mice, an immunoglobulin consists of two identical heavy chains and two identical light chains. Each timeThe heavy and light chains can be divided into two parts: constant region (C) and variable region (V). Based on the differences in the structure of the constant region of the heavy chain of an antibody, immunoglobulins can be assigned to five classes: IgA, IgD, IgE, IgG and IgM. Each class may have kappa (. kappa.) or lambda (. lamda.) light chains. Based on the heavy chain structure, human IgG can be divided into four subclasses: IgG1, IgG2, IgG3, and IgG 4. Full-length IgG comprises two identical heavy chains and two identical light chains. The amino-terminal (N-terminal) region of the heavy chain is the variable domain (VH), and the remainder is the heavy chain constant domain (CH). The heavy chain constant region of human IgG consists of three domains, CH1, CH2, and CH 3. The region between the CH1 and CH2 domains is called the hinge region. The light chain is the variable region (VL) domain in the amino-terminal half, and the light chain is the constant region (CL) domain in the carboxy-terminal (C-terminal) half. Both the variable and constant regions of the heavy and light chains are structurally folded into functional units called domains. Each heavy chain binds to the light chain via disulfide bonds and non-covalent interactions to form heterodimers. The two light-heavy chain heterodimers are linked by disulfide bonds in the hinge regions of the two heavy chains, forming a complex Y-shaped antibody (fig. 1). Papain digestion of IgG (molecular weight 150kDa) produced two identical fragments retaining antigen binding activity, called Fab fragment (molecular weight 45kDa), and one crystallizable fragment (Fc fragment, molecular weight 50 kDa). Pepsin digestion of IgG produces a protein called F (ab')2The fragment of (molecular weight 100kDa), consisting of two Fab fragments (FIG. 2). The two arms of the Y-shaped antibody are also referred to as Fab arms. The Fab arm consists of a heavy chain variable region and a CH1 domain with its paired light chain.
IgG1, IgG2, IgG3, and IgG4 showed the greatest sequence diversity in the hinge region (fig. 3), their interchain disulfide bond structures, showing many similarities and differences. The two heavy chains are connected at the hinge region by a different number of interchain disulfide bonds: IgG1 and IgG4 were 2, IgG2 was 4, and IgG3 was 11 interchain disulfide bonds. The light chain of IgG1 was linked to the heavy chain by an interchain disulfide bond between kappa and the cysteine at the C-terminus of the CL domain of the lambda chain (cysteine at position 214 in the kappa light chain [ EU numbering ], cysteine at position 214 in the lambda light chain [ Kabat numbering ]) and the cysteine at the C-terminus of the CH1 domain of the heavy chain (cysteine at position 220 in the heavy chain [ EU numbering ]). Unlike IgG1, the light chain of IgG2, IgG3, or IgG4 was linked to the heavy chain by an interchain disulfide bond between the C-terminal cysteine of the CL domain in the kappa and lambda chains and the N-terminal cysteine of the CH1 domain in the heavy chain (cysteine at position 131 in the heavy chain [ EU numbering ]) (fig. 1, a and B). Although the positions of cysteines in the amino acid sequence differ between IgG1 and other subtypes (IgG2, IgG3, IgG4), their spatial positions are similar to form interchain disulfide bonds. The disulfide bond between the light and heavy chains is important for Fab stability. For a structural and functional review of immunoglobulins, reference may be made to Immunology (Janis Kuby, w.h.freeman and Company, New York, 1997).
Although antibodies are symmetric immunoglobulins with two identical heavy and light chains, bispecific antibodies may be asymmetric structures with two different heavy chains, each of which is associated with a different light chain. Thus, antibodies are bivalent and monospecific and capable of specific binding to two identical antigens simultaneously, but bispecific antibodies are monovalent and bispecific and are capable of binding to two different antigens or epitopes.
Two major difficulties remain to be solved for the efficient production of bispecific antibodies in the intact IgG format. One is how to ensure that heavy chain a against epitope a only pairs with heavy chain b against epitope b (heterodimerization between heavy chains ab) and that homodimerization between two identical heavy chains of the antibody (a and a, b and b) is prevented. Another difficulty is how to ensure that a heavy chain a is only paired with its own light chain a, but not with the light chain b of other epitopes; meanwhile, the heavy chain B is only paired with the light chain B of the user and is not paired with the light chain A. Some methods for generating bispecific antibodies can be found in review articles, Brinkmann U. & Kontermann R.E., The labeling of bispecific antibodies, mAbs,9(2017), 182-.
Antibody heavy chain heterodimerization is usually generated using the so-called "knob-into-hole" (KIH) method. In this method, heavy chain A has a T366W "knob" (knob) mutation in the CH3 domain, while heavy chain B has a T366S/L368A/Y407V "hole" (holes) mutation in the CH3 domain [ EU numbering ]. These mutations create asymmetric, spatially complementary structures in the CH3 domains of both the a and b heavy chains, promoting heavy chain heterodimerization through hydrophobic interactions.
Another approach utilizes electrostatic interactions to promote heavy chain heterodimerization through electrostatic attraction and to avoid homodimerization between identical heavy chains through electrostatic repulsion. There is a charge interaction between the CH3-CH3 domains of the two heavy chains of the antibody, K409 and D399. In this approach, heavy chain a has K409D, K392D mutations in the CH3 domain and heavy chain b has D399K, E356K mutations in the CH3 domain [ EU numbering ]. These amino acid mutations promote heterodimerization of the antibody heavy chains A and B by electrostatic interaction, and inhibit homodimerization between the same heavy chains.
Although antibody heavy chain heterodimerization can be promoted and homodimerization between identical heavy chains can be inhibited by amino acid mutations in the CH3 domain, these approaches fail to avoid the light chain mismatch problem. When two antibody heavy chains form heterodimers, two different light chains can be combined with the heavy chains in four different combinations, only one of which is a correctly paired bispecific antibody, and the other three are mismatched heavy and light chains.
A straightforward approach to avoid the light chain mismatch problem is to use a common light chain. This requires extensive screening work to find a common light chain that can pair with two different heavy chains and retain its high affinity for two different antigens. However, this approach may not be feasible for all antibodies.
Based on rational design, it is possible to develop other methods to achieve the correct pairing of heavy and light chains. The main principle is to change the heavy and light chain domains in one Fab arm while leaving the other Fab arm wild-type, which may facilitate pairing of the light chain with its own heavy chain.
Proper pairing of heavy and light chains can be facilitated by interchanging corresponding domains between the heavy and light chains of the antibody (CrossMab technology), by which wild-type light chains can be paired with wild-type heavy chains and interchanged light chains paired with the corresponding interchange heavy chains. However, domain swapping of the heavy and light chains may be detrimental to the structural stability of the bispecific antibody.
Another approach to the problem of light chain mismatches is to alter the domains of the light and heavy chains based on structural design. The association of the light chain with its own heavy chain is facilitated by altering the interaction between the variable (VH-VL) and constant (CH1-CL) domains of one Fab arm. However, altering the variable domain of the Fab may have a greater effect on its binding to the antigen.
Pairing of the light chain with its own heavy chain can be facilitated by replacing the native interchain disulfide bond in the CH1-CL domain with an engineered disulfide bond. Structural modeling predicts three groups of positions in the CH1-CL domain, where new interchain disulfide bonds may be formed by the introduction of a pair of cysteines. Comparing the three groups of cysteine mutations shows that one group of cysteine mutations can efficiently promote the pairing of the light chain and the heavy chain thereof, and the correct pairing rate reaches 98%. In this set of mutations, phenylalanine at position 126 of the heavy chain (H) and serine at position 121 of the light chain (L) [ EU numbering ] were substituted with cysteine (H: F126C/L: S121C; DuetMab technique). In addition to this group of cysteine mutations, it is currently unknown whether any other cysteine mutation can form a new interchain disulfide bond, facilitating pairing of the light chain with its own heavy chain.
Disclosure of Invention
The invention aims to provide a brand-new preparation method of a bispecific antibody, and the correct pairing rate of a heavy chain and a light chain of the bispecific antibody obtained by the method is obviously improved.
In a first aspect, the present invention provides a method for increasing the correct pairing rate of heavy and light chains during the manufacture of a bispecific antibody, said method comprising the steps of:
in the CH1-CL domain of one Fab arm, the natural interchain disulfide bond is eliminated by amino acid substitution, while the engineered interchain disulfide bond is formed by amino acid substitution.
In a preferred embodiment, the bispecific antibody is derived from any one of IgG, IgA, IgD, IgE and IgM; preferably, derived from an IgG molecule; more preferably, the IgG molecules are derived from human or non-human, e.g. primate or rodent IgG molecules.
In a preferred embodiment, the bispecific antibody is derived from human IgG1, IgG2, IgG3, IgG 4.
In a preferred embodiment, the cysteine is substituted with an amino acid other than cysteine (e.g., a cysteine pair mutated to valine or serine, IgG1 heavy chain C220V, IgG2, IgG3, or IgG4 heavy chain C131S, kappa light chain C214V [ EU numbering ], lambda light chain C214V [ Kabat numbering ]) to eliminate the native interchain disulfide bond, and a cysteine pair is substituted for the amino acid of a pair of non-cysteines to form an engineered interchain disulfide bond.
In a preferred embodiment, the amino acids that form the engineered interchain disulfide bond are located predominantly in the following three regions of the heavy chain domain of IgG 1: F126-T135, G166-T187, K218-S219; the following four regions of the kappa CL domain: S114-S121, N158-T164, T172-T180 and F209-E213.
In particular embodiments, the amino acids in the CH1-CL domain of IgG1 that form the engineered interchain disulfide bond are selected from the following table:
Figure BDA0002762995080000041
in specific embodiments, the amino acids in the CH1-CL domain of IgG1 that form the engineered interchain disulfide bond are selected from the group consisting of: the amino acid [ EU numbering ] selected in the heavy chain was mutated to cysteine/the amino acid [ EU numbering ] selected in the kappa light chain was mutated to cysteine: F126/F118, L128/P120, A129/P120, P130/F118, S132/F118, K133/S121, S134/F118, G166/T172, G166/S174, G166/T180, H168/T180, F170/Q160, F170/T164, F170/T172, F170/S174, F170/S176, F170/T180, P171/T172, P171/S174, P171/T180, V173/S174, Q175/S176, Q175/T180, S176/S162, S181/T172, S181/S176, S181/T180, S183/S114, S183/F118, S183/Q160, S183/S174, S183/T178, S183/T180, V185/T172, V185/S174, V187/S185, V187/T185, T185/T185, T178/T178, S183/S178, S185/S178, T172, S185/S178, T174, S187/S178, S185/T172, S, S219C/F116C, S219C/F118C, S219C/P120C.
In a preferred embodiment, the amino acids that form the engineered interchain disulfide bond are located predominantly in the following three regions of the heavy chain domain of IgG 1: F126-S136, G166-T187, V215-S219; the following four regions of the lambda CL domain: S114-S121, G158-Q167, K172-S180 and V209-S215.
In particular embodiments, the amino acid residues forming the engineered interchain disulfide bond in the CH1 domain and the corresponding CL domain of IgG1 are selected from the following table:
Figure BDA0002762995080000051
Figure BDA0002762995080000061
in specific embodiments, the amino acid residues that form the engineered interchain disulfide bond in the CH1 domain and the corresponding CL domain of IgG1 are selected from the group consisting of: a mutation of a selected amino acid [ EU numbering ] in the heavy chain to cysteine/a selected amino acid [ Kabat numbering ] in the lambda light chain to cysteine;
S132C/S121C、K133C/T116C、K133C/P211C、S136C/S121C、F170C/G158C、P171C/T162C、P171C/P164C、S176C/T162C、L179C/G158C、S181C/P164C、V215C/T116C、E216C/F118C。
in a preferred embodiment, the amino acids that form the engineered interchain disulfide bond are located predominantly in the following two regions of the heavy chain domain of IgG 4: F126-E137, G166-P189; the following four regions of the kappa CL domain: S114-S121, N158-E165, T172-S182 and F209-E213.
In particular embodiments, the amino acids in the CH1-CL domain of IgG4 that form the engineered interchain disulfide bond are selected from the following table:
Figure BDA0002762995080000062
in specific embodiments, the amino acids in the CH1-CL domain of IgG4 that form the engineered interchain disulfide bond are selected from the group consisting of: the mutation of the selected amino acid [ EU numbering ] in the heavy chain to cysteine/the selected amino acid [ EU numbering ] in the kappa light chain to cysteine; A129/F209, A129/N210, P130/F116, P130/F118, P130/P119, P130/N210, P130/R211, S132/S114, S132/F116, S132/F118, S132/P120, S132/R211, S132/E213, R133/P119, R133/R211, R133/E213, T135/F116, T135/P120, G166/T178, H168/N158, F170/F182, V173/Q160, V173/S162, Q175/T180, S181/T172, S181/S176, S183/N158, S183/S176, V185/E165, V185/T178.
In a preferred embodiment, the amino acids that form the engineered interchain disulfide bond are located predominantly in the following two regions of the heavy chain domain of IgG 4: F126-E137, H168-T187; the following four regions of the lambda CL domain: S114-S121, G158-Q167, K172-S180 and V209-S215.
In particular embodiments, the amino acids in the CH1-CL domain of IgG4 that form the engineered interchain disulfide bond are selected from the following table:
Figure BDA0002762995080000071
in a specific embodiment, the method further comprises the steps of: the charge of a pair of amino acids of the CH1-CL domain of the Fab arm is reversed by amino acid substitution.
In particular embodiments, the wild-type positively charged lysine at position 213 of the heavy chain is substituted with a negatively charged amino acid (e.g., K213E, K213D); the wild-type negatively charged glutamate at position 123 of the light chain is substituted with a positively charged amino acid (e.g., E123K, E123R).
In a preferred embodiment, in the production of IgG1 kappa bispecific antibodies, correct pairing of heavy and light chains is achieved by combining charge reversal (e.g., K213D/E123K) with different cysteine pairs to form engineered disulfide bonds in the CH1-CL domain of the Fab arm:
S132C/F116C、V173C/N158C、S131C/P120C、S132C/S114C、S132C/P120C、K133C/F116C、K133C/P120C、S134C/P120C、T135C/S114C、G166C/S176C、G166C/T178C、H168C/T172C、H168C/S174C、H168C/T178C、V173C/T180C、Q175C/N158C、Q175C/T172C、S176C/N158C、S176C/Q160C、G178C/N158C、G178C/S162C、G178C/T164C、S181C/S174C、S183C/P120C、S183C/S162C、V185C/S114C、V185C/P120C、V185C/S176C、T187C/P120C、T187C/S176C、K218C/S114C、K218C/P120C,
(Each pair of cysteines is listed in such a way that the wild type amino acid [ EU numbering ] mutation in the heavy chain is cysteine/wild type amino acid [ EU numbering ] mutation in the kappa chain is cysteine).
In a preferred embodiment, in the production of IgG1 lambda bispecific antibodies, correct pairing of heavy and light chains is achieved by combining charge reversal (e.g. K213D/E123K) with different cysteine pairs to form engineered disulfide bonds in the CH1-CL domain of the Fab arm, including:
L128C/T116C、A129C/P211C、A129C/T212C、P130C/A210C、P171C/T163C、E216C/T116C、P217C/S215C、K218C/F118C、K218C/P119C
(Each pair of cysteine mutations are listed in such a way that the wild type amino acid [ EU numbering ] mutation in the heavy chain is cysteine/wild type amino acid [ Kabat numbering ] mutation in the lambda chain is cysteine.
In particular embodiments, proper pairing of the heavy and light chains can also be achieved by combining charge reversal (e.g., K213D/E123K) with the other cysteine pairs listed above, such that an engineered disulfide bond is formed in the CH1-CL domain of the Fab arm.
In particular embodiments, the formation of the engineered interchain disulfide bond by amino acid substitution and the charge reversal of a pair of amino acid residues of the CH1-CL domain of a Fab arm by amino acid substitution may occur on the same Fab arm or on different Fab arms.
In a preferred embodiment, the method further comprises making one heavy chain having a T366W "knob" mutation in the CH3 domain and a T366S/L368A/Y407V "hole" mutation in the CH3 domain of the other heavy chain; and/or, the heavy chain A CH3 domain has K409D, K392D mutations (EU numbering), and the heavy chain B CH3 domain has D399K, E356K mutations.
In a second aspect, the present invention provides a method for increasing the correct pairing rate of heavy and light chains during the manufacture of a bispecific antibody, said method comprising the steps of: charge-reversing a pair of amino acids of the CH1-CL domain of the Fab arm by amino acid substitution, wherein the wild-type positively charged lysine at position 213 of the heavy chain is substituted with a negatively charged amino acid (e.g., K213E, K213D); the wild-type negatively charged glutamic acid at position 123 of the light chain is substituted with a positively charged amino acid (e.g., E123K, E123R).
In a third aspect, the present invention provides a method of making a bispecific antibody comprising the step of employing the method of the first or second aspect in the manufacture of a bispecific antibody in order to increase the correct pairing rate of the heavy and light chains in the bispecific antibody.
In a fourth aspect, the present invention provides a bispecific antibody prepared by the method of the third aspect, or having an improved correct heavy and light chain pairing rate as defined in the first or second aspect.
In a preferred embodiment, the antibody is a bispecific antibody specifically obtained in the examples.
It is to be understood that within the scope of the present invention, the above-described features of the present invention and those specifically described below (e.g., in the examples) may be combined with each other to form new or preferred embodiments. Not to be reiterated herein, but to the extent of space.
Drawings
These drawings illustrate various aspects of the technology and are not limiting. The drawings are not to scale for clarity and ease of illustration, and in some instances various aspects may be exaggerated or enlarged to facilitate understanding of particular aspects.
FIG. 1 schematic domain diagrams of IgG1 and IgG4 antibodies. IgG antibodies are Y-type tetramers with two heavy chains (longer) and two light chains (shorter). The light chain is linked to the heavy chain by an interchain disulfide bond (-S-S-) in the domains of CL and CH 1. The two heavy chains are joined together at the hinge region by interchain disulfide bonds (-S-S-). VL: light chain variable domain, CL: light chain constant domain, VH: heavy chain variable domain, CH 1: heavy chain constant domain 1, CH 2: heavy chain constant domain 2, CH 3: heavy chain constant domain 3.
FIG. 2 is a schematic representation of the structure of an IgG fragment. Papain digestion of IgG yields two identical Fab fragments (retaining antigen binding activity) and one Fc fragment. Pepsin digestion of IgG to F (ab')2A fragment consisting of two Fab-like fragments.
FIG. 3 amino acid sequence of hinge region of human IgG1, IgG2, IgG3, and IgG 4. "_" indicates the cysteines that form disulfide bonds between the two heavy chains. Sequences are obtained from the IMGT database (www.imgt.org).
FIG. 4 amino acid sequence comparison and EU numbering of CH1 domains of human IgG1, IgG2, IgG3 and IgG 4. "" indicates sequence identity. ": means that one of the following groups is completely conserved: STA, NEQK, NHQK, NDEQ, QHRK, MILV, MILF, HY, or FYW. "." indicates that one of the following groups is completely conserved: CSA, ATV, SAG, STNK, STPA, SGND, SNDEQK, NDEQHK, NEQHRK, FVLIM, or HFY. CH1 sequences of human IgG1(P01857), IgG2(P01859), IgG3(P01860) and IgG4(P01861) were obtained from the Uniprot database (www.uniprot.org). The Clustal Omega program in Uniprot was used for amino acid sequence comparison.
FIG. 5 comparison of the amino acid sequences of CL domains of human antibody light chains kappa (. kappa.) [ EU numbering ] and lambda (. lamda.) [ Kabat numbering ]. "" indicates sequence identity. ": means that one of the following groups is completely conserved: STA, NEQK, NHQK, NDEQ, QHRK, MILV, MILF, HY, or FYW. "." indicates that one of the following groups is completely conserved: CSA, ATV, SAG, STNK, STPA, SGND, SNDEQK, NDEQHK, NEQHRK, FVLIM, or HFY. CL sequences for human antibody kappa light chain (P01834) and lambda light chain (P0DOY3) were obtained from the Uniprot database (www.uniprot.org). The Clustal Omega program in Uniprot was used for amino acid sequence comparison.
FIG. 6 schematic representation of bispecific IgG structure. (A) The mutant interchain disulfide bonds in the antibody 1Fab arm and the wild type interchain disulfide bonds in the antibody 2Fab arm are shown. The "knob" mutation in the heavy chain of antibody 1 and the "hole" mutation in the heavy chain of antibody 2 promote heavy chain heterodimerization. RF mutations in the antibody 2 heavy chain were used to remove antibody homodimers in protein a purification. The 6xHis tag at the C-terminus of antibody 2 heavy chain was used for western blotting. (B) The mutant interchain disulfide bonds and charge reversals in the Fab arm of antibody 1 are shown, as well as the wild type interchain disulfide bonds and residue charges in the Fab arm of antibody 2.
FIG. 7 ELISA identifies a library of bispecific IgG1(kappa) cysteine mutations in which the native interchain disulfide bond in the CH1-CL domain of one Fab arm was replaced by an engineered disulfide bond (each pair of cysteine mutations is listed in such a way that the heavy chain wild amino acid [ EU numbering ] is mutated to cysteine/kappa light chain wild amino acid [ EU numbering ] is mutated to cysteine) and WT represents the two native interchain disulfide bonds in the two Fab arms.
FIG. 8 ELISA identifies bispecific IgG1(Kappa) cysteine and charge mutation libraries in which the CH1-CL domains K213/E123 in one Fab arm are reversed to opposite charges and the native interchain disulfide bonds are replaced by engineered disulfide bonds (charge reversals are listed in the following manner: K213[ EU numbering ] mutations in the heavy chain to D or E123[ EU numbering ] mutations in the E/light chain to K or R (K213D/E123K, K213E/E123K, K213D/E123R, K213E/E123R). Each pair of cysteine mutations is listed in the following manner: wild amino acid [ EU numbering ] mutation in the heavy chain to cysteine/wild amino acid [ EU numbering ] in the Kappa light chain to cysteine, WT represents the two native interchain disulfide bonds in both Fab arms.
FIG. 9 ELISA identifies a library of bispecific IgG1(lambda) cysteine mutations in which the native interchain disulfide bond in the CH1-CL domain of one Fab arm was replaced by an engineered disulfide bond (each pair of cysteine mutations is listed in such a way that the heavy chain wild amino acid [ EU numbering ] was mutated to cysteine/lambda light chain amino acid [ Kabat numbering ] was mutated to cysteine, and WT represents the two native interchain disulfide bonds in both Fab arms.
FIG. 10 ELISA identifies bispecific IgG1(lambda) cysteine and charge mutation libraries in which the CH1-CL domains K213/E123 in one Fab arm are reversed to opposite charges and the native interchain disulfide bonds are replaced by engineered disulfide bonds (charge reversals are listed in the following manner: K213[ EU numbering ] mutation in the heavy chain to E123[ Kabat numbering ] mutation in the D/light chain to K (K213D/E123K). Each pair of cysteine mutations is listed in the following manner: heavy chain wild amino acid [ EU numbering ] mutation to cysteine/lambda light chain wild amino acid [ Kabat numbering ] mutation to cysteine, WT represents the two native interchain disulfide bonds in both Fab arms.
FIG. 11 ELISA identifies bispecific IgG1(kappa/lambda) in which the native interchain disulfide bond in the CH1-CL domain of one Fab arm was replaced by an engineered interchain disulfide bond (each pair of cysteine mutations is listed in the following manner: heavy chain wild amino acid [ EU numbering ] mutated to cysteine/kappa light chain wild amino acid [ EU numbering ] mutated to cysteine, WT represents the two native interchain disulfide bonds on both Fab arms.
Figure 12 ELISA identifies bispecific IgG1 in which the CH1-CL domain K213/E123 in one Fab arm was reversed to opposite charges and the natural interchain disulfide bond in the CH1-CL domain of the other Fab arm was replaced by an engineered disulfide bond (charge reversal is listed in the following manner: K213 in the heavy chain was mutated to E123 in the D/light chain to K (K213D/E123K). each pair of cysteine mutations is listed in the following manner: heavy chain wild amino acid [ EU numbering ] was mutated to cysteine/wild amino acid [ EU numbering ] to cysteine, WT indicates that there is a natural interchain disulfide bond in both Fab arms, while no charge reversal mutation is present.
FIG. 13 ELISA identifies a library of bispecific IgG4(kappa) cysteine mutations in which the native interchain disulfide bond in the CH1-CL domain of one Fab arm was replaced by an engineered disulfide bond (each pair of cysteine mutations is listed in the manner that heavy chain wild amino acid [ EU numbering ] mutated to cysteine/kappa light chain wild amino acid [ EU numbering ] mutated to cysteine. K147D/T129R represents a lysine mutation at position 147 to aspartic acid (K147D) in CH1 of one Fab arm and a threonine mutation at position 129 to arginine (T129R) in CL.
Detailed Description
The inventors have conducted extensive and intensive studies to provide a method for preparing a bispecific antibody capable of binding two different antigens and related compositions. In particular, the invention provides a method for producing a bispecific antibody from two existing antibodies, comprising mutating an amino acid at the interface of the heavy and light chain. Such mutations include the substitution of cysteine with other amino acids to eliminate the native interchain disulfide bond, and the substitution of cysteine with other amino acids to form an engineered interchain disulfide bond. On the basis of these mutations, it is also possible to include changes in the charge interactions by amino acid mutations. In the presence of these mutations, bispecific antibodies can be produced in which the heavy chain is preferentially paired with its own light chain and mismatches between heavy and light chains can be prevented. Thus, the present invention has been completed.
Definition of terms
Unless defined otherwise, scientific and technical terms used herein shall have the meanings that are commonly understood by those of ordinary skill in the art.
As used herein, a term in the singular may use the corresponding term in the plural as appropriate, and vice versa.
As used herein, the term "amino acid" or "amino acid residue" includes natural amino acids and unnatural amino acids.
Amino acids are generally referred to herein by the well-known three-letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical nomenclature Commission. Nucleotides, likewise, are generally referred to by the accepted single-letter code.
The term "amino acid mutation" herein includes amino acid substitutions, insertions and/or deletions in the polypeptide sequence. As used herein, "amino acid substitution" or "substitution" refers to the replacement of an amino acid at a particular position in a polypeptide sequence with another amino acid.
As used herein, the term "natural" or "wild-type" amino acid refers to an amino acid residue that is naturally present at a particular position in a polypeptide and that has not been modified by mutation.
The terms "polypeptide", "oligopeptide", "peptide" and "protein" are used interchangeably herein to refer to a chain of amino acids of any length. The protein may be produced by any method known in the art for protein synthesis, in particular by chemical synthesis or by recombinant expression techniques.
As used herein, the terms "vector" and "plasmid" in protein expression are used interchangeably.
As used herein, "cell", "cell line" and "cell culture" in the expression of a protein are used interchangeably.
"cell transformation" refers to the introduction of foreign DNA into a cell. Usually as a result of integration of the foreign DNA into the genome or introduction of a self-replicating plasmid.
Transformation and transfection of host cells may be performed according to methods well known to those skilled in the art. Suitable transformation methods include viral infection, transfection, conjugation, protoplast fusion, electroporation, particle gun techniques, calcium phosphate precipitation, direct microinjection, and the like. The choice of method will generally depend on the type of cell being transformed and the environment in which the transformation is to take place. A general discussion of these methods can be found in the literature (Ausubel, et al, Short Protocols in Molecular Biology, Wiley & Sons, 1995).
Yeast transformation can be performed by various methods including the spheroplast method, electroporation, polyethylene glycol method, alkali metal cation method, etc. (Gregg JM, Pichia Protocols, Totowa, New Jersey: Humanna Press, 2010).
As used herein, the term "antigen" refers to any substance that specifically binds to an antibody. For example, the antigen may be a protein, polypeptide, carbohydrate, polynucleotide, lipid, or a combination of the foregoing.
As used herein, the term "epitope" refers to a molecular site on an antigen that is recognized and bound by a particular antibody.
As used herein, the terms "antibody" and "immunoglobulin" are used interchangeably in the broadest sense. Antibodies are proteins (immunoglobulins) that recognize and specifically bind to antigens. Antibodies include monoclonal antibodies, polyclonal antibodies, multispecific antibodies (e.g., bispecific antibodies) comprising at least two different epitope binding domains, human antibodies, humanized antibodies, camelid antibodies, chimeric antibodies, antibody fragments, fusion proteins comprising an antigen-binding portion of an antibody, and any other modified antibody molecule comprising an antigen-binding site. The antibody may be derived from any mammal, including but not limited to humans, monkeys, goats, horses, rabbits, dogs, cats, mice, chickens, camels, sharks, or other animals.
As used herein, the term "recombinant antibody" is intended to include all antibodies produced by a host cell, such as a yeast or CHO cell, transfected with a recombinant expression vector.
Immunoglobulins consist of two identical heavy chains and two identical light chains. Immunoglobulins can be classified into five classes, IgA, IgD, IgE, IgG and IgM, based on their heavy chain constant region structure. Each class may have kappa (. kappa.) or lambda (. lamda.) light chains. Based on their heavy chain structure, human IgG can be divided into four subclasses, IgG1, IgG2, IgG3, IgG 4. The "antibody" of the present invention may be of any class or subclass. Preferably, the antibody of the invention is a human IgG.
Herein, the amino acid sequence numbering of the CH1, CH2, CH3 heavy chain constant regions of human IgG (IgG1, IgG2, IgG3 and IgG4) is by the "EU numbering system" (Edelman GM et al, Proc Natl Acad Sci USA,63(1):78-85 (1969)). IMGT database (
Figure BDA0002762995080000131
International ImmunoGeneTiCs
Figure BDA0002762995080000132
) The amino acid sequences of the CH1, hinge, CH2 and CH3 constant regions of human IgG1 are listed in their entirety with the corresponding numbering.
For the human IgG kappa light chain constant region, the amino acid sequence numbering is also used in the "EU numbering system". The IMGT database fully lists the amino acid sequences and corresponding numbering for the human kappa light chain constant region.
For the Human IgG lambda light chain constant region, the amino acid sequence numbering used is the "Kabat numbering system" (Kabat EA et al, sequences of proteins of immunological interest.5th Edition-US Department of Health and Human Services, NIH publication,91-3242 (1991)). The IMGT database lists the human lambda light chain constant region amino acid sequences in their entirety and the corresponding numbering.
Human IgG1 heavy chain constant region and hinge region boundaries are defined in the IMGT database as follows: the CH1 constant region is defined as amino acids 118 to 215, the hinge region is defined as amino acids 216 to 230, the CH2 constant region is defined as amino acids 231 to 340, and the CH3 constant region is defined as amino acids 341 to 447. The amino acid sequence is highly conserved in the CH1 constant regions of IgG1, IgG2, IgG3, and IgG4 (fig. 4). However, unlike the hinge region definition of IMGT, the hinge region on the spatial structure of IgG1 is defined as amino acids 221-. Thus, in the present invention, the CH1 constant region of IgG1 is defined as amino acids 118 to 220, the hinge region is defined as amino acids 221-237, and the CH2 constant region is defined as amino acids 238 to 340[ EU numbering ]. The human kappa light chain constant region is defined as amino acids 108 to 214[ EU numbering ], and the human lambda light chain constant region is defined as amino acids 107A-215[ Kabat numbering ], as shown in FIG. 5.
Kabat lists a number of amino acid sequences of each subtype of antibody and lists the most common amino acid at each position in each subtype, thereby listing conserved sequences. Kabat numbers each amino acid in the listed sequences, and this numbering has become standard in the art. It will be appreciated that due to the presence of allotypic and allelic variations in the population, the wild type amino acid residues at these positions may differ from the amino acids listed, and thus there may be individual amino acid differences between the presented sequence and the prior art sequence.
The position of a particular amino acid can vary among the four IgG subtypes and between IgA, IgD, IgE, and IgM. Thus, a particular amino acid position is not limited to that particular position of that amino acid in an immunoglobulin, but rather, should include all corresponding amino acid positions in an immunoglobulin.
The definition of the corresponding amino acids for each domain of an IgG molecule may vary by one skilled in the art. Thus, the N-or C-terminus of the above domains may be extended or shortened by 1, 2, 3, 4, 5, 6, 7, 8, 9 or even 10 amino acids.
Herein, the mutation of the amino acid is represented by the following method: wild amino acids, amino acid positions, mutated amino acids. Amino acids are indicated by single letter codes, and the positions of the amino acids are determined using the EU numbering system (IgG heavy chain constant region and kappa light chain constant region), and the Kabat numbering system (Lambda light chain constant region). For example, H (C220V) indicates that the wild cysteine at position 220 in the antibody heavy chain (H) was mutated to valine.
The term "full-length IgG" or "intact IgG" of the present invention refers to structurally intact IgG, but it may not have all the functions of IgG. Full-length IgG comprises two heavy chains and two light chains. Each heavy chain binds to the light chain through interchain disulfide bonds and non-covalent interactions, forming heterodimers. The two heavy chains are linked by interchain disulfide bonds at the hinge region.
As used herein, the term "disulfide bond" includes a covalent bond formed between two cysteine residues. A cysteine has a thiol group which can form a disulfide bond with a thiol group of another cysteine. "intrachain disulfide" refers to a disulfide bond formed between two cysteines within the same protein chain. "interchain disulfide" refers to a disulfide bond formed between two cysteines on different chains of the same protein or between two cysteines of different proteins. In the present invention, the terms "cysteine pair" or "cysteine pair" have the same meaning and are thus used interchangeably, both referring to two cysteine residues capable of forming a disulfide bond.
As used herein, the term "protein domain" refers to a portion of a protein that can be folded sterically, has a biological function, and can exist independently of the rest of the protein. Similarly, the term "CH 1-CL domain" as used herein refers to the protein structure of an antibody that is composed of the heavy chain CH1 domain interacting with the light chain CL domain.
As used herein, the term "interface" refers to the region where the separate protein domains are in contact with each other.
The term "antibody mutant" includes antibodies that do not occur in nature, as well as other non-wild type antibodies in which at least one amino acid or amino acid side chain structure differs from the amino acid of a wild-type antibody.
As used herein, the term "antibody mutant" also includes other forms of antibodies that do not naturally occur, such as bispecific antibodies and antibody fragments (e.g., Fab, F (ab') 2, etc.).
The terms "Fab portion", "Fab arm", "Fab" or "arm" are used interchangeably herein.
As used herein, "charge reversal" refers to the replacement of an amino acid residue with a charge that is opposite to the charge of the amino acid residue. For example, the wild-type positively charged lysine at position 213 in the CH1 domain was substituted with a negatively charged amino acid (K213E or K213D); the wild-type negatively charged glutamate at position 123 in the CL domain was substituted with a positively charged amino acid (E123K or E123R).
In some aspects, the antibodies provided herein are bispecific. As used herein, "bispecific antibodies" (bsAbs) are antibodies that have binding specificity for at least two different antigens or at least two different epitopes within the same antigen. Antibodies are symmetric immunoglobulins with two identical heavy and light chains, but bispecific antibodies may be asymmetric with two different heavy chains, each paired with its own light chain. Thus, an antibody is bivalent and monospecific, meaning that it specifically binds to two identical antigens or epitopes simultaneously, but a bispecific antibody is monovalent and bispecific, each Fab arm specifically binding to a different antigen or epitope, respectively.
Bispecific antibodies of the invention and methods of making the same
Based on the KIH technique of heavy chain heterodimerization, we constructed a library of IgG mutants with the following substitutions in the CH1 and CL domains of the first Fab arm: (a) wild cysteine was mutated to other amino acids to eliminate the disulfide bond between heavy and light chains; (b) the predicted wild amino acid pair is mutated to a cysteine pair for forming an engineered interchain disulfide bond; (c) the naturally positively charged lysine at position 213 of the CH1 domain was mutated to a negatively charged amino acid (K213E, K213D) substitution; the naturally negatively charged glutamate mutation at position 123 in the CL domain is substituted with a positively charged amino acid (E123K, E123R). The corresponding amino acids in the CH1 and CL domains of the second Fab arm of the IgG were not mutated (wild type, WT). Like mammalian cells, glycoengineered pichia pastoris can correctly perform cellular biological mechanisms such as protein folding, disulfide bond formation, and glycosylation modification (Ellgaard l.and Helenius a., Quality control in the endoplastic reticulum, nat. rev. mol. cell biol.4(2003) 181-. Thus, libraries of IgG mutants can be expressed in Glycoengineered Pichia pastoris (Glycoengineered Pichia pastoris) and the expressed IgG mutants can be screened by ELISA to determine which cysteine pairs introduced by the mutation can form engineered interchain disulfide bonds, facilitating proper pairing of heavy and light chains in bispecific antibodies.
The bispecific antibody and the preparation method thereof can be applied to various human IgG subtypes (IgG1, IgG2, IgG3 and IgG4) and other classes of Ig. In another aspect, bispecific antibodies of the invention and methods of making the same can be applied to different subclasses of non-human (e.g., primate or rodent) IgG (e.g., murine IgG1, IgG2a, IgG2b, or IgG3 antibodies).
In some aspects, the invention provides methods of producing bispecific antibodies. Bispecific antibodies can be made as full length antibodies or antibody fragments, such as F (ab') 2. In addition, the bispecific antibodies provided herein are readily expressed, stable and low in immunogenicity. The bispecific antibody structures described herein provide a good platform for the generation of bispecific antibodies that can achieve the advantages associated with bispecific antibodies while reducing potential therapeutic risks. In certain aspects, a bispecific antibody can specifically bind two different antigens or two different epitopes on the same antigen. The two Fab arms of a bispecific antibody typically comprise two different variable regions. In some aspects, the binding affinities of the two Fab arms to two independent antigens can be about the same. In some aspects, the binding affinity of the two Fab arms to two independent antigens can be different. In some aspects, the binding affinities of the two Fab arms for two independent epitopes on the same antigen can be about the same. In some aspects, the binding affinities of the two Fab arms to two separate epitopes on the same antigen can be different. In other aspects, the two Fab arms can have the same specificity (e.g., bind the same or overlapping epitopes), but can differ in binding affinity. In some aspects, two antibodies with different in vivo potency can be combined into a bispecific antibody, where one Fab arm has high affinity and the other Fab arm has low affinity, which may prevent overdosing or underdosing of one of the arms.
In certain aspects, provided herein are "cysteine mutant" polypeptides (e.g., heavy and light chains) for use in generating bispecific antibodies and preventing heavy and light chain mismatches. In some aspects, wild cysteines in the heavy and light chains of antibody a to antigen (or epitope) a are mutated to other amino acids to eliminate the native interchain disulfide bonds, and wild amino acids are mutated to cysteines to form engineered interchain disulfide bonds. Such mutations provided herein are located in the CH1 and CL domains. Antibody b heavy and light chains against antigen b have no cysteine mutations. The four polypeptides (heavy chain and light chain) can be polymerized together by cysteine mutation of the heavy chain and light chain of antibody A, so that the heavy chain of antibody A is correctly paired with the light chain, the heavy chain of antibody B is correctly paired with the light chain, and the heavy chain of antibody A is prevented from being mismatched with the light chain of antibody B, and the heavy chain of antibody B is mismatched with the light chain of antibody A. As used herein, the term "cysteine unmutated" polypeptide (e.g., heavy and light chains) means that the heavy and light chains contain wild-type cysteines forming the native interchain disulfide bonds. Such "cysteine mutations" and "unmutated" heavy and light chains may comprise other mutations, e.g., mutations in the Fc region described herein and/or known in the art, to promote heavy chain heterodimerization.
In some aspects, the wild cysteine forming the disulfide bond between CH1 and CL chains in the heavy chain of IgG1, IgG2, IgG3, or IgG4 is mutated to another amino acid. Wild cysteine at position 220 [ EU numbering ] of IgG1 heavy chain was mutated to another amino acid. Wild cysteines at position 131 [ EU numbering ] of the heavy chains of IgG2, IgG3 and IgG4 were mutated to other amino acids. In some aspects, the wild cysteine forming the interchain disulfide bond between CH1 and CL in the IgG kappa and lambda light chains is mutated to another amino acid. IgG kappa light chain 214[ EU numbering ] wild cysteine was mutated to other amino acids. The wild cysteine at position 214[ Kabat numbering ] of the IgG lambda light chain was mutated to another amino acid. In some aspects, such other amino acids include naturally occurring and/or non-canonical amino acids. Other amino acids that occur in nature include glycine, alanine, valine, leucine, isoleucine, proline, serine, threonine, methionine, histidine, lysine, arginine, glutamic acid, aspartic acid, glutamine, asparagine, phenylalanine, tyrosine, and tryptophan. Non-classical amino acids include, but are not limited to, ornithine, diaminobutyric acid, norleucine, pyran alanine, thiophene alanine, naphthalene alanine, and phenyl glycine. Preferred other amino acids are valine, serine or alanine.
In some aspects, wild amino acids in the CH1 and CL domains of IgG1(kappa) are mutated to different cysteine pairs. Table 1 summarizes the mutations of wild amino acids to different cysteine pairs in IgG1(kappa) that can form engineered interchain disulfide bonds that promote proper pairing of heavy and kappa light chains in bispecific antibody production.
List 1: IgG1(kappa) cysteine pairs were mutated to form engineered interchain disulfide bonds, facilitating proper pairing of the heavy and kappa light chains.
F126C/F118C、L128C/P120C、A129C/P120C、P130C/F118C、S132C/F118C、K133C/S121C、S134C/F118C、G166C/T172C、G166C/S174C、G166C/T180C、H168C/T180C、F170C/Q160C、F170C/T164C、F170C/T172C、F170C/S174C、F170C/S176C、F170C/T180C、P171C/T172C、P171C/S174C、P171C/T180C、V173C/S174C、Q175C/S174C、Q175C/S176C、Q175C/T180C、S176C/S162C、S181C/T172C、S181C/S176C、S181C/T180C、S183C/S114C、S183C/F118C、S183C/Q160C、S183C/S174C、S183C/T178C、S183C/T180C、V185C/T172C、V185C/S174C、V185C/T178C、V185C/T180C、T187C/S114C、T187C/T172C、T187C/S174C、T187C/T178C、K218C/F118C、S219C/F116C、S219C/F118C、S219C/P120C
(Each pair of cysteine mutations are listed in the following manner: the heavy chain wild amino acid [ EU numbering ] mutation is cysteine/kappa chain wild amino acid [ EU numbering ] mutation is cysteine,. for example, F126C/F118C indicates that F (phenylalanine) at position 126 of the heavy chain is mutated to C (cysteine)/F (phenylalanine) at position 118 of the kappa light chain is mutated to (cysteine).
In some aspects, wild amino acids in the CH1 and CL domains of IgG1(lambda) are mutated to different cysteine pairs. Table 2 summarizes IgG1(lambda) wild amino acids mutated to different cysteine pairs, thereby enabling the formation of engineered interchain disulfide bonds that promote proper pairing of heavy and lambda light chains in bispecific antibody production.
List 2: the IgG1(lambda) cysteine pair was mutated to form engineered interchain disulfide bonds, promoting proper pairing of heavy and lambda light chains.
S132C/S121C、K133C/T116C、K133C/P211C、S136C/S121C、F170C/G158C、P171C/T162C、P171C/P164C、S176C/T162C、L179C/G158C、S181C/P164C、V215C/T116C、E216C/F118C
(Each pair of cysteine mutations are listed in the following manner: heavy chain wild amino acid [ EU numbering ] mutation to cysteine/lambda chain wild amino acid [ Kabat numbering ] mutation to cysteine. for example: S132C/S121C indicates that the S (serine) mutation at position 132 of the heavy chain is to C (cysteine)/S (serine) mutation at position 121 of the lambda light chain is to C (cysteine).
Provided herein are bispecific antibodies having cysteine mutations in the CH1 and CL domains, which mutated antibodies may further comprise one or more mutations in the Fc region described below. An Fc region comprising one or more mutations is referred to herein as a "mutated Fc region". The interface between a pair of antibody Fc can be mutated to promote heavy chain heterodimerization, including but not limited to "KIH" and electrostatic interaction mutations.
In some aspects, provided herein are mutant antibodies having an engineered interchain disulfide bond in the CH1 and CL domains of one Fab arm, and a native interchain disulfide bond in the CH1 and CL domains of the other Fab arm. Typically, the CH1 and CL domains of one Fab arm are mutated as follows: wild cysteine was mutated to other amino acids and wild amino acid was mutated to cysteine, thereby forming a new disulfide bond in the CH1 and CL domains to replace the native disulfide bond. For example, tables 1 and 2 summarize the mutation of IgG1 wild amino acids to a pair of cysteines to form engineered interchain disulfide bonds in the CH1 and CL domains.
In certain aspects, provided herein are "charge mutant" polypeptides (e.g., heavy and light chains) for use in generating bispecific antibodies and preventing mispairing of heavy and light chains. In some aspects, a wild lysine positively charged at position 213[ EU numbering ] of the heavy chain of antibody a against antigen a is mutated to a negatively charged amino acid, e.g., aspartic acid and glutamic acid (K213E, K213D) substitutions. The negatively charged wild-type glutamic acid at position 123 of the antibody A light chain [ EU numbering in kappa, Kabat numbering in lambda ] was mutated to positively charged amino acids, such as lysine and arginine (E123K, E123R). Such mutations provided herein that alter charge polarity are located in the CH1 and CL domains. The antibody, the B heavy and light chains, directed against antigen B, do not have these "charge mutations". The four polypeptides (heavy chain and light chain) can be polymerized together by "charge mutation" of the heavy chain and light chain of antibody A, so that the heavy chain of antibody A is correctly paired with the light chain, the heavy chain of antibody B is correctly paired with the light chain, and the heavy chain of antibody A is prevented from being mismatched with the light chain of antibody B, and the heavy chain of antibody B is mismatched with the light chain of antibody A. As used herein, the term "unmutated" means that the heavy and light chains do not comprise mutations that alter the polarity of the charge of the wild-type amino acids in CH1 and CL as described herein. Such "charge mutated" and "unmutated" heavy and light chains may comprise other mutations, e.g., mutations in the Fc region described herein and/or known in the art, to facilitate heavy chain heterodimerization.
Provided herein are bispecific antibodies having charge mutations in the CH1 and CL domains, which mutated antibodies may further comprise one or more mutations in the Fc region described below (mutated Fc region) to promote heavy chain heterodimerization, including but not limited to "KIH" and electrostatic interaction mutations.
In certain aspects, provided herein are "cysteine and charge mutated" polypeptides (e.g., heavy and light chains) for use in generating bispecific antibodies and preventing heavy and light chain mismatches. In some aspects, the antibody a heavy chain CH1 domain directed to antigen a comprises the following mutations: (a) wild-type cysteine was mutated to other amino acids (e.g., IgG1C 220V; IgG2, IgG3, and IgG 4C 131S) to eliminate the native interchain disulfide bond, and wild-type amino acids were mutated to cysteine (as listed in tables 1, 2, 3, 4, 5) to form an engineered interchain disulfide bond; (b) the wild lysine with a positive charge at position 213 is mutated to a negatively charged amino acid (e.g. K213D, K213E). The CL domain of the antibody nail light chain directed against antigen nail comprises the following mutations: (a) wild-type cysteine was mutated to other amino acids (e.g., kappa and lambda light chain C214V) to eliminate the native interchain disulfide bond, and wild-type amino acids were mutated to cysteine (as listed in tables 1, 2, 3, 4, 5) to form a new interchain disulfide bond; (b) the negatively charged wild-type glutamate at position 123 is mutated to a positively charged amino acid (e.g., E123K, E123R). Antibody b heavy and light chains directed against antigen b do not have these "cysteine and charge mutations". These four polypeptides (heavy and light chains) can be aggregated together by "cysteine and charge mutation" of the heavy and light chains of antibody a, so that the heavy chain of antibody a is correctly paired with its light chain, and the heavy chain of antibody b is correctly paired with its light chain, while preventing the heavy chain of antibody a from being mismatched with the light chain of antibody b, and the heavy chain of antibody b from being mismatched with the light chain of antibody a. As used herein, the term "unmutated" refers to heavy and light chains that do not comprise cysteine and charge mutations in the CH1 and CL domains described herein. Such "cysteine and charge mutations" and "unmutated" heavy and light chains may comprise other mutations, such as mutations in the Fc region described herein and/or known in the art, to promote heavy chain heterodimerization. Table 3 summarizes the IgG1(kappa) wild amino acid mutations to different cysteine pairs that, under the synergistic effect of "charge mutations", form engineered interchain disulfide bonds that promote proper pairing of the heavy and kappa light chains.
List 3: IgG1(kappa) wild amino acid was mutated to different cysteine pairs, which under the synergistic effect of "charge mutations" could form engineered interchain disulfide bonds, promoting the correct pairing of heavy and light chains.
S132C/F116C、V173C/N158C、S131C/P120C、S132C/S114C、S132C/P120C、K133C/F116C、K133C/P120C、S134C/P120C、T135C/S114C、G166C/S176C、G166C/T178C、H168C/T172C、H168C/S174C、H168C/T178C、V173C/T180C、Q175C/N158C、Q175C/T172C、S176C/N158C、S176C/Q160C、G178C/N158C、G178C/S162C、G178C/T164C、S181C/S174C、S183C/P120C、S183C/S162C、V185C/S114C、V185C/P120C、V185C/S176C、T187C/P120C、T187C/S176C、K218C/S114C、K218C/P120C
(Each pair of cysteine mutations are listed in the following manner: heavy chain wild amino acid [ EU numbering ] mutation to cysteine/kappa chain wild amino acid [ EU numbering ] mutation to cysteine).
In some aspects, "cysteine and charge mutations" may be applied to the CH1 and CL domains of IgG1 (lambda). Table 4 summarizes the IgG1(lambda) wild amino acid mutations into different cysteine pairs that, under the synergistic effect of "charge mutations", can form engineered interchain disulfide bonds that promote proper pairing of the heavy and lambda light chains.
List 4: IgG1(lambda) wild amino acid mutations to different cysteine pairs, in the "charge mutations" (e.g., K213D/E123K) under the synergistic effect, can form engineered interchain disulfide bonds, promote the heavy and light chain correct pairing.
L128C/T116C、A129C/P211C、A129C/T212C、P130C/A210C、P171C/T163C、E216C/T116C、P217C/S215C、K218C/F118C、K218C/P119C
(each pair of cysteine mutations are listed in the following manner: heavy chain wild amino acid [ EU numbering ] mutation to cysteine/lambda chain wild amino acid [ Kabat numbering ] mutation to cysteine).
In some aspects, wild amino acids in the CH1 and CL domains of IgG4(kappa) are mutated to a pair of cysteines. Table 5 summarizes the mutation of the wild amino acids into different cysteine pairs in IgG4(kappa) that can form engineered interchain disulfide bonds that promote the correct pairing of IgG4 heavy and kappa light chains.
List 5: IgG4(kappa) cysteine pair mutations formed engineered interchain disulfide bonds in the CH1 and CL domains, facilitating proper pairing of heavy and kappa light chains in bispecific antibody production.
A129C/F209C、A129C/N210C、P130C/F116C、P130C/F118C、P130C/P119C、P130C/N210C、P130C/R211C、S132C/S114C、S132C/F116C、S132C/F118C、S132C/P120C、S132C/R211C、S132C/E213C、R133C/P119C、R133C/R211C、R133C/E213C、T135C/F116C、T135C/P120C、G166C/T178C、H168C/N158C、F170C/F182C、V173C/Q160C、V173C/S162C、Q175C/S162C、Q175C/T180C、S181C/T172C、S181C/S176C、S183C/N158C、S183C/S176C、V185C/E165C、V185C/T178C
(Each pair of cysteine mutations are listed in the following manner: the heavy chain wild amino acid [ EU numbering ] mutation to cysteine/kappa light chain wild amino acid [ EU numbering ] mutation to cysteine).
In some aspects, cysteine pair mutations as listed in tables 1, 2 and 5 can also form engineered interchain disulfide bonds under the synergistic effect of "charge mutations" (e.g., K213D/E123K) that promote proper pairing of heavy and light chains in bispecific antibody production.
In certain aspects, bispecific antibodies provided herein in which the CH1 and CL domains of antibody a have a "cysteine and charge mutation" comprise: (a) wild-type cysteine was mutated to other amino acids to eliminate the native interchain disulfide bond, and wild-type amino acids were mutated to different cysteine pairs (as listed in tables 1, 2, 3, 4 and 5) to form an engineered interchain disulfide bond; (b) wild lysine with positive charge at position 213 in CH1 was mutated to a negatively charged amino acid (e.g. K213D, K213E); the negatively charged wild-type glutamate at position 123 in CL is mutated to a positively charged amino acid (e.g., E123K, E123R). Antibody b does not have these "cysteine and charge mutations" in the CH1 and CL domains. Antibodies a and b may further comprise one or more mutations in the Fc region described below (mutated Fc region) to promote heavy chain heterodimerization, including but not limited to "KIH" and electrostatic interaction mutations.
In some aspects, bispecific antibodies provided herein have cysteine mutations in the CH1 and CL domains of antibody a, and charge mutations in the CH1 and CL domains of antibody b. The CH1 and CL domains of antibody a contain the following mutations: wild-type cysteine was mutated to other amino acids to eliminate the native interchain disulfide bond, and wild-type amino acids were mutated to cysteine pairs (as shown in tables 1, 2, 3, 4 and 5) to form new interchain disulfide bonds. The CH1 and CL domains of antibody b contain the following mutations: wild lysine with positive charge at position 213 in CH1 was mutated to a negatively charged amino acid (e.g. K213D, K213E); the negatively charged wild-type glutamate at position 123 in CL was mutated to a positively charged amino acid (e.g., E123K, E123R). Antibodies a and b may further comprise one or more mutations in the Fc region described below (mutated Fc region) to promote heavy chain heterodimerization, including but not limited to "KIH" and electrostatic interaction mutations.
In an advantageous aspect, the bispecific antibody of the invention is derived from a human IgG molecule. Bispecific antibodies of the invention can generally be produced from any suitable type of immunoglobulin. In another aspect, bispecific antibodies of the invention are derived from non-human (e.g., primate or rodent) IgG molecules (e.g., murine IgG1, IgG2a, IgG2b, or IgG3 antibodies).
The host cell line for antibody expression is preferably a mammalian cell; they have the correct cellular biological mechanisms for steric folding, disulfide bond formation and glycosylation modification. Such mammalian host cells include, but are not limited to: CHO (Chinese hamster ovary), 293 (human kidney), CVI (monkey kidney cell line), COS (CVI with SV 40T antigen), R1610 (Chinese hamster fibroblast), BALBC/3T3 (mouse fibroblast), HAK (hamster kidney cell line), SP2/0 (mouse myeloma), and RAJI (human lymphocyte), etc. CHO cells are a particularly preferred expression system. Methods for producing recombinant antibodies in these cells are described in review articles, such as: makrides, S.C, Components of vectors for gene transfer and expression in mammalian cells protein Expr. purify.17 (1999) 183-.
The host cell line used for antibody expression may also preferably be yeast. Pichia pastoris (Pichia pastoris) and glycosyl engineered Pichia pastoris are more preferred host cells. Yeasts include, but are not limited to: pichia pastoris, Saccharomyces cerevisiae, Hansenula polymorpha, Kluyveromyces lactis, Candida albicans, Aspergillus nidulans, Aspergillus niger, Aspergillus oryzae, Trichoderma reesei, Chrysosporium lucknowense, Fusarium graminearum. Like mammalian cells, yeast cells have cellular biological mechanisms for proper steric folding, disulfide bond formation, and glycosylation modification. However, the N-glycosylation machinery of yeast and mammalian cells is not exactly the same. The same N-glycosylation initiation step and modification process are carried out on the nascent peptide chain while the nascent peptide chain is synthesized by the endoplasmic reticulum cavity by the mammalian cells and the yeast cells, firstly, the precursor oligosaccharide G1c3Man9GlcNAc2Is linked to Asn residue in Asn-X-Thr/Ser (X is any amino acid except Pro) conserved sequence of nascent peptide chain, and then under the action of glycoside hydrolase such as glucoside hydrolase I, glucoside hydrolase II and mannoside hydrolase I, the sugar chain of protein is processed to form Man8GlcNAc2The sugar chain structure, and then the protein with the sugar chain is transported to the golgi. However, in mammalian cells and yeast Golgi, the further modification of protein sugar chains is completely different. Man on protein in Golgi body of mammalian cell8GlcNAc2The sugar chain is firstly removed three mannose under the action of mannoside hydrolase I (MnsI) to form Man5GlcNAc2A sugar chain structure; then adding an N-acetylglucosamine under the action of N-acetylglucosamine transferase I (GnTI) to form GlcNAcMan5GlcNAc2A sugar chain structure; then under the action of mannoside hydrolase II (MnsII), two more mannoside hydrolases are removedMannose, forming GlcNAcMan3GlcNAc2A sugar chain structure; adding an additional N-acetylglucosamine under the action of N-acetylglucosamine transferase II (GnTII) to form GlcNAc2Man3GlcNAc2A sugar chain structure; finally processing to form Gal under the action of galactosyltransferase (GalT) and Sialyltransferase (ST)2GlcNAc2Man3GlcNAc2And Sia2Gal2GlcNAc2Man3GlcNAc2Complex sugar chain structure. But in the Golgi body of yeast cells, under the action of alpha-l, 6-mannosyltransferase (Ochlp) coded by OCH1 gene, Man on the protein8GlcNAc2The sugar chain first accepts an alpha-l, 6-mannose to form Man9GlcNAc2The sugar chain structure is then subjected to the action of various other mannosyltransferases to continue the addition of mannose to form a high mannose type sugar chain structure (Kornfeld, R).&Kornfeld, S.Assembly of antisense-linked oligonucleotides, Annu.Rev.biochem.54, 631-664,1985). In order to express an antibody having a human N-glycosylation structure using yeast, the yeast needs to be subjected to glycosylation engineering. In addition to deletion of endogenous OCH1 and BMT genes, stable expression of a number of exogenous genes is also desired, including mannosidase I (MnsI), N-acetylglucosamine transferase (GnTI), mannosidase II (MnsII), N-acetylglucosamine transferase (GnTII), galactosyltransferase (GalT), Sialyltransferase (ST), and six biosynthetic genes to supply galactose and sialic acid. Glycosylation engineered Pichia pastoris has been successfully used for antibody production (Li H, Sethuraman N, Stadheim TA, Zha D, Priz B et al (2006) Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nat Biotechnol 24: 210-.
The invention has the advantages that:
1. the method can obviously improve the correct pairing rate of the heavy chain and the light chain in the production of the bispecific antibody;
2. the methods of the invention are applicable to a variety of antibody types, including but not limited to IgG, IgA, IgD, IgE, and IgM; more preferably IgG1, IgG2, IgG3, IgG 4;
3. the method of the invention can directly combine two antibodies into a bispecific antibody.
4. The bispecific antibodies of the invention are purified in a manner similar to that of monoclonal antibodies.
5. The bispecific antibody of the invention has complete immunoglobulin structure, good stability and small immunogenicity.
The technical solution of the present invention is further described below with reference to specific embodiments, but the following examples are not intended to limit the present invention, and all of the various application methods adopted according to the principles and technical means of the present invention belong to the scope of the present invention. The experimental procedures, in which specific conditions are not noted in the following examples, are generally carried out under conventional conditions or conditions recommended by the manufacturers. Unless otherwise indicated, percentages and parts are by weight.
Material
Chemicals, enzymes, media and solutions used to create, validate and apply libraries are commonly used and well known to those skilled in the art of molecular and cellular biology; they are available from a number of companies, including Thermo Fisher Scientific, Invitrogen, Sigma, New England BioLabs, Takara Biotechnology, Toyobo, TransGen Biotechnology, Vazyme Biotechnology, and general Biotechnology, among others. Many of which are provided in kit form. DNA can be chemically synthesized by some of these companies. Antibody sequence data was mainly from the Uniprot database (www.uniprot.org) and IMGT database (www.imgt.org).
Method
Unless otherwise indicated, the methods used in the present invention, including Polymerase Chain Reaction (PCR), restriction enzyme cloning, DNA purification, bacterial, yeast and eukaryotic cell culture, transformation, transfection and western blotting are performed by standard methods well known to those skilled in the art of molecular and cellular biology. The amino acid mutations (e.g., substitutions, deletions, and insertions) described herein can be made using any method known in the art. These methods include, but are not limited to, PCR extension overlap mutagenesis, site-directed mutagenesis, or cassette mutagenesis (see generally Sambrook J et al (Molecular Cloning A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 2001; Autosubel F M et al. Current Protocols in Molecular Biology, Wiley Interscience, 2010; and Greg JM (Pichia Protocols, Totowa, New Jersey: Humanna Press, 2010).
DH5 alpha competent cells were used for plasmid construction and amplification according to the manufacturer's (Vazyme Biotech) protocol.
The strains were grown in Luria-Bertani (LB) medium (10g/L trypsin, 5g/L yeast extract and 5g/L sodium chloride) or LB plates (10g/L trypsin, 5g/L yeast extract and 5g/L sodium chloride, 20g/L agar) containing the appropriate antibiotics. The following concentrations of antibiotics were added: 100mg/L ampicillin, 50mg/L kanamycin, 25mg/L Zeocin and 100mg/L blasticidin.
Transformation of Pichia strains was performed by electroporation using a MicroPulser (TM) electroporation apparatus according to the manufacturer's protocol (BioRad).
Pichia strains were grown and selected on YPD medium (10g/L yeast extract, 20g/L peptone, 20g/L glucose) and YPD plates (10g/L yeast extract, 20g/L peptone, 20g/L glucose, 20g/L agar). The following concentrations of antibiotics were added: 250mg/L sulfuric acid G-418, 100mg/L Zeocin and 300mg/L blasticidin.
Pichia pastoris vegetative strains were cultured and selected on amino acid free YNB medium (6.7g/L yeast nitrogen base, 20g/L glucose) and amino acid free YNB plates (6.7g/L yeast nitrogen base, 20g/L glucose, 20g/L agar) with appropriate supplementation of amino acids as required.
Pichia strains were grown in BMGY medium (10g/L yeast extract, 20g/L peptone, 100mM potassium phosphate, pH 6.0, 13.4g/L yeast nitrogen base, 0.4mg/L biotin, and 10ml/L glycerol) and antibody expression was then induced in BMMY medium (10g/L yeast extract, 20g/L peptone, 100mM potassium phosphate, pH 6.0, 13.4g/L yeast nitrogen base, 0.4mg/L biotin, and 10ml/L methanol).
Example 1 design of IgG1(Kappa) CH1 and CL Domain "cysteine mutations" library
The CH1 domain sequences of IgG1, IgG2, IgG3, and IgG4 are highly conserved. The light chain is linked to the heavy chain by interchain disulfide bonds in the CH1-CL domain. In the present invention, we wished to replace the natural interchain disulfide bond by an engineered interchain disulfide bond by mutating the CH1-CL domain of IgG. The cysteine mutation sites in the CH1 and CL domains that might interact to form interchain disulfide bonds were analyzed and designed using the Fab crystal structure (PDB code: 1VGE) of human IgG1(kappa) from the protein database as a representative structure. In which the cysteine pairs forming the native interchain disulfide bond were mutated to valine and new cysteine pairs were introduced at different positions of the CH1-CL domain to form engineered interchain disulfide bonds, thereby designing IgG1(kappa) mutant libraries. Table 6 lists the introduction of new cysteine pairs at different amino acid positions in the CH1-CL domain of IgG1(Kappa), which may form engineered interchain disulfide bonds.
TABLE 6 cysteine mutation library of IgG1(kappa) CH1-CL domain. The regions where cysteine mutations aggregate are referred to as a group. The CH1 domain and the CL domain are possibly formed with interchain disulfide bond, and the groups are respectively listed correspondingly.
Figure BDA0002762995080000241
Figure BDA0002762995080000251
Example 2 construction and expression of IgG1(Kappa) "cysteine mutation" library
Trastuzumab (Trastuzumab, ERBB2 Ab) heavy chain (HoleRF-His) comprising a T366S/L368A/Y407V "pore" mutation, H435R, Y436F (RF) mutation [ EU numbering ] and a C-terminal 6XHis tag was used as a representation of the IgG1(Kappa) heavy chain (SEQ ID NO: 1). Trastuzumab heavy chain (HolerF-His) codon optimized DNA was synthesized and used as template for PCR amplification (SEQ ID NO: 2).
PCR 1, TraF (SEQ ID NO:3, with Xho I restriction enzyme site) and TraR (SEQ ID NO:4, with Not I restriction enzyme site) primer pairs were used for PCR amplification of trastuzumab heavy chain (HoleRF-His), using the synthesized DNA as template. The PCR product was digested with Xho I and Not I and inserted into the same digestion site in pPIC9(Invitrogen) to construct an expression vector for trastuzumab heavy chain (HoleRF-His), which was designated pPIC9-TraH (HoleRF-His).
The wild-type trastuzumab kappa light chain was used as a representative of the IgG1(kappa) light chain (SEQ ID NO: 5). Trastuzumab kappa light chain codon-optimized DNA was synthesized and used as a template for PCR amplification (SEQ ID NO: 6).
PCR 2, Tra κ F (SEQ ID NO:7, with Xho I restriction enzyme site) and Tra κ R (SEQ ID NO:8, with Not I restriction enzyme site) primer pairs were used for PCR amplification of the trastuzumab Kappa light chain using the synthesized trastuzumab Kappa light chain as a template. The PCR product was digested with Xho I and Not I and inserted into the same digestion site of pPICZ α a (invitrogen) to construct an expression vector for trastuzumab kappa light chain, designated pPICZ α -Tra κ.
An ARG2-ADH1TT fragment (SEQ ID NO:9) of Pichia pastoris ARG 23 'and 5' homologous sequences (with Afe I restriction enzyme site and ADH1 terminator sequence) was synthesized and used as template for PCR amplification.
PCR 3, ARG 2F (SEQ ID NO:10, with BamH I restriction site) and ADH1TT R (SEQ ID NO:11, with BamH I restriction site) primer pairs were used for PCR amplification, with the synthesized ARG2-ADH1TT fragment as template. The PCR product was digested with BamH I restriction enzyme and inserted into the same site in pPICZ α -Tra κ to give pPICZ α -Tra κ -ARG2 expression vector for integration at the Pichia ARG2 locus.
PCR 4, PICZ F (SEQ ID NO:12) and PICZ R (SEQ ID NO:13) primer pairs were used to PCR amplify a pPICZ α linear fragment without Zeocin, with the pPICZ α vector used as the template.
PCR 5, Kan F (SEQ ID NO:14) and Kan R (SEQ ID NO:15) primer pairs were used for PCR amplification of the kanamycin fragment, and pPIC9K vector (Invitrogen) was used as a template.
The kanamycin fragment was inserted into the pPICZ α linear fragment using the ClonExpress II one-step cloning kit (Vazyme) to generate the pEG vector, in which Zeocin in the pPICZ α vector was replaced with kanamycin.
PCR 6, EG F (SEQ ID NO:16) and EG R (SEQ ID NO:17) primer pairs were used for PCR amplification of pEG linear fragments, with the pEG vector used as a template.
The Clazakizumab (IL6 Ab) heavy chain (Knob) containing the T366W "Knob" mutation and the C220V mutation [ EU numbering ] was used as a representation of the IgG1(Kappa) heavy chain (SEQ ID NO: 18). Codon-optimized DNA for the heavy chain of clazakizumab (Knob) was synthesized and used as a template for PCR amplification (SEQ ID NO: 19).
PCR 7, heavy chain N end primer ClaH-Nt (SEQ ID NO:20) and C end primer ClaH-Ct (SEQ ID NO:21) and corresponding reverse primer (R) in Table 7, and corresponding forward primer (F) constitute different primer pairs for PCR amplification of N end and C end heavy chains, using the synthesized clazakizumab heavy chain (Knob) as template.
PCR 8, using a ClaH-Nt and ClaH-Ct primer pair, the N-and C-terminal heavy chain PCR products were ligated by overlap extension PCR. In this way, a clazakizumab heavy chain mutant was generated that contained a wild amino acid mutation to cysteine, a T366W "knob" mutation, and a C220V mutation.
TABLE 7 PCR primers for mutation of wild amino acid to cysteine in Clazakizumab heavy chain [ EU numbering ]
Figure BDA0002762995080000261
Figure BDA0002762995080000271
The clazakizumab heavy chain mutant was inserted into the pEG linear fragment using the ClonExpress II one-step cloning kit (Vazyme) to generate a library of expression vectors named pEG-ClaH (X # C) (ClaH: clazakizumab heavy chain, (X # C): number # wild amino acid mutated to cysteine). For example, pEG-ClaH (L128C) indicates that leucine at position 128 of the heavy chain is mutated to cysteine. Each vector can express the clazakizumab heavy chain, which contains a T366W "knob" mutation, a C220V mutation, and the wild amino acid mutation listed in table 6 to cysteine. One vector, pEG-ClaH, expresses clazakizumab heavy chain, which contains a T366W "knob" mutation and a wild cysteine at position 220, which is capable of forming a native interchain disulfide bond.
An ARG4-ADH1TT fragment (SEQ ID NO:53) was synthesized with Pichia pastoris ARG 43 'and 5' homologous sequences, as well as the Sma I restriction enzyme site and ADH1 terminator sequence, and used as a template for PCR amplification.
PCR 9, ARG 4F (SEQ ID NO:54, with a BamH I restriction site) and ADH1TT R (SEQ ID NO:55, with a BamH I restriction site) primer pairs were used to PCR amplify the ARG4-ADH1TT fragment using the synthetic ARG4-ADH1TT fragment as a template. The PCR product was digested with BamH I restriction enzyme and inserted into the same site of pPIC6 α (Invitrogen) to produce a pPIC6 α -ARG4-ADH1TT expression vector, which can be integrated at the pichia pastoris ARG4 locus.
A Clazakizuzumab kappa light chain containing a C214V mutation was used as a representation of an IgG1 kappa (kappa) light chain (SEQ ID NO: 56). Codon-optimized DNA for the light chain of clazakizumab kappa with the C214V mutation was synthesized and used as a template for PCR amplification (SEQ ID NO: 57).
PCR 10, light chain N-terminal primer Cla κ -Nt (SEQ ID NO:58 with Xho I restriction site) and light chain C-terminal primer Cla κ -Ct (SEQ ID NO:59 with Not I restriction site) constituting different primer pairs with the corresponding reverse primer (R) and forward primer (F) in Table 8, respectively, for PCR amplification of N-and C-terminal kappa light chains, with the synthesized clazakizumab kappa chain as a template.
PCR 11, using the primer pair Cla κ -Nt and Cla κ -Ct, ligated the PCR products of the N-and C-terminal kappa light chains by overlap extension PCR. It produced a clazakizumab kappa light chain mutant that contained the wild amino acid mutation to cysteine and the C214V mutation. The C-terminal wild amino acid can be mutated to cysteine by direct PCR amplification of the clazakizumab kappa light chain using Cla κ -Nt and the corresponding reverse primer (R) in table 8. The clazakizumab kappa chain with the wild cysteine at position 214 can be directly PCR amplified using the Cla kappa-Nt and Cla kappa-V214C reverse primers (R).
TABLE 8 PCR primers for mutation of the wild amino acid to cysteine in the Clazakizumab kappa (kappa) light chain [ EU numbering ]
Figure BDA0002762995080000272
Figure BDA0002762995080000281
The Clazakizumab kappa light chain mutant was digested with Xho I and Not I, respectively, and inserted into the same digestion site of pPIC6 α -ARG4-ADH1TT to generate a library of kappa light chain mutant expression vectors designated pPIC6-ARG4-Cla kappa (X # C) (Cla kappa: Clazakizumab kappa light chain, (X # C): number # wild amino acid mutated to cysteine). For example, pPIC6-ARG4-Cla κ (S114C) represents a mutation of the wild serine at position 114 of the kappa light chain to cysteine. As shown in table 8, each vector can express a clazakizumab kappa light chain containing a C214V mutation and a wild amino acid mutation to cysteine, and one vector can express a clazakizumab kappa chain with a wild cysteine at position 214.
The method described in Chinese patent application Nos. 201510220631.9, 201710331370.7 and 201810108390.2 is adopted to construct a glycosyl-engineered Pichia pastoris strain GS2-1(his4, PpBMT2-SfMNS1:: och1, ScMNN10-AtMNS1:: pno1) (PpBMT2-SfMNS1 is a fusion protein comprising N-terminal 1-74 amino acids of Pichia pastoris BMT2 and MnsI catalytic domain 164-amino acids of Spodoptera frugiperda, ScMNN10-AtMNS1 is a fusion protein comprising N-terminal 1-116 amino acids of Saccharomyces cerevisiae MNN10 and MnsI catalytic domain 78-560 amino acids of Arabidopsis thaliana). The structure of the protein N-glycans expressed with the GS2-1 strain comprises mainly Man5GlcNAc 2.
The expression vector for pPICZ α -Tra κ -ARG2 was linearized with the restriction enzyme Afe I within the ARG 23 'and 5' homology sequences and electroporated into GS 2-1. The linear expression vector was integrated at the ARG2 locus by recombination of ARG 25 'and 3' homologous sequences. Transformed cells were grown on YPD plates supplemented with 100mg/L Zeocin. This resulted in a novel expression strain GS2-Tra κ, which can express trastuzumab wild-type kappa light chain.
The pPIC9-TraH (HoleRF-His) expression vector was linearized with the restriction enzyme Sal I, electroporated into the GS2-Tra kappa strain, and integrated at the His4 locus. Transformed cells were selected on YNB plates. This resulted in a novel expression strain GS2-TraH κ to express the trastuzumab wild-type light chain and the Fc mutated heavy chain, comprising a T366S/L368A/Y407V "well" mutation, a H435R, Y436F (RF) mutation and a C-terminal 6xHis tag.
Each expression vector of the clazakizumab heavy chain mutant library pEG-ClaH (X # C) was linearized with restriction enzyme Pme I, electroporated into the GS2-TraH kappa strain, and integrated at the AOX1 locus. Transformed cells were selected on YPD plates supplemented with 250mg/L G-418 sulfate. This resulted in a library of expression strains GS2-TraH κ -ClaH (X # C). These strains can express trastuzumab with a wild-type light chain and Fc mutated heavy chain, as well as clazakizumab heavy chain with a cysteine mutation in CH1 and a "knob" mutation in Fc.
Each expression vector of the clazakizumab kappa light chain mutant library pPIC6-ARG4-Cla kappa (X # C) was linearized in ARG 43 'and 5' homology sequences with the restriction enzyme Sma I, and then electroporated into the expression strain library GS2-TraH kappa-ClaH (X # C). The linear expression vector was integrated at the ARG4 locus by recombination of ARG 43 'and 5' homologous sequences. Transformed cells were grown on YPD plates supplemented with 300mg/L blasticidin. This produced an expression strain library GS 2-TraH-. kappa.ClaH (X # C). kappa.X # C. These strains can express asymmetric bispecific antibodies. In asymmetric bispecific antibodies, one half of the bispecific antibody is the clazakizumab heavy and light chains with engineered interchain disulfide bonds in the CH1 and CL domains of the Fab arm, and "knob" mutations in the Fc. The other half is trastuzumab heavy and light chains with native interchain disulfide bonds in the CH1 and CL domains of the Fab arms, a "hole" and RF mutation in the Fc, a 6xHis tag at the C-terminus of the heavy chain,
the GS2-TraH kappa-ClaH (X # C) kappa (X # C) -expressing strain was cultured in BMGY medium at 24 ℃ and 240rpm with shaking for 72 hours. Cells were then pelleted by centrifugation at 3000g for 5 minutes, resuspended in BMMY medium, and cultured with shaking at 24 ℃ and 240rpm, with methanol (1% concentration) added to the medium each day, and expression was induced continuously for 72 hours. Subsequently, the culture supernatant was harvested by centrifugation (3000g, 10 min) and the supernatant was frozen at-20 ℃ until next use.
Example 3 screening identification of IgG1(Kappa) "cysteine mutation" library
The concentration of bispecific antibody in the culture supernatant was measured by ELISA. Briefly, 100. mu.L/well of 5. mu.g/mL AGL protein (Leeanntech), 50mM sodium carbonate buffer (pH 9.6) was added to a 96-well plate (Maxisorp Nunc-Immuno, Thermo Scientific) and coated overnight at 4 ℃. After washing the plates 3 times with PBS-T (PBS containing 0.05% Tween-20), the plates were blocked with 2% skim milk powder in PBS-T for 1 hour at 37 ℃. After washing the plates 3 times with PBS-T, 100. mu.L/well of human IgG standard (starting concentration 2.5ug/ml) was added and the reaction was performed as 1: the culture supernatant was 2-diluted in a gradient and incubated at 37 ℃ for 1 hour. Plates were washed 3 times with PBS-T and added to 100. mu.L/well in PBS-T and 0.5% skim milk as 1: AGL-HRP (Leeanntech) at 5000 dilution. The plates were incubated at 37 ℃ for 1 hour, washed 3 times with PBS-T, and 100. mu.L/well of TMB (Leeanntech) was added. Then 100. mu.L/well of 2M H was added2SO4The colorimetric reaction was stopped and the absorbance of each well was measured at 450nm (A450 nm).
Bispecific antibodies were purified by protein a affinity chromatography using MabSelect SuRe resin (GE Healthcare) according to the manufacturer's instructions. Since the RF mutation in trastuzumab heavy chain eliminates its binding to protein a, the well-well heavy chain homodimers and half-antibodies (one well heavy and light chain) and like by-products of trastuzumab can be easily removed from bispecific antibodies in protein a purification. Briefly, the collected supernatant was mixed with MabSelect SuRe resin and shaken at room temperature for 1 hour, then the MabSelect SuRe resin was washed with 25mM sodium phosphate buffer ph7.0, 1M sodium chloride. Bispecific antibody was eluted from MabSelect SuRe resin with 50mM sodium citrate (pH 3.0) and neutralized to pH6.5 with 1M disodium hydrogen phosphate (pH 8.9).
In the present invention, we used an ELISA method to compare whether different interchain disulfide bonds in bispecific antibodies could promote the correct pairing of heavy and light chains. Bispecific antibodies with correctly paired heavy and light chains can bind to the antigen and produce a signal in an ELISA, but bispecific antibodies with mismatched heavy and light chains cannot bind to the antigen and do not produce a signal in an ELISA. Under the same concentration conditions of bispecific antibody, it binds to antigen and produces high signal in ELISA, indicating high correct pairing of heavy and light chains, and conversely low correct pairing of heavy and light chains.
Protein a purified bispecific antibody was purified with PBS as 1: after 2-step dilution, the mixture was divided into two parts, one part for measuring the concentration of the antibody by ELISA and the other part for measuring the binding of the antibody to the antigen by ELISA. ELISA measures the concentration of purified antibody. Briefly, 100. mu.L/well of 5. mu.g/mL AGL protein, 50mM sodium carbonate buffer (pH 9.6) was added to the plate and coated overnight at 4 ℃. After washing the plates 3 times with PBS-T, the plates were blocked with 2% nonfat dry milk in PBS-T for 1 hour at 37 ℃. After washing the plate 3 times with PBS-T, a gradient of 100. mu.L/well PBS diluted purified bispecific antibody was added and incubated at 37 ℃ for 1 hour. The plate was washed 3 times with PBS-T and 100. mu.L/well AGL-HRP diluted 1:5000 in PBS-T was added. The plate was incubated at 37 ℃ for 1 hour, washed 3 times with PBS-T, and 100. mu.L/well of TMB was added. Then 100. mu.L/well 2M H was added2SO4The colorimetric reaction was stopped and the absorbance of each well was measured at 450nm (A450 nm). The concentration of bispecific antibody can be expressed by the absorbance value measured by ELISA reaction corresponding to the concentration.
ELISA measures the binding of antibodies to antigens. Briefly, 100. mu.L/well of 1. mu.g/mL human HER2/ErbB2 protein (His-tag) (Nano Biological), 50mM sodium carbonate buffer (pH 9.6) was added to the plate and coated overnight at 4 ℃. After washing the plates 3 times with PBS-T, the plates were blocked with 2% skim milk in PBS-T for 1 hour at 37 ℃. After washing the plate 3 times with PBS-T, a gradient of 100. mu.L/well PBS diluted purified bispecific antibody was added and incubated at 37 ℃ for 1 hour. Plates were washed 3 times with PBS-T, and 100. mu.L/well was added to make 1: AGL-HRP at 5000 dilution. The plate was incubated at 37 ℃ for 1 hour, washed 3 times with PBS-T, and 100. mu.L/well of TMB was added. Then 100. mu.L/well 2M H was added2SO4The colorimetric reaction was stopped and the absorbance of each well was measured at 450nm (A450 nm). The amount of bispecific antibody bound to the antigen can beExpressed as the absorbance value (A450nm) measured by the ELISA reaction corresponding thereto.
In asymmetric bispecific antibodies, half of the bispecific antibodies have trastuzumab heavy and light chains with natural interchain disulfide bonds in the Fab arm CH1 and CL domains, a "pore" and RF mutation in the heavy chain Fc, a 6xHis tag at the C-terminus of the heavy chain, and the other half contains clazakizumab heavy and light chains with engineered interchain disulfide bonds in the Fab arm CH1 and CL domains, and a "knob" mutation in the heavy chain Fc. According to reports, when phenylalanine at position 126 in clazakizumab heavy chain CH1 is mutated to cysteine (F126C) and serine at position 121 in light chain CL is mutated to cysteine (S121C), an engineered interchain disulfide bond can be formed, and the asymmetric bispecific antibody can have 98% of the heavy chain and the light chain correctly paired. This asymmetric bispecific antibody was designated herein as TraH κ -ClaH (F126C) κ (S121C), abbreviated F126C/S121C, and used as a positive control. However, when both Fab arms have a native interchain disulfide bond, only 25% of the heavy and light chains of the bispecific antibody formed are correctly paired. The bispecific antibody is designated herein as TraH-. kappa. -ClaH-. kappa.abbreviated as WT and used as a negative control (Yariv Mazor, Vaheh Oganysian, Chunning Yang, Anna Hansen, Jihong Wang, Hongji Liu, Kris Sachsenseier, Marcia Carlson, Dhanesh V Gadre, Martin Jack Borrak, Xiang-Qing Yu, William Dall' Acqua, Herren Wu, and Partha Sarathi Chowdour, bs mA 7,377-389; 2015).
Bispecific antibodies with correctly paired heavy and light chains can bind to the antigen and produce a signal in an ELISA, but bispecific antibodies with mismatched heavy and light chains cannot bind to the antigen and do not produce a signal in an ELISA. The concentration of bispecific antibody was expressed by horizontal axis ELISA absorbance value (a450nm) and the amount of bispecific antibody bound to antigen was expressed by vertical axis ELISA absorbance value (a450nm), and the data was processed with Excel to obtain a scatter plot. Within the range of effective ELISA color values, the higher the curve position, i.e., the higher the color value of the ELISA reaction of the bispecific antibody with the same amount of antigen under the same concentration condition, the higher the correct pairing rate of the heavy chain and the light chain of the bispecific antibody, and the lower the mismatch rate. The lower the curve position, the lower the correct pairing rate of the heavy and light chains of the bispecific antibody, and the higher the mismatch rate. As shown in fig. 7, the positive control F126C/S121C for the reported bispecific antibody had 98% of the correct heavy and light chain pairing and thus showed a very high antibody/antigen binding ELISA absorbance value (vertical axis) under the same antibody concentration conditions (horizontal axis ELISA absorbance value), whereas the negative control WT for the bispecific antibody was expected to have only 25% of the correct heavy and light chain pairing and thus showed a very low antibody/antigen binding ELISA absorbance value. Under the same antibody concentration conditions (cross-axis ELISA absorbance values), many bispecific antibodies we constructed had the same or higher antibody/antigen binding absorbance values as the positive control F126C/S121C. This indicates that our bispecific antibodies have 98% or more of the heavy and light chains correctly paired. Thus, in IgG1 kappa bispecific antibody production, correct heavy and light chain pairing can be achieved by replacing the native interchain disulfide bonds with different cysteine pairings, forming engineered disulfide bonds in the CH1-CL domain of one Fab arm, including:
F126C/F118C、L128C/P120C、A129C/P120C、P130C/F118C、S132C/F118C、K133C/S121C、S134C/F118C、G166C/T172C、G166C/S174C、G166C/T180C、H168C/T180C、F170C/Q160C、F170C/T164C、F170C/T172C、F170C/S174C、F170C/S176C、F170C/T180C、P171C/T172C、P171C/S174C、P171C/T180C、V173C/S174C、Q175C/S174C、Q175C/S176C、Q175C/T180C、S176C/S162C、S181C/T172C、S181C/S176C、S181C/T180C、S183C/S114C、S183C/F118C、S183C/Q160C、S183C/S174C、S183C/T178C、S183C/T180C、V185C/T172C、V185C/S174C、V185C/T178C、V185C/T180C、T187C/S114C、T187C/T172C、T187C/S174C、T187C/T178C、K218C/F118C、S219C/F116C、S219C/F118C、S219C/P120C、
(Each pair of cysteine mutations are listed in the following manner: the heavy chain wild amino acid [ EU numbering ] mutation to cysteine/kappa light chain wild amino acid [ EU numbering ] mutation to cysteine)
Example 4 construction and expression of IgG1(Kappa) "cysteine and Charge mutation" library
In the IgG1(Kappa) CH1 and CL domains, a pair of charged amino acids (K213 in the heavy chain and E123 in the Kappa light chain, EU numbering) participate in charge-charge interactions. This pair of amino acids is conserved among IgG1, IgG2, IgG3 and IgG4, and works the same. At neutral pH (pH 7.0), aspartic acid (D) and glutamic acid (E) are negatively charged, and lysine (K), arginine (R), and histidine (H) are positively charged. Amino acids of opposite charge may interact attractively, while amino acids of similar charge may interact repulsively. As shown in Table 9, mutations in the CH1 and CL domains of antibody A heavy and light chains that invert the charge polarity of the amino acids (e.g., K213D and E123K) may result in unfavorable mutual repulsion between the mismatched heavy and light chains (e.g., the negative charge of the antibody A heavy chain K213D mutation is repulsive to the negative charge of antibody B light chain E123; the positive charge of the antibody A light chain E123K mutation is repulsive to the positive charge of antibody B heavy chain K213). Introduction of mutated interchain disulfide bonds or/and charge reversals in the CH and CL domains may facilitate proper pairing of heavy and light chains in bispecific antibodies.
TABLE 9 mutation of charge polarity reversal in heavy and light chains.
Figure BDA0002762995080000321
Figure BDA0002762995080000331
PCR 1, EG F and EG R primer pairs were used to PCR amplify the pEG linear fragment (as described in example 2) using the pEG vector as a template.
PCR 2 was performed using ClaH-Nt and ClaH-K213D R primer pairs (SEQ ID NO:84), ClaH-K213D F (SEQ ID NO:85) and ClaH-Ct primers for PCR amplification of the N-and C-terminal heavy chains, respectively, using the expression vectors of the clazakizumab mutant library pEG-ClaH (X # C) as templates. The N-and C-terminal heavy chains were connected by overlap extension PCR using a ClaH-Nt and ClaH-Ct primer pair. This resulted in a mutated clazakizumab heavy chain comprising a T366W "knob" mutation, a C220V mutation, a cysteine mutation, and a K213D charge mutation.
PCR 3, PCR amplification of the N-terminal and C-terminal heavy chains was performed using ClaH-Nt and ClaH-K213D R primer pairs, ClaH-K213E F (SEQ ID NO:86) and ClaH-Ct primer pairs, respectively, using each expression vector of the clazakizumab heavy chain mutant library pEG-ClaH (X # C) as a template. The N-terminal and C-terminal heavy chains were connected by overlap extension PCR using a ClaH-Nt and ClaH-Ct primer pair. This resulted in a mutated clazakizumab heavy chain comprising a T366W "knob" mutation, a C220V mutation, a cysteine mutation, and a K213E charge mutation.
The mutated clazakizumab heavy chain was inserted into the pEG linear fragment using ClonExpress II one-step cloning kit (Vazyme) to construct a library of clazakizumab mutation expression vectors, named pEG-ClaH (X # CD) and pEG-ClaH (X # CE). Each vector can express a mutated clazakizumab heavy chain comprising a T366W "knob" mutation, a C220V mutation, a wild amino acid mutation to cysteine, and a K213D or K213E mutation.
PCR 4, N-terminal and C-terminal Kappa light chains were PCR amplified using the corresponding primer pairs in Table 10-1, respectively, using the expression vectors pPIC 6. alpha. -Cla. Kappa. (X # C) of the Kappa light chain mutant library as templates. The N-and C-terminal kappa chains were ligated by overlap extension PCR using a Cla kappa-Nt and Cla kappa-Ct primer pair. This resulted in a mutated clazakizumab kappa chain comprising the C214V mutation, the cysteine mutation and the E123K mutation.
TABLE 10-1 Clazakizumab light chain N-and C-terminal PCR amplification primer pairs
Figure BDA0002762995080000332
PCR 5, N-terminal and C-terminal Kappa light chains were PCR amplified using the corresponding primer pairs in Table 10-2, respectively, using the expression vector pPIC6 alpha-Cla Kappa (X # C) of each Kappa light chain mutant library as a template. The N-and C-terminal kappa chains were ligated by overlap extension PCR using a Cla kappa-Nt and Cla kappa-Ct primer pair. This resulted in a mutated clazakizumab kappa chain comprising the C214V mutation, the cysteine mutation and the E123R mutation.
TABLE 10-2 Clazakizumab light chain N-and C-terminal PCR amplification primer pairs
Figure BDA0002762995080000341
The mutated clazakizumab kappa chain was digested with Xho I and Not I and inserted into the same digestion site of pPIC6 α -ARG4 to generate a library of kappa light chain mutation expression vectors designated pPIC6 α -ARG4-Cla κ (X # CK) and pPIC6 α -ARG4-Cla κ (X # CR). Each vector may express a mutated clazakizumab kappa light chain comprising a C214V mutation, a cysteine mutation, and an E123K or E123R mutation.
Each of the expression vectors pEG-ClaH (X # CD) and pEG-ClaH (X # CE) of the clazakizumab heavy chain mutant library was linearized with restriction enzyme Pme I, electroporated into the GS2-TraH κ strain, and integrated at the AOX1 locus. Transformed cells were selected on YPD plates supplemented with 250mg/L G-418 sulfate. This resulted in the production of expression strain libraries GS2-TraH κ -ClaH (X # CD), GS2-TraH κ -ClaH (X # CE).
Each expression vector of the clazakizumab kappa light chain mutation library pPIC6 alpha-ARG 4-Cla kappa (X # CK) and pPIC6 alpha-ARG 4-Cla kappa (X # CR) was linearized with Sma I and electroporated into expression strain libraries GS2-TraH kappa-ClaH (X # CD) and GS2-TraH kappa-ClaH (X # CE). The linear expression vector is integrated at the ARG4 locus. Transformed cells were grown on YPD plates supplemented with 300mg/L blasticidin. Thus, expression strain libraries GS2-TraH κ -ClaH (X # CD) κ (X # CK), GS2-TraH κ -ClaH (X # CD) κ (X # CR), GS2-TraH κ -ClaH (X # CE) κ (X # CK), and GS2-TraH κ -ClaH (X # CE) κ (X # CR) were generated. These strains can express asymmetric bispecific antibodies. In asymmetric bispecific antibodies, one half of the bispecific antibody is the clazakizumab heavy and light chains, with the CH1 and CL domains of the Fab arms having engineered interchain disulfide bonds and/or a pair of charge mutations, with a "knob" mutation in the Fc; the other half is trastuzumab heavy and light chains with native interchain disulfide bonds in the CH1 and CL domains of the Fab arms, a "hole" and RF mutation in the Fc, and a 6xHis tag at the C-terminus of the heavy chain.
The expression strains were cultured in BMGY medium and antibody expression was induced in BMMY medium as described in example 2. The supernatant harvested by centrifugation was frozen at-20 ℃ until next use.
Example 5 screening identification of IgG1(Kappa) "cysteine and Charge mutation" libraries
The bispecific antibody was purified by protein a affinity chromatography and the concentration of the purified antibody was determined by ELISA as described in example 3.
As described in example 3, ELISA was used to compare whether different interchain disulfide bonds and charge mutations in bispecific antibodies comprising a novel pair of cysteines and charge reversal mutations (e.g., K213D and E123K) in the CH1 and CL domains could promote correct pairing of heavy and light chains. As shown in fig. 8A, under the same antibody concentration conditions (horizontal axis ELISA absorbance values), the bispecific antibody positive control F126C/S121C had 98% of the heavy and light chains correctly paired, with very high antibody/antigen binding ELISA absorbance values (vertical axis), whereas the bispecific antibody negative control WT had only 25% of the heavy and light chains correctly paired, with very low antibody/antigen binding absorbance values (vertical axis). Under the same antibody concentration conditions (horizontal axis ELISA absorbance values), two bispecific antibodies comprising charge reversals (K213D/E123K, K213E/E123K) in the CH1-CL domain of the Fab arm had higher antibody/antigen binding absorbance values than the positive control (F126C/S121C). However, the antibody/antigen binding absorbance values of the other two bispecific antibodies comprising charge reversals (K213D/E123R, K213E/E123R) in the CH1-CL domain of the Fab arm were significantly lower than the positive control F126C/S121C. Thus, in IgG bispecific antibody production, correct pairing of heavy and light chains can be facilitated by the use of charge reversal mutations (e.g., K213D/E123K, K213E/E123K) (each pair of charge reversal mutations is listed in such a way that lysine K at position 213 of the heavy chain is mutated to a negatively charged amino acid D or glutamic acid E at position 123 of the E/light chain is mutated to a positively charged amino acid K or R).
To evaluate the effect of a novel pair of cysteines in the CH1 and CL domains of a Fab arm in combination with charge reversal on the correct pairing of heavy and light chains, a bispecific antibody TraH κ -ClaH (S132C) κ (F116C), abbreviated as S132/F116C and the following four bispecific antibodies with any mutations were used:
TraH kappa-ClaH (S132C, K213D) kappa (F116C, E123K), abbreviated as S132C, K213D/F116C, E123K;
TraH kappa-ClaH (S132C, K213E) kappa (F116C, E123K), abbreviated as S132C, K213E/F116C, E123K;
TraH kappa-ClaH (S132C, K213D) kappa (F116C, E123R), abbreviated as S132C, K213D/F116C, E123R,
TraH kappa-ClaH (S132C, K213E) kappa (F116C, E123R), abbreviated as S132C, K213E/F116C, E123R.
As shown in fig. 8B, the bispecific antibody S132C/F116C containing a new pair of cysteines in the CH1-CL domain of one Fab arm had similar antibody/antigen binding absorbance values as the positive control F126C/S121C under the same antibody concentration conditions (horizontal axis ELISA absorbance values). 4 bispecific antibodies S132C, K213D/F116C, E123K, S132C, K213E/F116C, E123K, S132C, K213D/F116C, E123R, S132C, K213E/F116C, E123R containing novel cysteine pairings and charge reversals can further increase the antibody/antigen binding absorbance values.
To evaluate the effect of a new pair of cysteines and charge reversals in the CH1 and CL domains of one Fab arm on the correct pairing of the heavy and light chains, a bispecific antibody (TraH κ -ClaH (V173C) κ (N158C), abbreviated as V173C/N158C and the following four bispecific antibodies were used as further examples:
TraH kappa-ClaH (V173C, K213D) kappa (N158C, E123K), abbreviated as V173C, K213D/N158C, E123K;
TraH kappa-ClaH (V173C, K213E) kappa (N158C, E123K), abbreviated as V173C, K213E/N158C, E123K;
TraH kappa-ClaH (V173C, K213D) kappa (N158C, E123R), abbreviated as V173C, K213D/N158C, E123R;
TraH kappa-ClaH (V173C, K213E) kappa (N158C, E123R), abbreviated as V173C, K213E/N158C, E123R.
As shown in fig. 8C, bispecific antibody V173C/N158C containing a novel pair of cysteines in the CH1-CL domain of one Fab arm had lower antibody/antigen binding absorbance values than the positive control F126C/S121C under the same antibody concentration conditions (horizontal axis ELISA absorbance values). Two bispecific antibodies V173C, K213D/N158C, E123K containing a novel cysteine pair and charge reversal; V173C, K213E/N158C, E123K had higher antibody/antigen binding absorbance values than the positive control F126C/S121C. The other two bispecific antibodies containing novel cysteine pairings and charge reversals V173C, K213D/N158C, E123R; V173C, K213E/N158C, E123R) had higher antibody/antigen binding absorbance values than bispecific antibody V173C/N158C, but lower antibody/antigen binding absorbance values than the positive control F126C/S121C. These examples show that charge reversal mutations in the heavy chain K213 and light chain E123 in one Fab arm CH1-CL domain can further improve the correct pairing of heavy and light chains of bispecific antibodies with cysteine pair mutations. It appears that the charge inversion of K213D/E123K and K213E/E123K has a significantly greater improvement effect than the charge inversion of K213D/E123R, K213E/E123R.
In the present invention, the charge reversal of K213D/E123K in the CH1-CL domain of one Fab arm was applied to improve the correct pairing of the heavy and light chains of other bispecific antibodies with different cysteine mutations. As shown in fig. 8D, the bispecific antibody containing a cysteine mutation in the CH1-CL domain of one Fab arm had similar or lower antibody/antigen binding absorbance values as the positive control F126C/S121C under the same antibody concentration conditions (horizontal axis ELISA absorbance values). The corresponding bispecific antibody containing cysteine and the charge mutation of K213D/E123K had higher antibody/antigen binding absorbance values than the positive control F126C/S121C. Thus, in the production of IgG kappa bispecific antibodies, to further facilitate the correct pairing of heavy and light chains to form engineered disulfide bonds, the charge mutations of K213D/E123K and the different cysteine pair mutations can be combined in the CH1-CL domain of one Fab arm, including but not limited to:
S132C/F116C、V173C/N158C、S131C/P120C、S132C/S114C、S132C/P120C、K133C/F116C、K133C/P120C、S134C/P120C、T135C/S114C、G166C/S176C、G166C/T178C、H168C/T172C、H168C/S174C、H168C/T178C、V173C/T180C、Q175C/N158C、Q175C/T172C、S176C/N158C、S176C/Q160C、G178C/N158C、G178C/S162C、G178C/T164C、S181C/S174C、S183C/P120C、S183C/S162C、V185C/S114C、V185C/P120C、V185C/S176C、T187C/P120C、T187C/S176C、K218C/S114C、K218C/P120C
(Each pair of cysteine mutations are listed in the following manner: the heavy chain wild amino acid [ EU numbering ] mutation to cysteine/kappa light chain wild amino acid [ EU numbering ] mutation to cysteine, EU numbering).
If necessary, the different cysteine pair mutations identified in example 3 and the K213D/E123K charge mutations can be combined together in the CH1-CL domain of one Fab arm in order to further facilitate the correct pairing of the heavy and light chains to form engineered disulfide bonds.
Example 6 design of IgG1(lambda) CH1 and CL Domain "cysteine mutation" library
The IgG lambda light chain is linked to the heavy chain by an interchain disulfide bond between the CH1 and CL domains. In the present invention, we mutated the CH1-CL domain of IgG (lambda), mutated the cysteine pair that forms the native interchain disulfide bond to valine, and introduced a new cysteine pair to form the engineered interchain disulfide bond, replacing the native interchain disulfide bond. We used the Fab crystal structure (PDB code: 2FB4) of human IgG1(lambda) from the protein database as a representative structure to analyze and design cysteine mutation sites in the CH1 and CL domains that might interact to form interchain disulfide bonds. These cysteine mutation sites in the CH1 and CL domains are listed in table 11 for the construction of an IgG1(lambda) "cysteine mutation" library.
TABLE 11 cysteine mutagenesis library of IgG1(lambda) CH1-CL domain. The regions where cysteine mutations aggregate are referred to as a group. The CH1 domain and the CL domain are possibly formed with interchain disulfide bond, and the groups are respectively listed correspondingly.
Figure BDA0002762995080000371
Figure BDA0002762995080000381
Example 7 construction and expression of IgG1(lambda) cysteine mutation library
The heavy chain of Fezakinumab (IL22 antibody) comprising a T366S/L368A/Y407V "pore" mutation, H435R, Y436F (RF) mutation and a 6XHis tag at the C-terminus (HoleRF-His) was used as a representation of the IgG1 heavy chain (SEQ ID NO: 102). Fezakinumab heavy chain codon optimized DNA (HoleRF-His) was synthesized and used as a template for PCR amplification (SEQ ID NO: 103).
PCR 1, FezH F (SEQ ID NO:104, primers with Xho I restriction enzyme site) and FezH R (SEQ ID NO:105, primers with Not I restriction enzyme site) primer pairs were used for PCR amplification of the Fezakinumab heavy chain (HoleRF-His), using the synthesized DNA as template. The PCR product was digested with Xho I and Not I, and inserted into the same digestion site of pPIC9(Invitrogen) to construct an expression vector for the Fezakinumab heavy chain (HoleRF-His), which was designated pPIC9-FezH (HoleRF-His).
The Fezakinumab light chain was used as a representative IgG1 lambda (. lamda.) light chain (SEQ ID NO: 106). Codon-optimized DNA for the Fezakinumab lambda light chain (SEQ ID NO:107) was synthesized and used as a template for PCR amplification.
PCR 2Fez λ F (SEQ ID NO:108, with Xho I restriction enzyme site) and Fez λ R (SEQ ID NO:109, with Not I restriction enzyme site) primer pairs were used for PCR amplification of the fezakinumab lambda light chain, using the synthesized fezakinumab light chain as template. The PCR product was digested with Xho I and Not I and inserted into the same digestion site of pPICZ α -Tra κ -ARG2 (as described in example 2) to construct an expression vector for the fezakinumab light chain, designated pPICZ α -Fez λ -ARG 2.
PCR 3, EG F and EG R primer pairs were used to PCR amplify the pEG linear fragment with the pEG vector as template.
The otelixizumab (CD3 mab) heavy chain (knob) containing the T366W "knob" mutation and the C220V mutation was used as another representation of the IgG1 heavy chain (SEQ ID NO: 110). Codon-optimized DNA for the otelixizumab heavy chain (knob) was synthesized and used as template for PCR amplification (SEQ ID NO: 111).
In PCR 4, the heavy chain N-terminal primer OteH-Nt (SEQ ID NO:112) and the C-terminal primer OteH-Ct (SEQ ID NO:113) and the corresponding reverse primer (R) and forward primer (F) in Table 12 respectively form different primer pairs for PCR amplification of N-terminal and C-terminal heavy chains, and synthesized otelixizumab heavy chains (knobs) are used as templates.
PCR 5, PCR products of the N-and C-terminal heavy chains were ligated by overlap extension PCR using the OteH-Nt and OteH-Ct primer pairs. In this way, an otelixizumab heavy chain mutant was generated comprising a wild amino acid mutation to cysteine, a T366W "knob" mutation and a C220V mutation.
The otelixizumab heavy chain mutant was inserted into the pEG linear fragment using the ClonExpress II one-step cloning kit (Vazyme) to generate an expression vector library named pEG-OteH (X # C) (OteH: oteliximab heavy chain, (X # C): wild amino acid at position # was mutated to cysteine).
Table 12 PCR primers for the mutation of the wild amino acid of the otecixizumab heavy chain to cysteine (EU numbering).
Mutations Reverse primer (R) Forward primer (F)
OteH-F126C OteH-F126C R(SEQ ID NO:114) OteH-F126C F(SEQ ID NO:115)
OteH-L128C OteH-F126C R(SEQ ID NO:114) OteH-L128C F(SEQ ID NO:116)
OteH-A129C OteH-F126C R(SEQ ID NO:114) OteH-A129C F(SEQ ID NO:117)
OteH-P130C OteH-F126C R(SEQ ID NO:114) OteH-P130C F(SEQ ID NO:118)
OteH-S131C OteH-F126C R(SEQ ID NO:114) OteH-S131C F(SEQ ID NO:119)
OteH-S132C OteH-F126C R(SEQ ID NO:114) OteH-S132C F(SEQ ID NO:120)
OteH-K133C OteH-F126C R(SEQ ID NO:114) OteH-K133C F(SEQ ID NO:121)
OteH-S134C OteH-F126C R(SEQ ID NO:114) OteH-S134C F(SEQ ID NO:122)
OteH-T135C OteH-F126C R(SEQ ID NO:114) OteH-T135C F(SEQ ID NO:123)
OteH-S136C OteH-F126C R(SEQ ID NO:114) OteH-S136C F(SEQ ID NO:124)
OteH-G166C OteH-G166C R(SEQ ID NO:125) OteH-G166C F(SEQ ID NO:126)
OteH-H168C OteH-G166C R(SEQ ID NO:125) OteH-H168C F(SEQ ID NO:127)
OteH-F170C OteH-G166C R(SEQ ID NO:125) OteH-F170C F(SEQ ID NO:128)
OteH-P171C OteH-G166C R(SEQ ID NO:125) OteH-P171C F(SEQ ID NO:129)
OteH-V173C OteH-G166C R(SEQ ID NO:125) OteH-V173C F(SEQ ID NO:130)
OteH-Q175C OteH-G166C R(SEQ ID NO:125) OteH-Q175C F(SEQ ID NO:131)
OteH-S176C OteH-S176C R(SEQ ID NO:132) OteH-S176C F(SEQ ID NO:133)
OteH-S177C OteH-S176C R(SEQ ID NO:132) OteH-S177C F(SEQ ID NO:134)
OteH-G178C OteH-S176C R(SEQ ID NO:132) OteH-G178C F(SEQ ID NO:135)
OteH-L179C OteH-S176C R(SEQ ID NO:132) OteH-L179C F(SEQ ID NO:136)
OteH-S181C OteH-S181C R(SEQ ID NO:137) OteH-S181C F(SEQ ID NO:138)
OteH-S183C OteH-S181C R(SEQ ID NO:137) OteH-S183C F(SEQ ID NO:139)
OteH-V185C OteH-S181C R(SEQ ID NO:137) OteH-V185C F(SEQ ID NO:140)
OteH-T187C OteH-S181C R(SEQ ID NO:137) OteH-T187C F(SEQ ID NO:141)
OteH-V215C OteH-V215C R(SEQ ID NO:142) OteH-V215C F(SEQ ID NO:143)
OteH-E216C OteH-V215C R(SEQ ID NO:142) OteH-E216C F(SEQ ID NO:144)
OteH-P217C OteH-V215C R(SEQ ID NO:142) OteH-P217C F(SEQ ID NO:145)
OteH-K218C OteH-V215C R(SEQ ID NO:142) OteH-K218C F(SEQ ID NO:146)
OteH-S219C OteH-V215C R(SEQ ID NO:142) OteH-S219C F(SEQ ID NO:147)
OteH-V220C OteH-V215C R(SEQ ID NO:142) OteH-V220C F(SEQ ID NO:148)
An Otelixizumab lambda (lambda) light chain containing a C214V mutation was used as another representation of an IgG1 lambda light chain (SEQ ID NO: 149). An otelixizumab lambda light chain codon-optimized DNA (SEQ ID NO:150) was synthesized and used as a template for PCR amplification.
PCR 6, light chain N-terminal primer Ote lambda-Nt (SEQ ID NO:151, with Xho I restriction enzyme site) and light chain C-terminal primer Ote lambda-Ct (SEQ ID NO:152, with Not I restriction enzyme site) composed different primer pairs with the corresponding reverse primer (R) and forward primer (F) in Table 13, respectively, for PCR amplification of N-and C-terminal lambda light chains using the synthesized otelixizumab lambda chains as templates.
PCR 7, PCR products of N-and C-terminal lambda light chains were ligated by overlap extension PCR using primer pairs Ote lambda-Nt and Ote lambda-Ct. In this way, an otelixizumab lambda light chain mutant comprising a mutation of the wild amino acid to cysteine and a C214V mutation was generated. The atelixizumab lambda chain can be directly PCR amplified using Ote λ -Nt and the corresponding reverse primer (R) in table 13, mutating the C-terminal wild amino acid to cysteine. Direct PCR amplification using Ote λ -Nt and Ote λ -V214C reverse primers (R) generated an Otelixizumab lambda chain with a wild type cysteine at position 214 (Kabat numbering).
TABLE 13 PCR primers for wild amino acid mutation to cysteine in the Otelixizumab lambda (λ) light chain [ Kabat numbering ].
Mutations Reverse primer (R) Forward primer (F)
Oteλ-S114C Oteλ-S114C R(SEQ ID NO:153) Oteλ-S114C F(SEQ ID NO:154)
Oteλ-T116C Oteλ-S114C R(SEQ ID NO:153) Oteλ-T116C F(SEQ ID NO:155)
Oteλ-F118C Oteλ-S114C R(SEQ ID NO:153) Oteλ-F118C F(SEQ ID NO:156)
Oteλ-P119C Oteλ-S114C R(SEQ ID NO:153) Oteλ-P119C F(SEQ ID NO:157)
Oteλ-S121C Oteλ-S114C R(SEQ ID NO:153) Oteλ-S121C F(SEQ ID NO:158)
Oteλ-G158C Oteλ-G158C R(SEQ ID NO:159) Oteλ-G158C F(SEQ ID NO:160)
Oteλ-E160C Oteλ-G158C R(SEQ ID NO:159) Oteλ-E160C F(SEQ ID NO:161)
Oteλ-T162C Oteλ-G158C R(SEQ ID NO:159) Oteλ-T162C F(SEQ ID NO:162)
Oteλ-T163C Oteλ-G158C R(SEQ ID NO:159) Oteλ-T163C F(SEQ ID NO:163)
Oteλ-P164C Oteλ-G158C R(SEQ ID NO:159) Oteλ-P164C F(SEQ ID NO:164)
Oteλ-S165C Oteλ-G158C R(SEQ ID NO:159) Oteλ-S165C F(SEQ ID NO:165)
Oteλ-Q167C Oteλ-G158C R(SEQ ID NO:159) Oteλ-Q167C F(SEQ ID NO:166)
Oteλ-K172C Oteλ-K172C R(SEQ ID NO:167) Oteλ-K172C F(SEQ ID NO:168)
Oteλ-A174C Oteλ-K172C R(SEQ ID NO:167) Oteλ-A174C F(SEQ ID NO:169)
Oteλ-S176C Oteλ-K172C R(SEQ ID NO:167) Oteλ-S176C F(SEQ ID NO:170)
Oteλ-Y178C Oteλ-K172C R(SEQ ID NO:167) Oteλ-Y178C F(SEQ ID NO:171)
Oteλ-S180C Oteλ-K172C R(SEQ ID NO:167) Oteλ-S180C F(SEQ ID NO:172)
Oteλ-V209C Oteλ-V209C R(SEQ ID NO:173)
Oteλ-A210C Oteλ-A210C R(SEQ ID NO:174)
Oteλ-P211C Oteλ-P211C R(SEQ ID NO:175)
Oteλ-T212C Oteλ-T212C R(SEQ ID NO:176)
Oteλ-E213C Oteλ-E213C R(SEQ ID NO:177)
Oteλ-V214C Oteλ-V214C R(SEQ ID NO:178)
Oteλ-S215C Oteλ-S215C R(SEQ ID NO:179)
The Otelixizumab lambda light chain mutant was digested with Xho I and Not I and inserted into the same digestion site of pPIC6 α -ARG4 to generate a library of lambda light chain mutant expression vectors, designated pPIC6-ARG4-Ote λ (X # C) (Ote λ: otecixizumab lambda light chain, (X # C): wild amino acid mutation at # to cysteine, Kabat numbering). For example, pPIC6-ARG4-Otel λ -S114C indicates that the wild serine at position 114 of the light chain of otelixizumab lambda was mutated to cysteine. As shown in table 13, each vector can express an otelixizumab lambda light chain comprising a C214V mutation and a wild amino acid mutation to a cysteine, and one vector can express an otelixizumab lambda chain having a wild cysteine at position 214.
The ARG2 homologous sequence was digested with the restriction enzyme Afe I, the pPICZ α -Fez λ -ARG2 expression vector was linearized, electroporated into GS2-1, and integrated at the ARG2 locus by recombination of the ARG 25 'and 3' homologous sequences, as described in example 3. Transformed cells were grown on YPD plates supplemented with 100mg/L Zeocin. This resulted in the novel expression strain GS 2-Fez. lambda.
The pPIC9-FezH (HoleRF-His) expression vector was linearized with the restriction enzyme Sal I, electroporated into the GS2-Fez lambda strain, and integrated into the His4 locus of the Pichia pastoris genome. Transformed cells were selected on YNB plates. This gave rise to the novel expression strain GS2-FezH lambda.
Each expression vector of the library of the otelixizumab heavy chain mutant pEG-OteH (X # C) was linearized with the restriction enzyme Pme I, electroporated into the GS2-FezH lambda strain, and integrated into the AOX1 locus of the Pichia genome. Transformed cells were selected on YPD plates supplemented with 250mg/L G-418 sulfate. This produced the expression strain library GS2-FezH κ -OteH (X # C).
Each expression vector of the otalixizumab lambda chain mutant library pPIC6-ARG4-Ote lambda (X # C) was linearized within the ARG 43 'and 5' homology sequences using restriction enzyme Sma I and electroporated into the expression strain library GS2-FezH lambda-OteH (X # C). The linear expression vector was integrated at the ARG4 locus by recombination of ARG 43 'and 5' homologous sequences. The transformed cells were grown on YPD plates supplemented with 300mg/L blasticidin, thus giving rise to the expression strain library GS 2-FezH. lamda. -OteH (X # C) lamda (X # C). They can express asymmetric bispecific antibodies, half of which are the otecixizumab heavy and light chains with engineered interchain disulfide bonds in the CH1 and CL domains of the Fab arm and "knob" mutations in the Fc. The other half is the Fezakinumab heavy and light chains, with native interchain disulfide bonds in the CH1 and CL domains of the Fab arms, a "hole" and RF mutation in the Fc, and a 6xHis tag at the C-terminus of the heavy chain.
The expression strains were cultured in BMGY medium and antibody expression was induced in BMMY medium as described in example 2. The supernatant harvested by centrifugation was frozen at-20 ℃ until next use.
Example 8 screening to identify IgG1(lambda) "cysteine mutation" library
As described in example 3, the bispecific antibody was purified by protein a affinity chromatography and the purified antibody concentration was determined by ELISA.
Protein A purified bispecific antibody was diluted with PBS at a 1:2 gradient and split into two portions, one portion being assayed for antibody concentration by ELISA on plates coated with AGL protein and the other portion being assayed for antibody binding to antigen by ELISA on plates coated with human interleukin 22(IL22) (Sino Biological), as described in example 3.
According to the report, when phenylalanine 126 position in Otelixizumab heavy chain CH1 is mutated to cysteine (F126C, EU numbering) and serine 121 position in lambda light chain CL is mutated to cysteine (S121C, Kabat numbering), an engineered interchain disulfide bond can be formed to make the heavy chain and light chain pair correctly. This asymmetric bispecific antibody was designated herein as FezH λ -OteH (F126C) λ (S121C), abbreviated as F126C/S121C, and used as a positive control. However, when both Fab arms have a native interchain disulfide bond, only 25% of the heavy and light chains of the bispecific antibody formed are correctly paired. The bispecific antibody is designated herein as FezH λ -OteH λ, abbreviated WT, and used as a negative control (Yariv Mazor, Valeh Oganesian, Chunning Yang, Anna Hansen, Jihong Wang, Hongji Liu, Kris Sachsenseier, Marcia Carlson, Dhanesh V Gadre, Martin Jack Borrak, Xiang-Qing Yu, William Dall' Acqua, Herren Wu, and Partha Sarathi Chowdhury, mA 7,377-389; 2015).
As described in example 3, ELISA methods were used to identify engineered interchain disulfide bonds in bispecific antibodies that can promote proper pairing of heavy and light chains.
As shown in fig. 9, the bispecific antibody positive control F126C/S121C showed a very high antibody/antigen binding ELISA absorbance value (vertical axis) but the bispecific antibody negative control WT showed a very low antibody/antigen binding ELISA absorbance value under the same antibody concentration conditions (horizontal axis ELISA absorbance value). Under the same antibody concentration conditions (horizontal axis ELISA absorbance values), many bispecific antibodies we constructed had the same or higher antibody/antigen binding absorbance values as the positive control F126C/S121C. This indicates that the heavy and light chains of our bispecific antibody are able to pair correctly. Thus, in the production of IgG1(lambda) bispecific antibodies, correct heavy and light chain pairing can be achieved by replacing the natural interchain disulfide bond with a different cysteine pairing to form an engineered disulfide bond in the CH1-CL domain of one Fab arm, including:
S132C/S121C、K133C/T116C、K133C/P211C、S136C/S121C、F170C/G158C、P171C/T162C、P171C/P164C、S176C/T162C、L179C/G158C、S181C/P164C、V215C/T116C、E216C/F118C
(each pair of cysteine mutations are listed in the following manner: the heavy chain wild amino acid [ EU numbering ] mutation to cysteine/lambda light chain wild amino acid [ Kabat numbering ] mutation to cysteine).
Example 9 construction and expression of IgG1(lambda) "cysteine and Charge mutation" library
PCR 1, EG F and EG R primer pairs were used for PCR amplification of pEG linear fragments using the pEG vector as template (as described in example 2). "
PCR 2 was performed using the primer pairs shown in Table 14-1 for PCR amplification of the N-and C-terminal heavy chains, respectively, using each expression vector of the otteliximab mutant library pEG-OteH (X # C) as a template. The N-and C-terminal heavy chains were joined by overlap extension PCR using the OteH-Nt and OteH-Ct primer pairs, thus generating a mutated otecixizumab heavy chain comprising a T366W "knob" mutation, a C220V mutation, a wild amino acid mutation to cysteine, and a K213D mutation.
TABLE 14-1 Oceliximab heavy chain N-and C-terminal PCR amplification primer pairs
Figure BDA0002762995080000431
PCR 3 was performed using the primer pairs shown in Table 14-2 for PCR amplification of the N-and C-terminal heavy chains, and each expression vector of the otecizumab mutant library pEG-OteH (X # C) was used as a template. The N-and C-terminal heavy chains were joined by overlap extension PCR using the OteH-Nt and OteH-Ct primer pairs, thus generating a mutated otecixizumab heavy chain comprising a T366W "knob" mutation, a C220V mutation, a wild amino acid mutation to cysteine, and a K213E mutation.
TABLE 14-2 Oceliximab heavy chain N-and C-terminal PCR amplification primer pairs
Figure BDA0002762995080000432
The mutated otecixizumab heavy chain was inserted into the pEG linear fragment using the ClonExpress II one-step cloning kit (Vazyme) to construct a library of otecixizumab mutant expression vectors, named pEG-OteH (X # CD) and pEG-OteH (X # CE).
PCR 4, PCR amplification of the N-terminal and C-terminal lambda light chains using the corresponding primer pairs in Table 15, respectively, using each expression vector of the otalixizumab mutant library pPIC6 α -ARG4-OteH λ (X # C) as a template. The N-and C-terminal lambda light chains were joined by overlap extension PCR using the Ote λ -Nt and Ote λ -Ct primer pairs, thus generating a mutated otecixizumab lambda light chain comprising a T366W "knob" mutation, a C220V mutation, a wild amino acid mutation to cysteine, and an E123K mutation.
TABLE 15 Oceliximab light chain N-and C-terminal PCR amplification primer pairs
Figure BDA0002762995080000441
The mutated otecixizumab lambda light chain was digested with Xho I and Not I and inserted into the same digestion site of pPIC6 α -ARG4 to generate a library of lambda light chain mutant expression vectors designated pPIC6 α -ARG4-Ote λ (X # CK). Each vector can express a mutant otecizumab lambda light chain comprising a C214V mutation, a wild amino acid mutation to cysteine, and E123K.
Each expression vector of the library of the otelixizumab heavy chain mutant pEG-OteH (X # CD) was linearized with the restriction enzyme Pme I, electroporated into the GS2-FezH lambda strain, and integrated at the AOX1 locus in the Pichia genome. Transformed cells were selected on YPD plates supplemented with 250mg/L G-418 sulfate, thus generating a library of expression strains (GS 2-FezH. lamda. -OteH (X # CD).
Each expression vector of the library of otelixizumab lambda light chain mutants, pPIC6 α -ARG4-Ote λ (X # CK), was linearized in ARG 43 'and 5' homologous sequences with the restriction enzyme Sma I, electroporated into the expression strain library GS2-FezH λ -OteH (X # CD), and integrated into the ARG4 locus. The transformed cells were grown on YPD plates supplemented with 300mg/L blasticidin, thus giving rise to the expression strain library GS 2-FezH. lamda. -OteH (X # CD). lamda. (X # CK) for expression of asymmetric bispecific antibodies. In asymmetric bispecific antibodies, half are the otecixizumab heavy and light chains, with the CH1-CL domain of the Fab arm having an engineered interchain disulfide bond and a pair of charge reversal mutations, and a "knob" mutation in the Fc; the other half was the Fezakinumab heavy and light chains, with the CH1-CL domain of the Fab arm having the natural interchain disulfide bond, the "well" and RF mutation in the Fc, and the 6xHis tag at the C-terminus of the heavy chain, and the expression strain was cultured in BMGY medium and induced to express antibody in BMMY medium as described in example 2. The supernatant harvested by centrifugation was frozen at-20 ℃ until next use.
Example 10 screening identification of IgG1(lambda) "cysteine and Charge mutation" library
Protein A purified bispecific antibody was diluted with PBS at a 1:2 gradient and split into two portions, one portion being assayed for antibody concentration by ELISA on plates coated with AGL protein and the other portion being assayed for antibody binding to antigen by ELISA on plates coated with human interleukin 22(IL22) (Sino Biological), as described in example 3.
As shown in fig. 10, the positive control F126C/S121C had a very high absorbance value (vertical axis) of antibody/antigen binding ELISA, but the negative control WT had a very low absorbance value of antibody/antigen binding ELISA, under the same concentration conditions of antibody (horizontal axis ELISA). Bispecific antibodies containing a cysteine mutation in the CH1-CL domain of one Fab arm have similar or lower antibody/antigen binding absorbance values than the positive control F126C/S121C. The corresponding bispecific antibody containing cysteine and a charge mutation of K213D/E123K had higher antibody/antigen binding absorbance values than the positive control F126C/S121C. Thus, in the production of IgG lambda bispecific antibodies, to further achieve proper pairing of the heavy and light chains, forming engineered disulfide bonds, K213D/E123K charge mutations can be combined with different cysteine pairs in the CH1-CL domain of one Fab arm, including:
L128C/T116C、A129C/P211C、A129C/T212C、P130C/A210C、P171C/T163C、E216C/T116C、P217C/S215C、K218C/F118C、K218C/P119C
(each pair of cysteine mutations are listed in the following manner: the heavy chain wild amino acid [ EU numbering ] mutation is cysteine/lambda light chain wild amino acid [ Kabat numbering ] mutation is cysteine).
Example 11 expression of bispecific antibody IgG1(kappa/lambda)
The expression vector pEG-ClaH (X # C) for the clazakizumab heavy chain mutant was linearized with the restriction enzyme Pme I, electroporated into the GS2-FezH λ strain (as described in example 7), and integrated into the Pichia genome at the AOX1 locus. Transformed cells GS2-FezH lambda-ClaH (X # C) were selected on YPD plates supplemented with 500mg/L G-418 sulfate. Subsequently, the expression vector pPIC6-ARG4-Cla κ (X # C) for the clazakizumab kappa light chain mutant was linearized with the restriction enzyme Sma I, electroporated into the GS2-FezH λ -ClaH (X # C) strain, and integrated into the ARG4 locus. Transformed cells were grown on YPD plates supplemented with 300mg/L blasticidin. Thus, the expression strain GS2-FezH lambda-ClaH (X # C) kappa (X # C) capable of expressing the asymmetric bispecific antibody was produced. In asymmetric bispecific antibodies, half were clazakizumab heavy and kappa light chains, with the CH1-CL domain of the Fab arm having an engineered interchain disulfide bond, with a "knob" mutation in the Fc, and the other half were fezakinumab heavy and lambda light chains, with the native interchain disulfide bond in the CH1-CL domain of the Fab arm, a "hole" and RF mutation in the Fc, and a 6xHis tag at the C-terminus of the heavy chain.
The expression strains were cultured in BMGY medium and antibody expression was induced in BMMY medium as described in example 2. The supernatant harvested by centrifugation was frozen at-20 ℃ until next use.
Protein a purified bispecific antibody was used as described in example 3 with PBS as 1: after 2-step dilution, the samples were divided into two portions, one portion of the antibody concentration was measured by ELISA on plates coated with AGL protein, and the other portion of the antibody binding to antigen was measured by ELISA on plates coated with human interleukin 22(IL22) (Sino Biological).
Representative examples are two bispecific anti-FezH λ -ClaH (K218C) κ (F118C) and FezH λ -ClaH (S132C) κ (F116C), correct pairing of light and heavy chains in bispecific IgG kappa/lambda containing a new pair of cysteine mutations (K218C/F118C or S132C/F116C) in the Fab arm heavy chain CH1 and kappa light chain CL domains of clazakizumab. In both of these asymmetric bispecific antibodies, half were the clazakizumab heavy and kappa light chains, which contained a new pair of cysteines in the Fab arms (K218C/F118C or S132C/F116C), and there was a "knob" mutation in the Fc. The other half was a fezakinumab heavy chain and a lambda light chain with native interchain disulfide bonds in their Fab arms, a "hole" and RF mutation in the Fc, and a 6xHis tag at the heavy chain C-terminus, as shown in fig. 11, these two IgG1(kappa/lambda) bispecific antibodies had similar antibody/antigen binding absorbance values to the positive control F126C/S121C under the same antibody concentration conditions (horizontal axis ELISA absorbance values).
These examples demonstrate that in IgG1 kappa/lambda bispecific antibody production, correct pairing of heavy and light chains can be achieved by mutating the CH1-CL domain of one Fab arm with cysteine pairs to form engineered disulfide bonds, replacing the native interchain disulfide bonds. If necessary, correct pairing of heavy and light chains can also be achieved by binding the charge mutations of K213D/E123K and the different cysteine pairings in the CH1-CL domain of the Fab arm to form engineered disulfide bonds.
Example 12 production of bispecific IgG1 at different Fab arms at the cysteine mutation and Charge mutation
PCR 1 was performed using synthetic trastuzumab heavy chain (HolerRF-His) DNA as a template, and using primer pairs of TraH F and ClaH-K213D R and ClaH-K213D F and TraH R for PCR amplification of the N-and C-terminal heavy chains. The N-and C-terminal heavy chains were connected by overlap extension PCR using a TraH F and TraH R primer pair.
PCR 2 was performed using the synthetic trastuzumab heavy chain (HolerRF-His) DNA as a template, and using primer pairs of TraH F and ClaH-K213E R and ClaH-K213E F and TraH R for PCR amplification of the N-and C-terminal heavy chains. The N-and C-terminal heavy chains were ligated by overlap extension PCR using TraH F and TraH R primers.
PCR 1 and 2 produced mutated trastuzumab heavy chains whose CH1 domain contained either the K213D or K213E mutations, the T366S/L368A/Y407V "pore" mutations in the Fc domain, the H435R, Y436F (RF) mutations, the 6xHis tag at the C-terminus.
The mutated trastuzumab heavy chain was digested with Xho I and Not I and inserted into the same digestion site of pPIC9(Invitrogen) to construct expression vectors for trastuzumab heavy chain, designated pPIC9-trah (d) and pPIC9-trah (e). Both vectors can express mutated trastuzumab heavy chains comprising either K213D or K213E mutations in the CH1 domain, T366S/L368A/Y407V "pore" mutations in the Fc domain, H435R, Y436F (RF) mutations and a 6xHis tag at the C-terminus.
PCR 3, using the synthetic trastuzumab kappa chain as template, PCR amplified N-and C-terminal kappa chains using the primer set Tra kappa F and Cla kappa-E123K R and the primer set Cla kappa-E123K F and Tra kappa R. The N-terminal and C-terminal kappa chains were ligated by overlap extension PCR using the Tra κ F and Tra κ R primer pairs.
PCR 4, using the synthetic trastuzumab kappa chain as a template, PCR amplified N-and C-terminal kappa chains with the primer set Tra kappa F and Cla kappa-E123R R and the primer set Cla kappa-E123R F and Tra kappa R. The N-terminal and C-terminal kappa chains were ligated by overlap extension PCR using the Tra κ F and Tra κ R primer pairs.
PCR 3 and 4 products were digested with Xho I and Not I and inserted into the same digestion site of pPICZ α -Tra κ -ARG2 to construct expression vectors for trastuzumab kappa chain, designated pPICZ α -Tra κ (K) -ARG2 and pPICZ α -Tra κ (R) -ARG 2. Both vectors can express mutated trastuzumab kappa chains that contain either the E123K or E123R mutation in the CL domain.
Expression vectors for pPICZ α -Tra κ (K) -ARG2 and pPICZ α -Tra κ (R) -ARG2 were linearized with Afe I, electroporated into GS2-1 and integrated at the ARG2 locus as described in example 2. Transformed cells were grown on YPD plates supplemented with 100mg/L Zeocin. Thus, novel expression strains GS2-Tra kappa (K) and GS2-Tra kappa (R) were produced, which can express the trastuzumab kappa light chain.
Expression vectors for pPIC9-TraH (D) and pPIC9-TraH (E) were linearized with Sal I, electroporated into the GS 2-TraK (K) and GS 2-TraK (R) strains, and integrated into the his4 locus. Transformed cells were selected on YNB plates. Thus, strains of GS2-TraH (D) kappa (K), GS2-TraH (D) kappa (R), GS2-TraH (E) kappa (K) and GS2-TraH (E) kappa (R) were produced to express mutated trastuzumab.
Certain expression vectors of the library of clazakizumab heavy chain mutants pEG-ClaH (X # C) were linearized with Pme I, electroporated into strains GS2-TraH (D) kappa (K), GS2-TraH (D) kappa (R), GS2-TraH (E) kappa (K) and GS2-TraH (E) kappa (R), and integrated at the AOX1 locus. Transformed cells were selected on YPD plates supplemented with 250mg/L G-418 sulfate. This produced a library of expression strains:
GS2-TraH(D)κ(K)-ClaH(X#C)、
GS2-TraH(D)κ(R)-ClaH(X#C)、
GS2-TraH(E)κ(K)-ClaH(X#C)、
GS2-TraH(E)κ(R)-ClaH(X#C)。
expression vectors for the clazakizumab kappa chain mutant library pPIC6-ARG4-Cla kappa (X # C) were linearized with Sma I, electroporated into the above expression strain library, and integrated into the ARG4 locus. The transformed strains were grown on YPD plates supplemented with 300mg/L blasticidin. This thus produced a library of expression strains:
GS2-TraH(D)κ(K)-ClaH(X#C)κ(X#C)、
GS2-TraH(D)κ(R)-ClaH(X#C)κ(X#C)、
GS2-TraH(E)κ(K)-ClaH(X#C)κ(X#C)、
GS2-TraH(E)κ(R)-ClaH(X#C)κ(X#C)。
the expression strains were cultured in BMGY medium and antibody expression was induced in BMMY medium as described in example 2. The supernatant harvested by centrifugation was frozen at-20 ℃ until next use.
Protein a purified bispecific antibody was used as described in example 3 with PBS as 1: after 2-step dilution, the solution was divided into two portions, one portion was measured for antibody concentration by ELISA on plates coated with AGL protein, and the other portion was measured for binding of antibody to antigen by ELISA on plates coated with human HER2/ErbB2 protein.
The following three groups of bispecific antibodies were utilized as representative examples:
TraH (D) kappa (K) -ClaH (S219C) kappa (P120C) abbreviated as S219C/P120C, K213D/E123K;
TraH (E) kappa (K) -ClaH (S219C) kappa (P120C) abbreviated as S219C/P120C, K213E/E123K;
TraH (D) kappa (R) -ClaH (S219C) kappa (P120C) abbreviated as S219C/P120C, K213D/E123R;
TraH (E) kappa (R) -ClaH (S219C) kappa (P120C) abbreviated as S219C/P120C, K213E/E123R;
TraH (D) K (K) -ClaH (K218C) K (F118C) abbreviated as K218C/F118C, K213D/E123K;
TraH (E) kappa (K) -ClaH (K218C) kappa (F118C) abbreviated as K218C/F118C, K213E/E123K;
TraH (D) kappa (R) -ClaH (K218C) kappa (F118C) abbreviated as K218C/F118C, K213D/E123R;
TraH (E) kappa (R) -ClaH (K218C) kappa (F118C) abbreviated as K218C/F118C, K213E/E123R,
TraH (D) kappa (K) -ClaH (V173C) kappa (N158C) abbreviated as V173C/N158C, K213D/E123K;
TraH (E) kappa (K) -ClaH (V173C) kappa (N158C) abbreviated as V173C/N158C, K213E/E123K;
TraH (D) kappa (R) -ClaH (V173C) kappa (N158C) abbreviated as V173C/N158C, K213D/E123R;
TraH (E) kappa (R) -ClaH (V173C) kappa (N158C), abbreviated as V173C/N158C, K213E/E123R.
In these asymmetric bispecific antibodies, half are the clazakizumab heavy and kappa light chains, which contain a new pair of cysteines in the Fab arm CH1-CL domain (S219C/P120C, K218C/F118C, or V173C/N158C), containing a "knob" mutation in the "Fc; the other half is trastuzumab heavy and light chains, with the natural interchain disulfide bonds retained in their Fab arms, but Fab arm CH1 contains charge mutations of K213D or K213E, charge mutations of E123K or E123R in Fab arm CL, a "hole" and RF mutation in Fc, a 6xHis tag at the C-terminus of the heavy chain,
as shown in fig. 12, all of these bispecific antibodies had higher antibody/antigen binding absorbance values (vertical axis ELISA absorbance values) than the positive control F126C/S121C under the same antibody concentration conditions (horizontal axis ELISA absorbance values).
These examples demonstrate that in IgG bispecific antibody production, correct pairing of heavy and light chains can be achieved by charge mutation of the CH1-CL domain of one Fab arm, and mutation of cysteine pairs into engineered disulfide bonds in the CH1-CL domain of the other Fab arm, instead of the natural interchain disulfide bonds.
Example 13 design of IgG4(Kappa) CH1 and CL Domain "cysteine mutations" library
Although the CH1 domain amino acid sequences and spatial structures of IgG1, IgG2, IgG3, and IgG4 are very similar, the cysteine pairs that form the native disulfide bonds differ in position. The light chain of IgG1 formed an interchain disulfide bond between the kappa and C-terminal cysteines of the CL domain of the lambda chain (cysteine at position 214 of the kappa light chain [ EU numbering ]; cysteine at position 214 of the lambda light chain [ Kabat numbering ]) and the C-terminal cysteine of the CH1 domain of the heavy chain (cysteine at position 220 of the heavy chain [ EU numbering ]). In contrast, the light chain of IgG2, IgG3, or IgG4 formed an interchain disulfide bond with the cysteine C-terminal to the CL domain in the kappa and lambda chains and the cysteine N-terminal to the CH1 domain in the heavy chain (cysteine at position 131 of heavy chain [ EU numbering ]) (fig. 1, a and B). Although the positions of cysteines in the amino acid sequence differ between IgG1 and other subtypes (IgG2, IgG3, IgG4), their spatial positions are similar to form interchain disulfide bonds. To understand where IgG2, IgG3, or IgG4 might form other disulfide bonds, we used Fab crystal structure (PDB code: 5DK3) of human IgG4(kappa) from protein databases as a representative structure, analyzed and designed cysteine mutation sites in CH1 and CL domains that might interact to form interchain disulfide bonds, designed libraries of IgG4(kappa) mutants in which heavy and light chain cysteine pairs that form native interchain disulfide bonds are mutated to serine and valine, respectively, and introduced new cysteine pairs at different positions in CH1-CL domain to form engineered interchain disulfide bonds. Table 16 lists the introduction of new cysteine pairs at different amino acid positions in the CH1-CL domain of IgG4(Kappa), which may form engineered interchain disulfide bonds.
TABLE 16 cysteine mutation library of IgG4(kappa) CH1-CL domain. The regions where cysteine mutations aggregate are referred to as a group. The CH1 domain and the CL domain are possibly formed with interchain disulfide bond, and the groups are respectively listed correspondingly.
Figure BDA0002762995080000491
Figure BDA0002762995080000501
Example 14 construction and expression of IgG4(Kappa) cysteine mutation library
Ixekizumab (IL-17A antibody) heavy chain (HoleRF-His) comprising a T366S/L368A/Y407V "well" mutation, H435R, Y436F (RF) mutation (EU numbering) and a 6XHis tag at the C-terminus was used as a representation of the IgG4 heavy chain (SEQ ID NO: 202). Ixekizumab heavy chain codon-optimized DNA (HoleRF-His) was synthesized and used as template for PCR amplification (SEQ ID NO: 203).
PCR 1, IxeH F (SEQ ID NO:204, primers with Xho I restriction enzyme site) and IxeH R (SEQ ID NO:205, primers with Not I restriction enzyme site) primer pairs were used for PCR amplification of Ixekizumab heavy chain (HoleRF-His), using the synthesized DNA as template. The PCR product was digested with Xho I and Not I and inserted into the same digestion site of pPIC9(Invitrogen) to construct an expression vector for Ixekizumab heavy chain (HoleRF-His), designated pPIC9-IxeH (HoleRF-His).
Ixekizumab light chain was used as a representative of the IgG4 kappa (kappa) light chain (SEQ ID NO: 206). Codon-optimized DNA for Ixekizumab kappa light chain (SEQ ID NO:207) was synthesized and used as a template for PCR amplification.
PCR 2 Ixe kF (SEQ ID NO:208, with Xho I restriction enzyme sites) and Ixe kR (SEQ ID NO:209, with Not I restriction enzyme sites) primer pairs were used for PCR amplification of Ixekizumab kappa light chain using the synthesized Ixekizumab light chain as template. The PCR product was digested with Xho I and Not I and inserted into the same digestion site of pPICZ α -Tra κ -ARG2 (as described in example 2) to construct an expression vector for the Ixekizumab light chain, designated pPICZ α -Ixe κ -ARG 2.
PCR 3, EG F and EG R primer pairs were used to PCR amplify the pEG linear fragment with the pEG vector as template.
An olykizumab (IL6 mab) heavy chain (knob) containing the T366W "knob" mutation and the C131S mutation [ EU numbering ] was used as another representation of the IgG4 heavy chain (SEQ ID NO: 210). Codon-optimized DNA (SEQ ID NO:211) of the olykizumab heavy chain (knob) was synthesized and used as template for PCR amplification.
In PCR 4, heavy chain N-terminal primer OloH-Nt (SEQ ID NO:212) and C-terminal primer OloH-Ct (SEQ ID NO:213) and corresponding reverse primer (R) and forward primer (F) in Table 17 respectively form different primer pairs for PCR amplification of N-terminal and C-terminal heavy chains, and synthesized olykizumab heavy chain (knob) is used as a template.
TABLE 17 PCR primers for mutation of wild amino acid to cysteine in the Clazakizumab heavy chain (EU numbering)
Figure BDA0002762995080000502
Figure BDA0002762995080000511
PCR 5, PCR products of the N-and C-terminal heavy chains were ligated by overlap extension PCR using the OloH-Nt and OloH-Ct primer pairs. In this way, an olokizumab heavy chain mutant was generated comprising a wild amino acid mutation to cysteine, a T366W "knob" mutation and a C131S mutation. One of them contains the T366W "knob" mutation and the wild cysteine at position 134, and is capable of forming a natural interchain disulfide bond.
PCR 6, heavy chain N-terminal primer OloH-Nt and OloH-K147D R (SEQ ID NO:246) primer pair and OloH-K147D F (SEQ ID NO:247) and C-terminal primer OloH-Ct primer pair were used for PCR amplification of N-terminal and C-terminal heavy chains, respectively, using a heavy chain containing a T366W "knob" mutation and a 134-position wild cysteine as a template.
PCR 7, PCR products of the N-and C-terminal heavy chains were ligated by overlap extension PCR using the OloH-Nt and OloH-Ct primer pairs. In this way, an olykizumab heavy chain mutant was generated which comprises the K147D mutation, the T366W "knob" mutation and the wild cysteine at position 134, capable of forming the natural interchain disulfide bond
The olykizumab heavy chain mutant was inserted into the pEG linear fragment using the ClonExpress II one-step cloning kit (Vazyme) to generate a library of expression vectors designated pEG-OloH (X # C) (OloH: olykizumab heavy chain, (X # C): wild amino acid at position # was mutated to cysteine). One of the expression vectors is pEG-OloH (K147D) (OloH: olokizumab heavy chain, K147D: 147 lysine mutated to aspartic acid).
Olokizuzumab kappa (kappa) light chain containing the C214V mutation was used as another representation of IgG4 kappa light chain (SEQ ID NO: 248). Olokizumab kappa light chain codon-optimized DNA (SEQ ID NO:249) was synthesized and used as a template for PCR amplification.
PCR 8, light chain N-terminal primer Olo κ -Nt (SEQ ID NO:250 with Xho I restriction site) and light chain C-terminal primer Olo κ -Ct (SEQ ID NO:251 with Not I restriction site) constituting different primer pairs with the corresponding reverse primer (R) and forward primer (F) in Table 18, respectively, for PCR amplification of N-and C-terminal kappa light chains using the synthesized Olokizumab kappa chain as a template.
TABLE 18 PCR primers for the mutation of the wild amino acid to cysteine in the Olokizumab kappa (kappa) light chain [ EU numbering ]
Mutations Reverse primer (R) Forward primer (F)
Oloκ-S114C Oloκ-S114C R(SEQ ID NO:252) Oloκ-S114C F(SEQ ID NO:253)
Oloκ-F116C Oloκ-S114C R(SEQ ID NO:252) Oloκ-F116C F(SEQ ID NO:254)
Oloκ-F118C Oloκ-S114C R(SEQ ID NO:252) Oloκ-F118C F(SEQ ID NO:255)
Oloκ-P119C Oloκ-S114C R(SEQ ID NO:252) Oloκ-P119C F(SEQ ID NO:256)
Oloκ-P120C Oloκ-S114C R(SEQ ID NO:252) Oloκ-P120C F(SEQ ID NO:257)
Oloκ-S121C Oloκ-S114C R(SEQ ID NO:252) Oloκ-S121C F(SEQ ID NO:258)
Oloκ-N158C Oloκ-N158C R(SEQ ID NO:259) Oloκ-N158C F(SEQ ID NO:260)
Oloκ-Q160C Oloκ-N158C R(SEQ ID NO:259) Oloκ-Q160C F(SEQ ID NO:261)
Oloκ-S162C Oloκ-N158C R(SEQ ID NO:259) Oloκ-S162C F(SEQ ID NO:262)
Oloκ-V163C Oloκ-N158C R(SEQ ID NO:259) Oloκ-V163C F(SEQ ID NO:263)
Oloκ-T164C Oloκ-N158C R(SEQ ID NO:259) Oloκ-T164C F(SEQ ID NO:264)
Oloκ-E165C Oloκ-N158C R(SEQ ID NO:259) Oloκ-E165C F(SEQ ID NO:265)
Oloκ-T172C Oloκ-T172C R(SEQ ID NO:266) Oloκ-T172C F(SEQ ID NO:267)
Oloκ-S174C Oloκ-T172C R(SEQ ID NO:266) Oloκ-S174C F(SEQ ID NO:268)
Oloκ-S176C Oloκ-T172C R(SEQ ID NO:266) Oloκ-S176C F(SEQ ID NO:269)
Oloκ-T178C Oloκ-T172C R(SEQ ID NO:266) Oloκ-T178C F(SEQ ID NO:270)
Oloκ-T180C Oloκ-T172C R(SEQ ID NO:266) Oloκ-T180C F(SEQ ID NO:271)
Oloκ-S182C Oloκ-T172C R(SEQ ID NO:266) Oloκ-S182C F(SEQ ID NO:272)
Oloκ-F209C Oloκ-F209C R(SEQ ID NO:273)
Oloκ-N210C Oloκ-N210C R(SEQ ID NO:274)
Oloκ-R211C Oloκ-R211C R(SEQ ID NO:275)
Oloκ-G212C Oloκ-G212C R(SEQ ID NO:276)
Oloκ-E213C Oloκ-E213C R(SEQ ID NO:277)
Oloκ-V214C Oloκ-V214C R(SEQ ID NO:278)
PCR 9 PCR products of the N-and C-terminal light chains were ligated by overlap extension PCR using primer pairs Olo kappa-Nt and Olo kappa-Ct. In this way, an Olokizumab kappa light chain mutant comprising a mutation of the wild amino acid to cysteine and a C214V mutation was generated. The Olokizumab kappa light chain can be directly PCR amplified using Olo kappa-Nt and the corresponding reverse primer (R) in Table 18, mutating the C-terminal wild amino acid to cysteine. Direct PCR amplification using the reverse primer (R) Olo K-Nt and Olo K-V214C produced an Olokizumab kappa light chain with a wild-type cysteine at position 214, capable of forming native interchain disulfide bonds.
PCR 10, a light chain N-terminal primer Olo kappa-Nt and Olo kappa-T129R R (SEQ ID NO:279) primer pair and Olo kappa-T129R F (SEQ ID NO:280) and a C-terminal primer Olo kappa-Ct primer pair were used for PCR amplification of the N-and C-terminal light chains, respectively, using Olokizuzumab kappa light chain with a wild-type cysteine at position 214 as a template.
PCR 11, PCR products of the N-and C-terminal heavy chains were ligated by overlap extension PCR using primer pairs Olo κ -Nt and Olo κ -Ct. In this way an olykizumab light chain mutant was generated which contained the T129R mutation and the wild cysteine at position 214 capable of forming a native interchain disulfide bond
The Olokizumab kappa light chain mutant was digested with Xho I and Not I and inserted into the same digestion site of pPIC6 α -ARG4 to generate a library of light chain mutant expression vectors, designated pPIC6-ARG4-Olo κ (X # C) (Olo κ: Olokizumab kappa light chain, (X # C): wild amino acid at # was mutated to cysteine).
The ARG2 homologous sequence was digested with restriction enzyme Afe I, the pPICZ α -Ixe κ -ARG2 expression vector was linearized, electroporated into GS2-1, and integrated at the ARG2 locus by recombination of the ARG 25 'and 3' homologous sequences as described in example 2. Transformed cells were grown on YPD plates supplemented with 100mg/L Zeocin. This gave rise to the novel expression strain GS2-Ixe K.
The pPIC9-IxeH (HoleRF-His) expression vector was linearized with the restriction enzyme Sal I, electroporated into the GS2-Ixe K strain, and integrated into the His4 locus of the Pichia pastoris genome. Transformed cells were selected on YNB plates. This gave rise to the novel expression strain GS2-IxeH κ.
Each expression vector of the Olokizumab heavy chain mutant library pEG-OloH (X # C) was linearized with the restriction enzyme Pme I, electroporated into the GS2-IxeH kappa strain, and integrated into the AOX1 locus of the Pichia genome. Transformed cells were selected on YPD plates supplemented with 250mg/L G-418 sulfate. This produced the expression strain library GS2-IxeH κ -OloH (X # C).
Each expression vector of the Olokizumab kappa light chain mutant library pPIC6-ARG4-Olo kappa (X # C) was linearized within the ARG 43 'and 5' homology sequences using restriction enzyme Sma I and electroporated into the expression strain library GS2-IxeH kappa-OloH (X # C). The linear expression vector was integrated at the ARG4 locus by recombination of ARG 43 'and 5' homologous sequences. The transformed cells were grown on YPD plates supplemented with 300mg/L blasticidin, thus giving rise to the expression strain library GS2-IxeH κ -OloH (X # C) κ (X # C). They can express asymmetric bispecific antibodies, half of which are the Olokizumab heavy and light chains with engineered interchain disulfide bonds in the CH1 and CL domains of the Fab arms and "knob" mutations in the Fc. The other half is the Ixekizumab heavy and light chains with native interchain disulfide bonds in the CH1 and CL domains of the Fab arms, a "hole" and RF mutation in the Fc, and a 6xHis tag at the C-terminus of the heavy chain.
The expression strains were cultured in BMGY medium and antibody expression was induced in BMMY medium as described in example 2. The supernatant harvested by centrifugation was frozen at-20 ℃ until next use.
Example 15 screening and identification of IgG4(Kappa) cysteine mutation library
Protein a purified bispecific antibody was used as described in example 3 with PBS as 1: after 2-step dilution, the samples were divided into two portions, one portion of the bispecific antibody was directly coated on the plate, and the antibody concentration was measured by ELISA using anti-Fc-HRP (Invitrogen), and the other portion of the bispecific antibody was coated on the plate with human interleukin 17A (IL17A) (Sino Biological) and the binding of the antibody to the antigen was measured by ELISA.
According to the report, when the 147 th lysine in Olokizumab heavy chain CH1 is mutated to aspartic acid (K147D), the 129 th threonine in kappa light chain CL is mutated to arginine (T129R) [ EU numbering]And can promote the correct pairing of the heavy chain and the light chain to reach 80-99%. This asymmetric bispecific antibody was designated IxeH κ -OloH (K147D) κ (T129R), abbreviated as K147D/T129R, and used as a positive control. (Maximiian)
Figure BDA0002762995080000542
Carolin Sellmann,Daniel Maresch,Claudia Halbig,Stefan Becker,Lars Toleikis,
Figure BDA0002762995080000541
Hock,and Florian Rüker,Protein Engineering,Design&Selection 30,685-696,2017). We found that the F126C/S121C cysteine pair mutation reported in the literature failed to efficiently form interchain disulfide bonds in IgG4(kappa) and failed to serve as a positive control.
The engineered interchain disulfide bonds in bispecific antibodies were identified using ELISA methods for promoting proper pairing of heavy and light chains as described in example 3.
As shown in fig. 13, the bispecific antibody positive control (K147D/T129R) showed very high antibody/antigen binding ELISA absorbance values (vertical axis) under the same antibody concentration conditions (horizontal axis ELISA absorbance values). Under the same antibody concentration conditions (horizontal axis ELISA absorbance values), many bispecific antibodies we constructed had the same or higher antibody/antigen binding absorbance values as the positive control K147D/T129R. This indicates that the heavy and light chains of our bispecific antibody are able to pair correctly. Thus, in IgG4(kappa) bispecific antibody production, correct heavy and light chain pairing can be achieved by replacing the natural interchain disulfide bond with a different cysteine pairing to form an engineered disulfide bond in the CH1-CL domain of one Fab arm, including:
A129C/F209C、A129C/N210C、P130C/F116C、P130C/F118C、P130C/P119C、P130C/N210C、P130C/R211C、S132C/S114C、S132C/F116C、S132C/F118C、S132C/P120C、S132C/R211C、S132C/E213C、R133C/P119C、R133C/R211C、R133C/E213C、T135C/F116C、T135C/P120C、G166C/T178C、H168C/N158C、F170C/F182C、V173C/Q160C、V173C/S162C、Q175C/S162C、Q175C/T180C、S181C/T172C、S181C/S176C、S183C/N158C、S183C/S176C、V185C/E165C、V185C/T178C
(Each pair of cysteine mutations are listed in the following manner: IgG4 heavy chain wild amino acid [ EU numbering ] mutation to cysteine/kappa light chain wild amino acid [ EU numbering ] mutation to cysteine).
Example 16 design of IgG4(lambda) CH1 and CL Domain chain "cysteine mutation" libraries
We used the Fab crystal structure (PDB code: 5GKS) of human IgG2(lambda) from the protein database as a representative structure, analyzed and designed cysteine mutation sites in the CH1 and CL domains that might interact to form interchain disulfide bonds, designed a library of IgG4(kappa) mutants in which the heavy and light chain cysteine pairs forming the native interchain disulfide bonds were mutated to serine and valine, respectively, and introduced new cysteine pairs at different positions in the CH1-CL domain to form engineered interchain disulfide bonds. Table 19 lists the introduction of new cysteine pairs at different amino acid positions in the CH1-CL domain of IgG4(lambda), which may form engineered interchain disulfide bonds.
TABLE 19 cysteine mutagenesis library of IgG4(lambda) CH1-CL domain. The regions where cysteine mutations aggregate are referred to as a group. The CH1 domain and the CL domain are possibly formed with interchain disulfide bond, and the groups are respectively listed correspondingly.
Figure BDA0002762995080000551
The sequences used in the present invention are shown below:
SEQ ID NO:1
EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQAPGKGLEWVARIYPTNGYTRYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCSRWGGDGFYAMDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNRFTQKSLSLSPGHHHHHH
SEQ ID NO:2
GAGGTCCAGTTGGTCGAGTCTGGTGGTGGTTTGGTTCAGCCAGGTGGATCTTTGAGATTGTCTTGTGCAGCATCTGGATTCAACATTAAAGATACTTACATTCATTGGGTTAGACAGGCACCAGGTAAAGGTTTGGAGTGGGTTGCTAGAATTTACCCAACTAACGGTTACACTAGATACGCTGATTCTGTCAAGGGTAGATTCACTATTTCTGCTGATACATCTAAAAACACTGCTTACTTGCAAATGAACTCTTTGAGAGCTGAAGATACAGCCGTTTACTATTGCTCCAGATGGGGAGGAGACGGATTTTACGCTATGGATTACTGGGGACAAGGTACTTTGGTTACTGTTTCTTCTGCTTCTACTAAGGGACCATCTGTCTTTCCATTGGCACCATCTTCTAAATCTACTTCTGGAGGAACTGCCGCCTTGGGATGTTTGGTCAAGGATTATTTCCCTGAGCCTGTCACAGTTTCTTGGAACTCTGGTGCATTGACATCTGGTGTTCACACATTCCCAGCAGTCTTGCAATCTTCTGGTTTGTACTCTTTGTCTTCTGTCGTTACAGTCCCTTCTTCTTCTTTGGGTACTCAAACCTACATCTGTAATGTTAATCATAAGCCTTCTAACACAAAAGTTGATAAGAAAGTCGAGCCAAAATCTTGCGACAAAACACATACCTGCCCACCATGTCCAGCTCCTGAGTTGTTGGGAGGTCCTTCTGTTTTTTTGTTCCCACCTAAGCCAAAGGATACATTGATGATTTCCAGAACTCCTGAAGTTACATGTGTCGTTGTCGATGTTTCTCATGAAGATCCTGAGGTTAAATTCAATTGGTACGTTGATGGTGTCGAAGTTCATAACGCTAAGACTAAACCAAGAGAAGAACAGTACAATTCTACTTATAGAGTCGTCTCTGTTTTGACCGTTTTGCATCAAGATTGGTTGAACGGAAAGGAGTATAAGTGCAAAGTTTCTAATAAGGCTTTGCCTGCCCCTATTGAGAAGACCATTTCTAAGGCTAAAGGTCAGCCTAGAGAACCTCAAGTTTACACTTTGCCACCTTCCAGAGAGGAAATGACTAAGAACCAGGTCTCTTTGtctTGCgctGTTAAGGGTTTTTACCCTTCTGACATCGCTGTTGAGTGGGAATCTAACGGACAGCCTGAAAATAACTATAAAACAACACCTCCAGTTTTGGATTCTGACGGTTCTTTCTTTTTGgttTCTAAGTTGACAGTCGATAAGTCCAGATGGCAACAAGGAAACGTCTTTTCTTGTTCTGTTATGCATGAAGCCTTGCATAATagatttACCCAGAAATCTTTGTCTTTGTCTCCAGGTcatcatcatcatcatcat
SEQ ID NO:3
ccgCTCGAGAAAAGAGAGGCTGAAGCTGAGGTCCAGTTGGTCGAGTCT
SEQ ID NO:4
ataagaatGCGGCCGCtcaatgatgatgatgatgatgACCTGGAGACAAAGACAAAGA
SEQ ID NO:5
DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKAPKLLIYSASFLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQHYTTPPTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
SEQ ID NO:6
GATATTCAAATGACTCAATCTCCTTCTTCTTTGTCTGCTTCTGTCGGAGATAGAGTCACTATCACTTGTAGAGCTTCTCAAGACGTCAACACCGCTGTTGCTTGGTATCAGCAAAAGCCAGGTAAGGCTCCAAAATTGTTGATTTACTCTGCATCTTTTTTGTACTCTGGTGTCCCTTCCAGATTCTCTGGTTCTAGGTCTGGAACCGATTTTACTTTGACTATCTCTTCTTTGCAGCCTGAAGATTTCGCAACTTACTACTGTCAACAGCATTACACTACTCCACCAACTTTTGGTCAAGGAACTAAAGTTGAGATTAAGAGAACTGTCGCTGCACCTTCTGTTTTCATTTTTCCTCCATCTGACGAGCAGTTGAAGTCTGGTACAGCATCTGTTGTCTGTTTGTTGAACAACTTCTACCCAAGAGAAGCAAAGGTTCAATGGAAGGTTGACAACGCCTTGCAATCTGGTAACTCTCAGGAATCTGTTACTGAACAAGATTCTAAGGATTCTACTTACTCTTTGTCTTCTACATTGACATTGTCTAAGGCTGATTACGAAAAGCATAAGGTTTACGCTTGTGAAGTTACTCATCAAGGATTGTCTTCTCCTGTCACAAAATCTTTTAACAGAGGTGAGTGT
SEQ ID NO:7
CCGCTCGAGAAAAGAGAGGCTGAAGCTGATATTCAAATGACTCAATCTCCTTC
SEQ ID NO:8
ATAAGAATGCGGCCGCTCAACACTCACCTCTGTTAAAAGA
SEQ ID NO:9
AGACGAGATCAATTAGAACCTGTTTTGGCAATAACCGAGGATTAGGAACAAAGTCCGGGTAATTATGCGACTCTCTCTTTTTCATATGCAGGTCGAGCAAGAATCTTGTTTTTCGTGGTGGGACTGGGCAGCAATTAACAACCAATCGGCACTTGCAATAAGTCGATTAGCGCATGGTGGGGGACAGTAGATAGCTGCTGAAATTTTTGGGTGCGGACAATTTCAAGAGTCTGAGGCCCTGCTCTCACTAGCAGTCAGAATCATCTGCCTCACATACAGTCTCCTGATGCTGCTACTTACTTGGCAAGCGATGATGTTTACACAATTGCAGCTTTTTAGTTGCTGTCATGGCTCTAGAATTCCTTGGCCTTTTATCAGCATCTCAGGCAACAATGTGAAATGCGCACCTTCAGATTTTTATATTGGTGGACGGAAATGGTAGGAAGTAGTGAAGAAAAGGTAGCGCGAGGGCATTGTCCCCCCATGCGAAGAAAAATTACTAGCATAAAAAAATGGAAACAAGTGACCTCCGCAGCATGTCTGCCCACTTTATACTGAAACTACATTCTTGCTAATGGATCGTAAAACACTATCACCTGGTATGTCGTAATGGACTTGATGGCGTGTACTTTGCTTTACTGAGTTCTAGTTGCCTGCTCAGTGCCGAAGAACATGGGGCTCCATGTGTATTGTATTCTCTTATCTAGAACAATCGAAGCGCTACTGACTTGAAATCCTTGAATGATAGACATAGATTGGACCATGACAAGGAGAACTTATTCACAATTGAAAAGTACATTTTCATTGACCCATTGGGAGGTATCCCATCTTTGGAGAGGTACAAAAGTGCACATGTATATATCAATCTATTACAAGAGTATGAAGACATTGTGTCGGAGCTTTACATAGGGTTCTTAAAGACTGGAGAAAGGGACCAGCATTTGAAGAACTTAAACTTGCTTCAGAAATTGTTGCAGGTAACCACAGATGCATCAGGAATAGTTACTACTCCTCAAATCGCCATGTTGAATCAGACCGACCGATTCACCAATCCAATAATTTACAATGTCTTAACCGATAGGCCGACAATATCATCGTCATTACCGGTTGATTTGAAAAAGACCCCTTTGCTAAACACTTCAATCATTAGGAGAGGCGTACCGGTTGAAGTTTATGTGGACGAATCATCTGACAAAAGTGGGCTGTGCCTAGACTCTCTTCTGAAACGAGGAGCTTTAGACTTAGAAAAGCTTAAGAATGTGATCGATTTGTCGTTTCGAAAGGACTTGAATATGAAAAAGTACCTAGCCAGAGTAAAGAACAATGTTGCAGCTATCTTAATCGCTGGAGATTACGAAGGCGTGATCATAGTTACTTGGGAGGTAACGGATGAAGAAAAGCCGCAGAAAATAGCTTATTTAGATAAGTTTGCAGTGTCTCCTAAGGCCCAAGGATCGACAGGGGTTGCCGATGTTCTTTTCAAGTCATTATTGTCCAATTTTGAGAACGAATTGTTCTGGAGATCTCGATCTAATAATCCAGTGAACAAATGGTACTTTGAACGGAGCAAAGGTTCTCTTACTGTTACTGGCACAAATTGGAAATGCTTCTACACCGGCAAGAACTATCCTTCATTGGATAGAATGAAGGGCTATTTCAACATCTGTGAGAGAATCCAACCTTCCTGGAATGGATAAGCGAATTTCTTATGATTTATGATTTTTATTATTAAATAAGTTATAAAAAAAATAAGTGTATACAAATTTTAAAGTGACTCTTAGGTTTTAAAACGAAAATTCTTATTCTTGAGTAACTCTTTCCTGTAGGTCAGGTTGCTTTCTCAGGTATAGCATGAGGTCGCTCTTATTGACCACACCTCTACCGGCATGCCGAGCAAATGCCTGCAAATCGCTCCCCATTTCACCCAATTGTAGATATGCTAACTCCAGCAATGAGTTGATGAATCTCGGTGTGTATTTTATGTCCTCAGAGGACAA
SEQ ID NO:10
GACCTTCGTTTGTGCGGATCCAGACGAGATCAATTAGAACCTG
SEQ ID NO:11
GCTATGGTGTGTGGGGGATCCTTGTCCTCTGAGGACATAAAATAC
SEQ ID NO:12
GGAGACCAACATGTGAGCAAAAG
SEQ ID NO:13
GGATCCGCACAAACGAAGGTC
SEQ ID NO:14
cgtttgtgcggatccGACCTGCAGGGGGGGGGGGG
SEQ ID NO:15
CACATGTTGGTCTCCGCGCCAGCAACCGCACCTGTG
SEQ ID NO:16
CATCATCATCATCATCATTGAGTTTG
SEQ ID NO:17
AGCTTCAGCCTCTCTTTTCTCGAG
SEQ ID NO:18
EVQLVESGGGLVQPGGSLRLSCAASGFSLSNYYVTWVRQAPGKGLEWVGIIYGSDETAYATSAIGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDDSSDWDAKFNLWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSVDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG
SEQ ID NO:19
GAGGTCCAGTTGGTCGAGTCTGGTGGTGGTTTGGTTCAGCCAGGTGGATCTTTGAGATTGTCTTGTGCAGCATCTGGATTCTCTTTGTCTAACTACTACGTTACTTGGGTTAGACAGGCACCAGGTAAAGGTTTGGAGTGGGTTGGTATTATTTACGGTTCTGATGAAACTGCTTACGCTACTTCTGCTATTGGTAGATTCACTATTTCTAGAGATAACTCTAAAAACACTTTGTACTTGCAAATGAACTCTTTGAGAGCTGAAGATACAGCCGTTTACTATTGCGCTAGAGATGATTCTTCTGATTGGGATGCTAAGTTTAACTTGTGGGGACAAGGTACTTTGGTTACTGTTTCTTCTGCTTCTACTAAGGGACCATCTGTCTTTCCATTGGCACCATCTTCTAAATCTACTTCTGGAGGAACTGCCGCCTTGGGATGTTTGGTCAAGGATTATTTCCCTGAGCCTGTCACAGTTTCTTGGAACTCTGGTGCATTGACATCTGGTGTTCACACATTCCCAGCAGTCTTGCAATCTTCTGGTTTGTACTCTTTGTCTTCTGTCGTTACAGTCCCTTCTTCTTCTTTGGGTACTCAAACCTACATCTGTAATGTTAATCATAAGCCTTCTAACACAAAAGTTGATAAGAAAGTCGAGCCAAAATCTgttGACAAAACACATACCTGCCCACCATGTCCAGCTCCTGAGTTGTTGGGAGGTCCTTCTGTTTTTTTGTTCCCACCTAAGCCAAAGGATACATTGATGATTTCCAGAACTCCTGAAGTTACATGTGTCGTTGTCGATGTTTCTCATGAAGATCCTGAGGTTAAATTCAATTGGTACGTTGATGGTGTCGAAGTTCATAACGCTAAGACTAAACCAAGAGAAGAACAGTACAATTCTACTTATAGAGTCGTCTCTGTTTTGACCGTTTTGCATCAAGATTGGTTGAACGGAAAGGAGTATAAGTGCAAAGTTTCTAATAAGGCTTTGCCTGCCCCTATTGAGAAGACCATTTCTAAGGCTAAAGGTCAGCCTAGAGAACCTCAAGTTTACACTTTGCCACCTTCCAGAGAGGAAATGACTAAGAACCAGGTCTCTTTGTGGTGCTTGGTTAAGGGTTTTTACCCTTCTGACATCGCTGTTGAGTGGGAATCTAACGGACAGCCTGAAAATAACTATAAAACAACACCTCCAGTTTTGGATTCTGACGGTTCTTTCTTTTTGTATTCTAAGTTGACAGTCGATAAGTCCAGATGGCAACAAGGAAACGTCTTTTCTTGTTCTGTTATGCATGAAGCCTTGCATAATCATTACACCCAGAAATCTTTGTCTTTGTCTCCAGGT
SEQ ID NO:20
AGAGAGGCTGAAGCTGAGGTCCAGTTGGTCGAGTCTGGTG
SEQ ID NO:21
TCAATGATGATGATGATGATGtcaACCTGGAGACAAAGACAAAGATTTC
SEQ ID NO:22
GACAGATGGTCCCTTAGTAGAAGC
SEQ ID NO:23
CTAAGGGACCATCTGTCtgtCCATTG
SEQ ID NO:24
CTAAGGGACCATCTGTCTTTCCAtgtGCACCATCTTC
SEQ ID NO:25
CTAAGGGACCATCTGTCTTTCCATTGtgtCCATCTTCTAAA
SEQ ID NO:26
CTAAGGGACCATCTGTCTTTCCATTGGCAtgtTCTTCTAAATCTACTTC
SEQ ID NO:27
CTAAGGGACCATCTGTCTTTCCATTGGCACCAtgtTCT
SEQ ID NO:28
CTAAGGGACCATCTGTCTTTCCATTGGCACCATCTtgtAAATC
SEQ ID NO:29
CTAAGGGACCATCTGTCTTTCCATTGGCACCATCTTCTtgtTCTACT
SEQ ID NO:30
CTAAGGGACCATCTGTCTTTCCATTGGCACCATCTTCTAAAtgtACTTCTGGAG
SEQ ID NO:31
CTAAGGGACCATCTGTCTTTCCATTGGCACCATCTTCTAAATCTtgtTCTGGAGGAACT
SEQ ID NO:32
AGATGTCAATGCACCAGAGTTCC
SEQ ID NO:33
GGTGCATTGACATCTtgtGTTCAC
SEQ ID NO:34
GGTGCATTGACATCTGGTGTTtgtACATTC
SEQ ID NO:35
GGTGCATTGACATCTGGTGTTCACACAtgtCCAGCA
SEQ ID NO:36
GGTGCATTGACATCTGGTGTTCACACATTCtgtGCAGTC
SEQ ID NO:37
GGTGCATTGACATCTGGTGTTCACACATTCCCAGCAtgtTTGCAA
SEQ ID NO:38
GGTGCATTGACATCTGGTGTTCACACATTCCCAGCAGTCTTGtgtTCTTCT
SEQ ID NO:39
TTGCAAGACTGCTGGGAATGTGTG
SEQ ID NO:40
CCAGCAGTCTTGCAAtgtTCTGGTTTG
SEQ ID NO:41
CCAGCAGTCTTGCAATCTtgtGGTTTGTAC
SEQ ID NO:42
CCAGCAGTCTTGCAATCTTCTtgtTTGTACTCTTTGTC
SEQ ID NO:43
CCAGCAGTCTTGCAATCTTCTGGTtgtTACTCTTTGTCTTC
SEQ ID NO:44
GTACAAACCAGAAGATTGCAAGAC
SEQ ID NO:45
CAATCTTCTGGTTTGTACtgtTTGTC
SEQ ID NO:46
CAATCTTCTGGTTTGTACTCTTTGtgtTCTGTC
SEQ ID NO:47
CAATCTTCTGGTTTGTACTCTTTGTCTTCTtgtGTTACAGTCCCTTC
SEQ ID NO:48
CAATCTTCTGGTTTGTACTCTTTGTCTTCTGTCGTTtgtGCTCCT
SEQ ID NO:49
TGGCTCGACTCTCTTATCAAC
SEQ ID NO:50
AAGAAAGTCGAGCCAtgtTCTGTTGAC
SEQ ID NO:51
AAGAAAGTCGAGCCAAAAtgtGTTGAC
SEQ ID NO:52
AAGAAAGTCGAGCCAAAATCTTGCGAC
SEQ ID NO:53
AGGTTTTATACTGAGTTTGTTAATGATACAATAAACTGTTATAGTACATACAATTGAAACTCTCTTATCTATACTGGGGGACCTTCTCGCAGAATGGTATAAATATCTACTAACTGACTGTCGTACGGCCTAGGGGTCTCTTCTTCGATTATTTGCAGGTCGGAACATCCTTCGTCTGATGCGGATCTCCTGAGACAAAGTTCACGGGTATCTAGTATTCTATCAGCATAAATGGAGGACCTTTCTAAACTAAACTTTGAATCGTCTCCAGCAGCATCCTCGCATAATCCTTTTGTCATTTCCTCTATGTCTATTGTCACTGTGGTTGGCGCATCAAGAGTCGTCCTTCTGTAAACCGGTACAGAATTCCTACCACTAGAAGCTTGAAATGGGGAGGGTTTCAGCTTTGTATCCCGATACTGTGCTTTAAAAAGGGAGTCCAAACTGAAATCTTTTTCGGAATCATTGGATGATACCTCTGTATTAGATCTCCTATGTATCGGTTTCCTCGGGTAGATAGAACTGTCGACAGAGTCTCTAGCAAATTGAGAATTGGCTTTAGACTTCGGAGAAGTAGGTGACGATGTGGTAGATATATCAGCAGATGAAAAGACTGAATTTTTTCTCTCTGGTGATGAGTTGATTCCCTCTTGGTGTTGATATCTTGAACCGGGCTCATGTTGAACCTTTGAATTCAAAAAGGTAGCTTGAAGTTGCTCATTGACAGCATCTGCCACGTCGTATCTTGCAACATCTTTGGGAAACTGATACGAAGTGTTCAACATCTTTGTTGCGGTATGACAAGAGCACTTCGTTGTACTTTTATCAGAGAAAAGAAACACCTCAATTATGGTATTTAGGTTTATATATTACGCAAATTCTATTAGAAAACCCGGGAGCTGGAGCTTTGGCTGGTCATCCTTATGGAATTGATCGTGAATACATTGCTGAGAGATTAGGGTTTGATTCTGTTATTGGTAATTCTTTGGCCGCTGTTTCAGACAGAGATTTTGTAGTCGAAACCATGTTCTGGTCTTCGTTGTTTATGAATCATATTTCTCGATTCTCAGAAGATTTGATCATTTACTCCACTGGAGAGTTTGGATTTATCAAGTTGGCAGATGCTTATTCTACTGGATCTTCTCTGATGCCTACAAAAAAAAACCCAGACTCTTTGGAGTTATTGAGGGGTAAATCTGGTAGATGTTTTGGGGCCTTGGCTGGTTTCCTCATGTCTATTAAGTCCATTCCGTCAACCTATAACAAAGATATGCAAGAGGATAAGGAGCCTTTATTTGATACTCTAATCACTGTAGAGCACTCGATTTTGATAGCATCCGGTGTAGTTTCTACCTTGAACATTGATGCCGAACGAATGAAGAATGCTCTAACTATGGATATGCTGGCTACAGATCTTGCCGACTATTTAGTTAGAAGGGGAGTTCCATTCAGAGAAACTCACCACATTTCTGGTGAATGTGTCAGACAAGCCGAGGAGTTGAACCTTTCTGGTATTGATCAGTTGTCCCTCGAACAATTGAAATCCATTGACTCCCGTTTTGAGGCTGATGTGGCTTCAACGTTTGACTTTGAAGCCAGTGTTGAAAAAAGAACTGCCACCGGAGGAACTTCTAAGACTGCTGTTTTAAAGCAATTGGATGCACTGAATGAAAAGCTAGAGTCTTGAGCGAATTTCTTATGATTTATGATTTTTATTATTAAATAAGTTATAAAAAAAATAAGTGTATACAAATTTTAAAGTGACTCTTAGGTTTTAAAACGAAAATTCTTATTCTTGAGTAACTCTTTCCTGTAGGTCAGGTTGCTTTCTCAGGTATAGCATGAGGTCGCTCTTATTGACCACACCTCTACCGGCATGCCGAGCAAATGCCTGCAAATCGCTCCCCATTTCACCCAATTGTAGATATGCTAACTCCAGCAATGAGTTGATGAATCTCGGTGTGTATTTTATGTCCTCAGAGGACAA
SEQ ID NO:54
GACCTTCGTTTGTGCGGATCCAGGTTTTATACTGAGTTTGTTA
SEQ ID NO:55
GCTATGGTGTGTGGGGGATCCTTGTCCTCTGAGGACATAAAATAC
SEQ ID NO:56
AIQMTQSPSSLSASVGDRVTITCQASQSINNELSWYQQKPGKAPKLLIYRASTLASGVPSRFSGSGSGTDFTLTISSLQPDDFATYYCQQGYSLRNIDNAFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEV
SEQ ID NO:57
GCTATTCAAATGACTCAATCTCCTTCTTCTTTGTCTGCTTCTGTCGGAGATAGAGTCACTATCACTTGTCAAGCTTCTCAATCTATTAACAACGAATTGTCTTGGTATCAGCAAAAGCCAGGTAAGGCTCCAAAATTGTTGATTTACAGAGCATCTACTTTGGCTTCTGGTGTCCCTTCCAGATTCTCTGGTTCTGGTTCTGGAACCGATTTTACTTTGACTATCTCTTCTTTGCAGCCTGATGATTTCGCAACTTACTACTGTCAACAGGGTTACTCTTTGAGAAACATTGATAACGCTTTTGGTGGTGGAACTAAAGTTGAGATTAAGAGAACTGTCGCTGCACCTTCTGTTTTCATTTTTCCTCCATCTGACGAGCAGTTGAAGTCTGGTACAGCATCTGTTGTCTGTTTGTTGAACAACTTCTACCCAAGAGAAGCAAAGGTTCAATGGAAGGTTGACAACGCCTTGCAATCTGGTAACTCTCAGGAATCTGTTACTGAACAAGATTCTAAGGATTCTACTTACTCTTTGTCTTCTACATTGACATTGTCTAAGGCTGATTACGAAAAGCATAAGGTTTACGCTTGTGAAGTTACTCATCAAGGATTGTCTTCTCCTGTCACAAAATCTTTTAACAGAGGTGAGgtt
SEQ ID NO:58
AGAGAGGCTGAAGCTGCTATTCAAATGACTCAATCTCC
SEQ ID NO:59
TCAATGATGATGATGATGATGTCAaacCTCACCTCTGTTAAAAGATTTTG
SEQ ID NO:60
AGGTGCAGCGACAGTTCTAGTAATTTG
SEQ ID NO:61
GAACTGTCGCTGCACCTtgtGTTTTC
SEQ ID NO:62
GAACTGTCGCTGCACCTTCTGTTtgtATTTTTCCTCCATC
SEQ ID NO:63
GAACTGTCGCTGCACCTTCTGTTTTCATTtgtCCTCCATCTGAC
SEQ ID NO:64
GAACTGTCGCTGCACCTTCTGTTTTCATTTTTtgtCCATCTGACGAGCAG
SEQ ID NO:65
GAACTGTCGCTGCACCTTCTGTTTTCATTTTTCCTtgtTCTGACGAGCAGTTG
SEQ ID NO:66
GAACTGTCGCTGCACCTTCTGTTTTCATTTTTCCTCCAtgtGACGAGCAGTTG
SEQ ID NO:67
ACCAGATTGCAAGGCGTTGTCAAC
SEQ ID NO:68
GCCTTGCAATCTGGTtgtTCTCAGGAATCTG
SEQ ID NO:69
GCCTTGCAATCTGGTAACTCTtgtGAATCTGTTACTG
SEQ ID NO:70
GCCTTGCAATCTGGTAACTCTCAGGAAtgtGTTACTGAAC
SEQ ID NO:71
GCCTTGCAATCTGGTAACTCTCAGGAATCTGTTtgtGAACAAGATTCTAAG
SEQ ID NO:72
AGAATCCTTAGAATCTTGTTCAG
SEQ ID NO:73
GATTCTAAGGATTCTtgtTACTCTTTGTC
SEQ ID NO:74
GATTCTAAGGATTCTACTTACtgtTTGTCTTC
SEQ ID NO:75
GATTCTAAGGATTCTACTTACTCTTTGtgtTCTACA
SEQ ID NO:76
GATTCTAAGGATTCTACTTACTCTTTGTCTTCTtgtTTGACA
SEQ ID NO:77
GATTCTAAGGATTCTACTTACTCTTTGTCTTCTACATTGtgtTTGTCTAAGGCTG
SEQ ID NO:78
TCAATGATGATGATGATGATGTCAaacCTCACCTCTGTTACAAGA
SEQ ID NO:79
TCAATGATGATGATGATGATGTCAaacCTCACCTCTACAAAAAG
SEQ ID NO:80
TCAATGATGATGATGATGATGTCAaacCTCACCACAGTTAAAAG
SEQ ID NO:81
TCAATGATGATGATGATGATGTCAaacCTCACATCTGTTAAAAG
SEQ ID NO:82
TCAATGATGATGATGATGATGTCAaacACAACCTCTGTTAAAAG
SEQ ID NO:83
TCAATGATGATGATGATGATGTCAACACTCACCTCTGTTAAAAG
SEQ ID NO:84
ATCAACTTTTGTGTTAGA
SEQ ID NO:85
TCTAACACAAAAGTTGATGATAAAGTCGAGCCAAAA
SEQ ID NO:86
TCTAACACAAAAGTTGATGAAAAAGTCGAGCCAAAA
SEQ ID NO:87
AGATGGAGGAAAAAT
SEQ ID NO:88
ATTTTTCCTCCATCTGACAAGCAGTTGAAGTCTGGT
SEQ ID NO:89
ACATGGAGGAAAAATGAAAAC
SEQ ID NO:90
ATTTTTCCTCCATGTGACAAGCAGTTGAAGTCTGGT
SEQ ID NO:91
AGAACAAGGAAAAATGAAAAC
SEQ ID NO:92
ATTTTTCCTTGTTCTGACAAGCAGTTGAAGTCTGGT
SEQ ID NO:93
AGATGGACAAAAAATGAAAAC
SEQ ID NO:94
ATTTTTTGTCCATCTGACAAGCAGTTGAAGTCTGGT
SEQ ID NO:95
AGATGGAGGACAAATGAAAAC
SEQ ID NO:96
ATTTGTCCTCCATCTGACAAGCAGTTGAAGTCTGGT
SEQ ID NO:97
ATTTTTCCTCCATCTGACAGACAGTTGAAGTCTGGT
SEQ ID NO:98
ATTTTTCCTCCATGTGACAGACAGTTGAAGTCTGGT
SEQ ID NO:99
ATTTTTCCTTGTTCTGACAGACAGTTGAAGTCTGGT
SEQ ID NO:100
ATTTTTTGTCCATCTGACAGACAGTTGAAGTCTGGT
SEQ ID NO:101
ATTTGTCCTCCATCTGACAGACAGTTGAAGTCTGGT
SEQ ID NO:102
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGQGLEWVGWINPYTGSAFYAQKFRGRVTMTRDTSISTAYMELSRLRSDDTAVYYCAREPEKFDSDDSDVWGRGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNRFTQKSLSLSPGHHHHHH
SEQ ID NO:103
CAAGTTCAATTGGTTCAATCAGGAGCTGAAGTTAAGAAGCCAGGTGCTTCCGTTAAGGTTTCTTGTAAGGCTTCAGGATACACTTTTACTAACTACTACATGCATTGGGTTAGACAAGCTCCAGGACAAGGTTTGGAATGGGTTGGATGGATTAACCCATACACTGGGAGTGCTTTTTACGCTCAAAAGTTTAGAGGTAGAGTTACTATGACTAGAGATACTTCTATTTCCACTGCTTACATGGAATTGTCGCGTTTGAGATCAGATGATACTGCTGTTTACTACTGTGCTAGAGAACCTGAAAAGTTTGATTCCGATGATTCTGATGTTTGGGGTAGAGGTACTTTGGTTACTGTTTCTTCTGCTTCTACTAAGGGACCATCTGTCTTTCCATTGGCACCATCTTCTAAATCTACTTCTGGAGGAACTGCCGCCTTGGGATGTTTGGTCAAGGATTATTTCCCTGAGCCTGTCACAGTTTCTTGGAACTCTGGTGCATTGACATCTGGTGTTCACACATTCCCAGCAGTCTTGCAATCTTCTGGTTTGTACTCTTTGTCTTCTGTCGTTACAGTCCCTTCTTCTTCTTTGGGTACTCAAACCTACATCTGTAATGTTAATCATAAGCCTTCTAACACAAAAGTTGATAAGAAAGTCGAGCCAAAATCTTGCGACAAAACACATACCTGCCCACCATGTCCAGCTCCTGAGTTGTTGGGAGGTCCTTCTGTTTTTTTGTTCCCACCTAAGCCAAAGGATACATTGATGATTTCCAGAACTCCTGAAGTTACATGTGTCGTTGTCGATGTTTCTCATGAAGATCCTGAGGTTAAATTCAATTGGTACGTTGATGGTGTCGAAGTTCATAACGCTAAGACTAAACCAAGAGAAGAACAGTACAATTCTACTTATAGAGTCGTCTCTGTTTTGACCGTTTTGCATCAAGATTGGTTGAACGGAAAGGAGTATAAGTGCAAAGTTTCTAATAAGGCTTTGCCTGCCCCTATTGAGAAGACCATTTCTAAGGCTAAAGGTCAGCCTAGAGAACCTCAAGTTTACACTTTGCCACCTTCCAGAGAGGAAATGACTAAGAACCAGGTCTCTTTGTCTTGCGCTGTTAAGGGTTTTTACCCTTCTGACATCGCTGTTGAGTGGGAATCTAACGGACAGCCTGAAAATAACTATAAAACAACACCTCCAGTTTTGGATTCTGACGGTTCTTTCTTTTTGGTTTCTAAGTTGACAGTCGATAAGTCCAGATGGCAACAAGGAAACGTCTTTTCTTGTTCTGTTATGCATGAAGCCTTGCATAATAGATTTACCCAGAAATCTTTGTCTTTGTCTCCAGGTcatcatcatcatcatcat
SEQ ID NO:104
CCGCTCGAGAAAAGAGAGGCTGAAGCTCAAGTTCAATTGGTTCAATCAG
SEQ ID NO:105
ATAGTTTAGCGGCCGCTCAATGATGATGATGATGATGACCTGGAGACAAAGA
SEQ ID NO:106
QAVLTQPPSVSGAPGQRVTISCTGSSSNIGAGYGVHWYQQLPGTAPKLLIYGDSNRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDNSLSGYVFGGGTQLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS
SEQ ID NO:107
CAAGCTGTTTTGACTCAACCACCATCCGTTTCAGGGGCGCCTGGTCAAAGAGTTACTATTTCATGTACTGGGTCCTCATCCAACATTGGTGCTGGATACGGTGTTCATTGGTATCAACAATTGCCAGGAACTGCTCCTAAGTTGTTGATTTACGGTGATTCTAACAGACCATCTGGTGTTCCAGATAGATTTTCCGGATCTAAGTCCGGAACTTCTGCTTCCTTGGCTATTACTGGTTTGCAAGCTGAAGATGAAGCTGATTACTACTGTCAATCATACGATAACTCCTTGTCCGGATACGTTTTTGGTGGAGGAACTCAATTGACTGTTTTGGGACAACCAAAGGCTGCTCCATCCGTTACTTTGTTTCCACCATCTTCAGAAGAATTGCAAGCTAACAAGGCTACTTTGGTTTGTTTGATTTCCGATTTTTACCCAGGAGCTGTTACTGTTGCTTGGAAGGCTGATTCCTCACCAGTTAAGGCTGGTGTTGAAACTACTACTCCATCTAAGCAATCAAACAACAAGTACGCTGCTTCATCATACTTGTCCTTGACTCCAGAACAATGGAAGTCACATAGATCATACTCATGTCAAGTTACTCATGAAGGAAGTACTGTTGAAAAGACTGTTGCTCCAACTGAATGTTCT
SEQ ID NO:108
CCGCTCGAGAAAAGAGAGGCTGAAGCTCAAGCTGTTTTGACTCAACC
SEQ ID NO:109
AAGGAAAAAAGCGGCCGCTTAAGAACATTCAGTTGGAGCAAC
SEQ ID NO:110
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSFPMAWVRQAPGKGLEWVSTISTSGGRTYYRDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKFRQYSGGFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSVDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG
SEQ ID NO:111
GAGGTCCAGTTGTTGGAGTCTGGTGGTGGTTTGGTTCAGCCAGGTGGATCTTTGAGATTGTCTTGTGCAGCATCTGGATTCACTTTTTCTTCTTTTCCAATGGCTTGGGTTAGACAGGCACCAGGTAAAGGTTTGGAGTGGGTTTCTACTATTTCTACTTCTGGTGGTAGAACTTACTACAGAGATTCTGTCAAGGGTAGATTCACTATTTCTAGAGATAACTCTAAAAACACTTTGTACTTGCAAATGAACTCTTTGAGAGCTGAAGATACAGCCGTTTACTATTGCGCTAAGTTTAGACAATACTCTGGTGGTTTTGATTACTGGGGACAAGGTACTTTGGTTACTGTTTCTTCTGCTTCTACTAAGGGACCATCTGTCTTTCCATTGGCACCATCTTCTAAATCTACTTCTGGAGGAACTGCCGCCTTGGGATGTTTGGTCAAGGATTATTTCCCTGAGCCTGTCACAGTTTCTTGGAACTCTGGTGCATTGACATCTGGTGTTCACACATTCCCAGCAGTCTTGCAATCTTCTGGTTTGTACTCTTTGTCTTCTGTCGTTACAGTCCCTTCTTCTTCTTTGGGTACTCAAACCTACATCTGTAATGTTAATCATAAGCCTTCTAACACAAAAGTTGATAAGAAAGTCGAGCCAAAATCTGTTGACAAAACACATACCTGCCCACCATGTCCAGCTCCTGAGTTGTTGGGAGGTCCTTCTGTTTTTTTGTTCCCACCTAAGCCAAAGGATACATTGATGATTTCCAGAACTCCTGAAGTTACATGTGTCGTTGTCGATGTTTCTCATGAAGATCCTGAGGTTAAATTCAATTGGTACGTTGATGGTGTCGAAGTTCATAACGCTAAGACTAAACCAAGAGAAGAACAGTACAATTCTACTTATAGAGTCGTCTCTGTTTTGACCGTTTTGCATCAAGATTGGTTGAACGGAAAGGAGTATAAGTGCAAAGTTTCTAATAAGGCTTTGCCTGCCCCTATTGAGAAGACCATTTCTAAGGCTAAAGGTCAGCCTAGAGAACCTCAAGTTTACACTTTGCCACCTTCCAGAGAGGAAATGACTAAGAACCAGGTCTCTTTGTGGTGCTTGGTTAAGGGTTTTTACCCTTCTGACATCGCTGTTGAGTGGGAATCTAACGGACAGCCTGAAAATAACTATAAAACAACACCTCCAGTTTTGGATTCTGACGGTTCTTTCTTTTTGTATTCTAAGTTGACAGTCGATAAGTCCAGATGGCAACAAGGAAACGTCTTTTCTTGTTCTGTTATGCATGAAGCCTTGCATAATCATTACACCCAGAAATCTTTGTCTTTGTCTCCAGGT
SEQ ID NO:112
AGAGAGGCTGAAGCTGAGGTCCAGTTGTTGGAGTCTG
SEQ ID NO:113
TCAATGATGATGATGATGATGtcaACCTGGAGACAAAGACAAAGATTTC
SEQ ID NO:114
GACAGATGGTCCCTTAGTAGAAGC
SEQ ID NO:115
CTAAGGGACCATCTGTCtgtCCATTG
SEQ ID NO:116
CTAAGGGACCATCTGTCTTTCCAtgtGCACCATCTTC
SEQ ID NO:117
CTAAGGGACCATCTGTCTTTCCATTGtgtCCATCTTCTAAATC
SEQ ID NO:118
CTAAGGGACCATCTGTCTTTCCATTGGCAtgtTCTTCTAAATCTACTTC
SEQ ID NO:119
CTAAGGGACCATCTGTCTTTCCATTGGCACCAtgtTCTAAATCTACT
SEQ ID NO:120
CTAAGGGACCATCTGTCTTTCCATTGGCACCATCTtgtAAATCTACT
SEQ ID NO:121
CTAAGGGACCATCTGTCTTTCCATTGGCACCATCTTCTtgtTCTACTTCTGGAG
SEQ ID NO:122_
CTAAGGGACCATCTGTCTTTCCATTGGCACCATCTTCTAAAtgtACTTCTGGAG
SEQ ID NO:123
CTAAGGGACCATCTGTCTTTCCATTGGCACCATCTTCTAAATCTtgtTCTGGAGGAACT
SEQ ID NO:124
CTAAGGGACCATCTGTCTTTCCATTGGCACCATCTTCTAAATCTACTtgtGGAGGAACT
SEQ ID NO:125
AGATGTCAATGCACCAGAGTTCC
SEQ ID NO:126
GGTGCATTGACATCTtgtGTTCACACATTCCCA
SEQ ID NO:127
GGTGCATTGACATCTGGTGTTtgtACATTCCCAGC
SEQ ID NO:128
GGTGCATTGACATCTGGTGTTCACACAtgtCCAGCAGTCTTGC
SEQ ID NO:129
GGTGCATTGACATCTGGTGTTCACACATTCtgtGCAGTCTTGCAA
SEQ ID NO:130
GGTGCATTGACATCTGGTGTTCACACATTCCCAGCAtgtTTGCAATCTTCT
SEQ ID NO:131
GGTGCATTGACATCTGGTGTTCACACATTCCCAGCAGTCTTGtgtTCTTCTGGTTTG
SEQ ID NO:132
TTGCAAGACTGCTGGGAATGTGTG
SEQ ID NO:133
CCAGCAGTCTTGCAAtgtTCTGGTTTG
SEQ ID NO:134
CCAGCAGTCTTGCAATCTtgtGGTTTGTACTCTTTG
SEQ ID NO:135
CCAGCAGTCTTGCAATCTTCTtgtTTGTACTCTTTGTC
SEQ ID NO:136
CCAGCAGTCTTGCAATCTTCTGGTtgtTACTCTTTGTCTTC
SEQ ID NO:137
GTACAAACCAGAAGATTGCAAGAC
SEQ ID NO:138
CAATCTTCTGGTTTGTACtgtTTGTCTTCTGTC
SEQ ID NO:139
CAATCTTCTGGTTTGTACTCTTTGtgtTCTGTCGTTACAG
SEQ ID NO:140
CAATCTTCTGGTTTGTACTCTTTGTCTTCTtgtGTTACAGTCCCTTC
SEQ ID NO:141_
CAATCTTCTGGTTTGTACTCTTTGTCTTCTGTCGTTtgtGTCCCTTCTTCTTC
SEQ ID NO:142
TTTCTTATCAACTTTTGTGTTAG
SEQ ID NO:143
CAAAAGTTGATAAGAAAtgtGAGCCAAAATCTG
SEQ ID NO:144
CAAAAGTTGATAAGAAAGTCtgtCCAAAATCTGTTG
SEQ ID NO:145
CAAAAGTTGATAAGAAAGTCGAGtgtAAATCTGTTGAC
SEQ ID NO:146
AAGAAAGTCGAGCCAtgtTCTGTTGACAAAACA
SEQ ID NO:147
AAGAAAGTCGAGCCAAAAtgtGTTGACAAAACA
SEQ ID NO:148
AAGAAAGTCGAGCCAAAATCTtgcGACAAAACACATA
SEQ ID NO:149.
DIQLTQPNSVSTSLGSTVKLSCTLSSGNIENNYVHWYQLYEGRSPTTMIYDDDKRPDGVPDRFSGSIDRSSNSAFLTIHNVAIEDEAIYFCHSYVSSFNVFGGGTKLTVLRQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTEVS
SEQ ID NO:150
GATATTCAATTGACTCAACCTAACTCAGTTTCCACTTCCTTGGGTTCGACTGTTAAGTTGTCATGTACTTTGTCCTCTGGTAACATTGAAAACAACTACGTTCATTGGTATCAATTGTACGAAGGTAGATCCCCTACTACTATGATTTACGATGATGATAAGAGACCTGATGGAGTTCCTGATAGATTTTCCGGTTCTATTGATAGAAGCTCTAACTCCGCTTTTTTGACTATTCATAACGTTGCTATTGAAGATGAAGCTATTTACTTTTGTCATTCTTACGTTTCTTCCTTTAACGTTTTTGGAGGTGGAACTAAGTTGACTGTTTTGAGACAACCAAAGGCTGCTCCATCCGTTACTTTGTTTCCACCATCTTCAGAAGAATTGCAAGCTAACAAGGCTACTTTGGTTTGTTTGATTTCCGATTTTTACCCAGGAGCTGTTACTGTTGCTTGGAAGGCTGATTCCTCACCAGTTAAGGCTGGTGTTGAAACTACTACTCCATCTAAGCAATCAAACAACAAGTACGCTGCTTCATCATACTTGTCCTTGACTCCAGAACAATGGAAGTCACATAGATCATACTCATGTCAAGTTACTCATGAAGGAAGTACTGTTGAAAAGACTGTTGCTCCAACTGAAgttTCT
SEQ ID NO:151
AGAGAGGCTGAAGCTGATATTCAATTGACTCAAC
SEQ ID NO:152
TCAATGATGATGATGATGATGTCAAGAAACTTCAGTTGGAGCAAC
SEQ ID NO:153
TGGAGCAGCCTTTGGTTGTCTC
SEQ ID NO:154
CCAAAGGCTGCTCCAtgtGTTACTTTGTTTCCACC
SEQ ID NO:155
CCAAAGGCTGCTCCATCCGTTtgtTTGTTTCCACCATCTTC
SEQ ID NO:156
CCAAAGGCTGCTCCATCCGTTACTTTGtgtCCACCATCTTCAG
SEQ ID NO:157
CCAAAGGCTGCTCCATCCGTTACTTTGTTTtgtCCATCTTCAGAAGAATTG
SEQ ID NO:158
CCAAAGGCTGCTCCATCCGTTACTTTGTTTCCACCAtgtTCAGAAGAATTG
SEQ ID NO:159
AGCCTTAACTGGTGAGGAATCAGC
SEQ ID NO:160
TCACCAGTTAAGGCTtgtGTTGAAACTACTACTC
SEQ ID NO:161
TCACCAGTTAAGGCTGGTGTTtgtACTACTACTCCATCTAAG
SEQ ID NO:162
TCACCAGTTAAGGCTGGTGTTGAAACTtgtACTCCATCTAAGCAATC
SEQ ID NO:163
TCACCAGTTAAGGCTGGTGTTGAAACTACTtgtCCATCTAAGCAATCA
SEQ ID NO:164
TCACCAGTTAAGGCTGGTGTTGAAACTACTACTtgtTCTAAGCAATCAAAC
SEQ ID NO:165
TCACCAGTTAAGGCTGGTGTTGAAACTACTACTCCAtgtAAGCAATC
SEQ ID NO:166
TCACCAGTTAAGGCTGGTGTTGAAACTACTACTCCATCTAAGtgtTCAAACAACAAGTA
SEQ ID NO:167
GTTGTTTGATTGCTTAGATGGAG
SEQ ID NO:168
TAAGCAATCAAACAACtgtTACGCTGCTTCATCATAC
SEQ ID NO:169
TAAGCAATCAAACAACAAGTACtgtGCTTCATCATACTTGTC
SEQ ID NO:170
TAAGCAATCAAACAACAAGTACGCTGCTtgtTCATACTTGTCCTTGAC
SEQ ID NO:171
TAAGCAATCAAACAACAAGTACGCTGCTTCATCAtgtTTGTCCTTGACTCCAG
SEQ ID NO:172
TAAGCAATCAAACAACAAGTACGCTGCTTCATCATACTTGtgtTTGACTCCAGAACAAT
SEQ ID NO:173
CAATGATGATGATGATGATGTCAAGAAACTTCAGTTGGAGCacaAGTCTTTTCAACAG
SEQ ID NO:174
CAATGATGATGATGATGATGTCAAGAAACTTCAGTTGGacaAACAGTCTTTTCAACA
G
SEQ ID NO:175
TCAATGATGATGATGATGATGTCAAGAAACTTCAGTacaAGCAACAGTCTTTTCAAC
SEQ ID NO:176
TCAATGATGATGATGATGATGTCAAGAAACTTCacaTGGAGCAACAGTCTTTTC
SEQ ID NO:177
TCAATGATGATGATGATGATGTCAAGAAACacaAGTTGGAGCAACAGTC
SEQ ID NO:178
TCAATGATGATGATGATGATGTCAAGAacaTTCAGTTGGAGCAAC
SEQ ID NO:179
TCAATGATGATGATGATGATGTCAacaAACTTCAGTTGGAGCAAC
SEQ ID NO:180
ATCAACTTTTGTGTTAGAAGGC
SEQ ID NO:181
TAACACAAAAGTTGATgatAAAGTCGAGCCAAAATCTG
SEQ ID NO:182
TAACACAAAAGTTGATgatAAAtgtGAGCCAAAATCTG
SEQ ID NO:183
TAACACAAAAGTTGATgatAAAGTCtgtCCAAAATCTG
SEQ ID NO:184
TAACACAAAAGTTGATgatAAAGTCGAGtgtAAATCTG
SEQ ID NO:185
TAACACAAAAGTTGATgatAAAGTCGAGCCAtgtTCTG
SEQ ID NO:186
TAACACAAAAGTTGATgatAAAGTCGAGCCAAAAtgtG
SEQ ID NO:187
ATCAACTTTTGTGTTAGAAGGC
SEQ ID NO:188
TAACACAAAAGTTGATgaaAAAGTCGAGCCAAAATCTG
SEQ ID NO:189
TAACACAAAAGTTGATgaaAAAtgtGAGCCAAAATCTG
SEQ ID NO:190
TAACACAAAAGTTGATgaaAAAGTCtgtCCAAAATCTG
SEQ ID NO:191
TAACACAAAAGTTGATgaaAAAGTCGAGtgtAAATCTG
SEQ ID NO:192
TAACACAAAAGTTGATgaaAAAGTCGAGCCAtgtTCTG
SEQ ID NO:193
TAACACAAAAGTTGATgaaAAAGTCGAGCCAAAAtgtG
SEQ ID NO:194
TGAAGATGGTGGAAACAAAGTAAC
SEQ ID NO:195
GTTTCCACCATCTTCAaagGAATTGCAAGCTAACAAGGCTAC
SEQ ID NO:196
TGAAGATGGTGGAAACAAAGTAACACA
SEQ ID NO:197
TGAAGATGGTGGAAACAAACAAAC
SEQ ID NO:198
GTTAGCTTGCAATTCcttTGAACATGGTGGAAACAAAG
SEQ ID NO:199
GAATTGCAAGCTAACAAGGCTAC
SEQ ID NO:200
GTTAGCTTGCAATTCcttTGAAGATGGACAAAACAAAG
SEQ ID NO:201
GTTAGCTTGCAATTCcttTGAAGATGGTGGACACAAAG
SEQ ID NO:202
QVQLVQSGAEVKKPGSSVKVSCKASGYSFTDYHIHWVRQAPGQGLEWMGVINPMYGTTDYNQRFKGRVTITADESTSTAYMELSSLRSEDTAVYYCARYDYFTGTGVYWGQGTLVTVSSASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSRLTVDKSRWQEGNVFSCSVMHEALHNRFTQKSLSLSLGHHHHHH
SEQ ID NO:203
CAAGTTCAATTGGTTCAATCCGGAGCTGAAGTTAAGAAGCCTGGGTCATCCGTTAAGGTTTCATGTAAGGCTTCAGGATACTCTTTTACTGATTACCATATTCATTGGGTTAGACAAGCTCCAGGTCAAGGTTTGGAATGGATGGGAGTTATTAACCCTATGTACGGAACTACTGATTACAACCAAAGATTTAAGGGTAGAGTTACTATTACTGCTGATGAATCCACTTCCACTGCTTACATGGAATTGTCCTCTTTGAGATCAGAAGATACTGCTGTTTACTACTGTGCTAGATACGATTACTTTACTGGAACTGGTGTTTACTGGGGACAAGGAACTTTGGTTACTGTTTCTTCCGCTTCCACTAAGGGACCATCCGTTTTTCCATTGGCTCCATGTTCTAGATCCACTTCCGAATCAACTGCTGCTTTGGGATGTTTGGTTAAGGATTACTTTCCAGAACCAGTTACTGTTTCATGGAACTCAGGAGCTTTGACTTCCGGAGTTCATACTTTTCCAGCTGTTTTGCAATCCTCAGGATTGTACTCTTTGTCTTCAGTTGTTACTGTTCCATCTTCTTCCTTGGGTACTAAGACTTACACTTGTAACGTTGATCATAAGCCATCTAACACTAAGGTTGATAAGAGAGTTGAATCTAAGTACGGACCTCCATGTCCACCATGTCCAGCTCCTGAATTTTTGGGTGGACCATCCGTTTTTTTGTTTCCACCAAAGCCAAAGGATACTTTGATGATTTCTAGAACTCCTGAAGTTACTTGTGTTGTTGTTGATGTTTCACAAGAAGATCCTGAAGTTCAATTTAACTGGTACGTTGATGGAGTTGAAGTTCATAACGCTAAGACTAAGCCTAGAGAAGAACAATTTAACTCCACTTACAGAGTTGTTTCCGTTTTGACTGTTTTGCATCAAGATTGGTTGAACGGTAAGGAATACAAGTGTAAGGTTTCTAACAAGGGATTGCCATCCTCTATTGAAAAGACTATTTCAAAGGCTAAGGGTCAACCTAGAGAACCTCAAGTTTACACTTTGCCACCTTCACAAGAAGAAATGACTAAGAACCAAGTTTCCTTGtctTGTgctGTTAAGGGATTTTACCCATCCGATATTGCTGTTGAATGGGAATCAAACGGTCAACCTGAAAACAACTACAAGACTACTCCACCAGTTTTGGATTCTGATGGATCATTTTTTTTGgttTCTAGATTGACTGTTGATAAGTCTAGATGGCAAGAAGGTAACGTTTTTTCATGTTCCGTTATGCATGAAGCTTTGCATAACagatttACTCAAAAGTCCTTGTCCTTGTCATTGGGAcatcatcatcatcatcat
SEQ ID NO:204
CCGCTCGAGAAAAGAGAGGCTGAAGCTCAAGTTCAATTGGTTCAATCCG
SEQ ID NO:205
AAGGAAAAAAGCGGCCGCTTAATGATGATGATGATGATGTCCCAATGACAAGGACAAG
SEQ ID NO:206.
DIVMTQTPLSLSVTPGQPASISCRSSRSLVHSRGNTYLHWYLQKPGQSPQLLIYKVSNRFIGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCSQSTHLPFTFGQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
SEQ ID NO:207
GATATTGTTATGACTCAAACTCCATTGTCCTTGTCCGTTACTCCAGGTCAACCTGCTTCTATTTCATGTAGATCATCTAGGTCCTTGGTTCATTCCAGAGGTAACACTTACTTGCATTGGTACTTGCAAAAGCCAGGACAATCACCACAATTGTTGATTTACAAGGTTTCTAACAGATTTATTGGTGTTCCTGATAGATTTTCCGGATCTGGATCAGGAACTGATTTTACTTTGAAGATTTCGCGGGTTGAAGCTGAAGATGTTGGAGTTTACTACTGTTCCCAATCCACTCATTTGCCTTTTACTTTTGGTCAAGGAACTAAGTTGGAAATTAAGAGAACTGTTGCTGCACCTTCTGTTTTCATTTTTCCTCCATCTGACGAGCAGTTGAAGTCTGGTACAGCATCTGTTGTCTGTTTGTTGAACAACTTCTACCCAAGAGAAGCAAAGGTTCAATGGAAGGTTGACAACGCCTTGCAATCTGGTAACTCTCAGGAATCTGTTACTGAACAAGATTCTAAGGATTCTACTTACTCTTTGTCTTCTACATTGACATTGTCTAAGGCTGATTACGAAAAGCATAAGGTTTACGCTTGTGAAGTTACTCATCAAGGATTGTCTTCTCCTGTCACAAAATCTTTTAACAGAGGTGAGTGT
SEQ ID NO:208
CCGCTCGAGAAAAGAGAGGCTGAAGCTGATATTGTTATGACTCAAACTC
SEQ ID NO:209
AAGGAAAAAAGCGGCCGCTTAACACTCACCTCTGTTAAAAG
SEQ ID NO:210
EVQLVESGGGLVQPGGSLRLSCAASGFNFNDYFMNWVRQAPGKGLEWVAQMRNKNYQYGTYYAESLEGRFTISRDDSKNSLYLQMNSLKTEDTAVYYCARESYYGFTSYWGQGTLVTVSSASTKGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLCCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLG
SEQ ID NO:211.
GAAGTTCAATTGGTTGAATCTGGAGGTGGATTGGTTCAACCTGGTGGATCATTGAGATTGTCATGTGCTGCTTCTGGATTTAACTTTAACGATTACTTTATGAACTGGGTTAGACAAGCTCCAGGAAAGGGATTGGAATGGGTTGCTCAAATGAGAAACAAGAACTACCAATACGGTACTTACTACGCTGAATCCTTGGAAGGTAGATTTACTATTTCTAGAGATGATTCAAAGAACTCCTTGTACTTGCAAATGAACTCATTGAAGACTGAAGATACTGCTGTTTACTACTGTGCTAGAGAATCATACTACGGATTTACTTCTTACTGGGGACAAGGAACTTTGGTTACTGTTTCTTCCGCTTCCACTAAGGGACCATCCGTTTTTCCATTGGCTCCATCTTCTAGATCCACTTCCGAATCAACTGCTGCTTTGGGATGTTTGGTTAAGGATTACTTTCCAGAACCAGTTACTGTTTCATGGAACTCAGGAGCTTTGACTTCCGGAGTTCATACTTTTCCAGCTGTTTTGCAATCCTCAGGATTGTACTCTTTGTCTTCAGTTGTTACTGTTCCATCTTCTTCCTTGGGTACTAAGACTTACACTTGTAACGTTGATCATAAGCCATCTAACACTAAGGTTGATAAGAGAGTTGAATCTAAGTACGGACCTCCATGTCCACCATGTCCAGCTCCTGAATTTTTGGGTGGACCATCCGTTTTTTTGTTTCCACCAAAGCCAAAGGATACTTTGATGATTTCTAGAACTCCTGAAGTTACTTGTGTTGTTGTTGATGTTTCACAAGAAGATCCTGAAGTTCAATTTAACTGGTACGTTGATGGAGTTGAAGTTCATAACGCTAAGACTAAGCCTAGAGAAGAACAATTTAACTCCACTTACAGAGTTGTTTCCGTTTTGACTGTTTTGCATCAAGATTGGTTGAACGGTAAGGAATACAAGTGTAAGGTTTCTAACAAGGGATTGCCATCCTCTATTGAAAAGACTATTTCAAAGGCTAAGGGTCAACCTAGAGAACCTCAAGTTTACACTTTGCCACCTTCACAAGAAGAAATGACTAAGAACCAAGTTTCCTTGtgtTGTTTGGTTAAGGGATTTTACCCATCCGATATTGCTGTTGAATGGGAA
SEQ ID NO:212
AGAGAGGCTGAAGCTGAAGTTCAATTGGTTGAATCTG
SEQ ID NO:213
TCAATGATGATGATGATGATGTTATCCCAATGACAAGGAC
SEQ ID NO:214
AACGGATGGTCCCTTAGTGGAAGC
SEQ ID NO:215
TAAGGGACCATCCGTTtgtCCATTGGCTCCA
SEQ ID NO:216
TAAGGGACCATCCGTTTTTCCAtgtGCTCCATCTTCTAG
SEQ ID NO:217
TAAGGGACCATCCGTTTTTCCATTGtgtCCATCTTCTAGATC
SEQ ID NO:218
TAAGGGACCATCCGTTTTTCCATTGGCTtgtTCTTCTAGATCCAC
SEQ ID NO:219
TAAGGGACCATCCGTTTTTCCATTGGCTCCAtgtTCTAGATCCAC
SEQ ID NO:220
TAAGGGACCATCCGTTTTTCCATTGGCTCCATCTtgtAGATCCACTTC
SEQ ID NO:221
AGAAGATGGAGCCAATGGAAAAAC
SEQ ID NO:222
TTGGCTCCATCTTCTtgtTCCACTTCCGAATC
SEQ ID NO:223
TTGGCTCCATCTTCTAGAtgtACTTCCGAATC
SEQ ID NO:224
TTGGCTCCATCTTCTAGATCCtgtTCCGAATCAACTGC
SEQ ID NO:225
TTGGCTCCATCTTCTAGATCCACTtgtGAATCAACTGCTGC
SEQ ID NO:226
TTGGCTCCATCTTCTAGATCCACTTCCtgtTCAACTGCTGCTTTG
SEQ ID NO:227
GGAAGTCAAAGCTCCTGAGTTCCA
SEQ ID NO:228
GGAGCTTTGACTTCCtgtGTTCATACTTTTC
SEQ ID NO:229
GGAGCTTTGACTTCCGGAGTTtgtACTTTTCCAGCTG
SEQ ID NO:230
GGAGCTTTGACTTCCGGAGTTCATACTtgtCCAGCTGTTTTG
SEQ ID NO:231
GGAGCTTTGACTTCCGGAGTTCATACTTTTtgtGCTGTTTTGCAATCCTC
SEQ ID NO:232
GGAGCTTTGACTTCCGGAGTTCATACTTTTCCAGCTtgtTTGCAATCCTCAGG
SEQ ID NO:233
AACAGCTGGAAAAGTATGAACTC
SEQ ID NO:234
ACTTTTCCAGCTGTTtgtCAATCCTCAGGATTG
SEQ ID NO:235
ACTTTTCCAGCTGTTTTGtgtTCCTCAGGATTGT
SEQ ID NO:236
ACTTTTCCAGCTGTTTTGCAAtgtTCAGGATTGTACTC
SEQ ID NO:237
ACTTTTCCAGCTGTTTTGCAATCCtgtGGATTGTACTCTTTG
SEQ ID NO:238
ACTTTTCCAGCTGTTTTGCAATCCTCAtgtTTGTACTCTTTGTC
SEQ ID NO:239
ACTTTTCCAGCTGTTTTGCAATCCTCAGGAtgtTACTCTTTGTCTTC
SEQ ID NO:240
GTACAATCCTGAGGATTGCAAAAC
SEQ ID NO:241
TCCTCAGGATTGTACtgtTTGTCTTCAG
SEQ ID NO:242
TCCTCAGGATTGTACTCTTTGtgtTCAGTTGTTAC
SEQ ID NO:243
TCCTCAGGATTGTACTCTTTGTCTTCAtgtGTTACTGTTCCATCTTC
SEQ ID NO:244
TCCTCAGGATTGTACTCTTTGTCTTCAGTTGTTtgtGTTCCATCTTCTTC
SEQ ID NO:245
TCCTCAGGATTGTACTCTTTGTCTTCAGTTGTTACTGTTtgtTCTTCTTCCTTGGGTAC
SEQ ID NO:246
AACCAAACATCCCAAAGCAGCAG
SEQ ID NO:247
CTTTGGGATGTTTGGTTgatGATTACTTTCCAGAA
SEQ ID NO:248
DIQMTQSPSSLSASVGDRVTITCQASQDIGISLSWYQQKPGKAPKLLIYNANNLADGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCLQHNSAPYTFGQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEV
SEQ ID NO:249
GATATTCAAATGACTCAATCACCATCCTCCTTGTCTGCTTCCGTTGGAGATAGAGTTACTATTACTTGTCAAGCTTCCCAAGATATTGGAATTTCATTGTCATGGTATCAACAAAAGCCAGGTAAGGCTCCTAAGTTGTTGATTTACAACGCTAACAACTTGGCTGATGGTGTTCCATCTAGATTTTCTGGGAGTGGTTCTGGAACTGATTTTACTTTGACTATTTCTTCATTGCAACCTGAAGATTTTGCTACTTACTACTGTTTGCAACATAACTCAGCTCCATACACTTTTGGTCAAGGAACTAAGTTGGAGATTAAGAGAACTGTCGCTGCACCTTCTGTTTTCATTTTTCCTCCATCTGACGAGCAGTTGAAGTCTGGTACAGCATCTGTTGTCTGTTTGTTGAACAACTTCTACCCAAGAGAAGCAAAGGTTCAATGGAAGGTTGACAACGCCTTGCAATCTGGTAACTCTCAGGAATCTGTTACTGAACAAGATTCTAAGGATTCTACTTACTCTTTGTCTTCTACATTGACATTGTCTAAGGCTGATTACGAAAAGCATAAGGTTTACGCTTGTGAAGTTACTCATCAAGGATTGTCTTCTCCTGTCACAAAATCTTTTAACAGAGGTGAGGTT
SEQ ID NO:250
AGAGAGGCTGAAGCTGATATTCAAATGACTCAATC
SEQ ID NO:251
TCAATGATGATGATGATGATGTTAAACCTCACCTCTGTTAAAAGATTTTG
SEQ ID NO:252
AGGTGCAGCGACAGTTCTCTTAATC
SEQ ID NO:253
GAACTGTCGCTGCACCTtgtGTTTTC
SEQ ID NO:254
GAACTGTCGCTGCACCTTCTGTTtgtATTTTTCCTCCATC
SEQ ID NO:255
GAACTGTCGCTGCACCTTCTGTTTTCATTtgtCCTCCATCTGAC
SEQ ID NO:256
GAACTGTCGCTGCACCTTCTGTTTTCATTTTTtgtCCATCTGACGAGCAG
SEQ ID NO:257
GAACTGTCGCTGCACCTTCTGTTTTCATTTTTCCTtgtTCTGACGAGCAGTTG
SEQ ID NO:258
GAACTGTCGCTGCACCTTCTGTTTTCATTTTTCCTCCAtgtGACGAGCAGTTG
SEQ ID NO:259
ACCAGATTGCAAGGCGTTGTCAAC
SEQ ID NO:260
GCCTTGCAATCTGGTtgtTCTCAGGAATCTG
SEQ ID NO:261
GCCTTGCAATCTGGTAACTCTtgtGAATCTGTTACTG
SEQ ID NO:262
GCCTTGCAATCTGGTAACTCTCAGGAAtgtGTTACTGAAC
SEQ ID NO:263
GCCTTGCAATCTGGTAACTCTCAGGAATCTtgtACTGAACAAGATTC
SEQ ID NO:264
GCCTTGCAATCTGGTAACTCTCAGGAATCTGTTtgtGAACAAGATTCTAAG
SEQ ID NO:265
GCCTTGCAATCTGGTAACTCTCAGGAATCTGTTACTtgtCAAGATTCTAAG
SEQ ID NO:266
AGAATCCTTAGAATCTTGTTCAG
SEQ ID NO:267
GATTCTAAGGATTCTtgtTACTCTTTGTC
SEQ ID NO:268
GATTCTAAGGATTCTACTTACtgtTTGTCTTC
SEQ ID NO:269
GATTCTAAGGATTCTACTTACTCTTTGtgtTCTACA
SEQ ID NO:270
GATTCTAAGGATTCTACTTACTCTTTGTCTTCTtgtTTGACA
SEQ ID NO:271
GATTCTAAGGATTCTACTTACTCTTTGTCTTCTACATTGtgtTTGTCTAAGGCTG
SEQ ID NO:272
GATTCTAAGGATTCTACTTACTCTTTGTCTTCTACATTGACATTGtgtAAGGCTG
SEQ ID NO:273
TCAATGATGATGATGATGATGTCAAACCTCACCTCTGTTacaAGATTTTGT
SEQ ID NO:274
TCAATGATGATGATGATGATGTCAAACCTCACCTCTacaAAAAGATTTTGT
SEQ ID NO:275
TCAATGATGATGATGATGATGTCAAACCTCACCacaGTTAAAAGATTTTGT
SEQ ID NO:276
TCAATGATGATGATGATGATGTCAAACCTCacaTCTGTTAAAAG
SEQ ID NO:277
TCAATGATGATGATGATGATGTCAAACacaACCTCTGTTAAAAG
SEQ ID NO:278
TCAATGATGATGATGATGATGTCAacaCTCACCTCTGTTAAAAG
SEQ ID NO:279
ACCAGACTTCAACTGCTCGTCAGA
SEQ ID NO:280
GCAGTTGAAGTCTGGTagaGCATCTGTTGTCTG
all documents referred to herein are incorporated by reference into this application as if each were individually incorporated by reference. Furthermore, it should be understood that various changes and modifications of the present invention can be made by those skilled in the art after reading the above teachings of the present invention, and these equivalents also fall within the scope of the present invention as defined by the appended claims.
Sequence listing
<110> Hangzhou Jingyin Biotechnology Ltd
<120> Process for producing bispecific antibody
<130> P2020-1206
<160> 280
<170> SIPOSequenceListing 1.0
<210> 1
<211> 455
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 1
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Asn Ile Lys Asp Thr
20 25 30
Tyr Ile His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ala Arg Ile Tyr Pro Thr Asn Gly Tyr Thr Arg Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Ala Asp Thr Ser Lys Asn Thr Ala Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ser Arg Trp Gly Gly Asp Gly Phe Tyr Ala Met Asp Tyr Trp Gly Gln
100 105 110
Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val
115 120 125
Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala
130 135 140
Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser
145 150 155 160
Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val
165 170 175
Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro
180 185 190
Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys
195 200 205
Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp
210 215 220
Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly
225 230 235 240
Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile
245 250 255
Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu
260 265 270
Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His
275 280 285
Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg
290 295 300
Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys
305 310 315 320
Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu
325 330 335
Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr
340 345 350
Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu
355 360 365
Ser Cys Ala Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp
370 375 380
Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val
385 390 395 400
Leu Asp Ser Asp Gly Ser Phe Phe Leu Val Ser Lys Leu Thr Val Asp
405 410 415
Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His
420 425 430
Glu Ala Leu His Asn Arg Phe Thr Gln Lys Ser Leu Ser Leu Ser Pro
435 440 445
Gly His His His His His His
450 455
<210> 2
<211> 1365
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 2
gaggtccagt tggtcgagtc tggtggtggt ttggttcagc caggtggatc tttgagattg 60
tcttgtgcag catctggatt caacattaaa gatacttaca ttcattgggt tagacaggca 120
ccaggtaaag gtttggagtg ggttgctaga atttacccaa ctaacggtta cactagatac 180
gctgattctg tcaagggtag attcactatt tctgctgata catctaaaaa cactgcttac 240
ttgcaaatga actctttgag agctgaagat acagccgttt actattgctc cagatgggga 300
ggagacggat tttacgctat ggattactgg ggacaaggta ctttggttac tgtttcttct 360
gcttctacta agggaccatc tgtctttcca ttggcaccat cttctaaatc tacttctgga 420
ggaactgccg ccttgggatg tttggtcaag gattatttcc ctgagcctgt cacagtttct 480
tggaactctg gtgcattgac atctggtgtt cacacattcc cagcagtctt gcaatcttct 540
ggtttgtact ctttgtcttc tgtcgttaca gtcccttctt cttctttggg tactcaaacc 600
tacatctgta atgttaatca taagccttct aacacaaaag ttgataagaa agtcgagcca 660
aaatcttgcg acaaaacaca tacctgccca ccatgtccag ctcctgagtt gttgggaggt 720
ccttctgttt ttttgttccc acctaagcca aaggatacat tgatgatttc cagaactcct 780
gaagttacat gtgtcgttgt cgatgtttct catgaagatc ctgaggttaa attcaattgg 840
tacgttgatg gtgtcgaagt tcataacgct aagactaaac caagagaaga acagtacaat 900
tctacttata gagtcgtctc tgttttgacc gttttgcatc aagattggtt gaacggaaag 960
gagtataagt gcaaagtttc taataaggct ttgcctgccc ctattgagaa gaccatttct 1020
aaggctaaag gtcagcctag agaacctcaa gtttacactt tgccaccttc cagagaggaa 1080
atgactaaga accaggtctc tttgtcttgc gctgttaagg gtttttaccc ttctgacatc 1140
gctgttgagt gggaatctaa cggacagcct gaaaataact ataaaacaac acctccagtt 1200
ttggattctg acggttcttt ctttttggtt tctaagttga cagtcgataa gtccagatgg 1260
caacaaggaa acgtcttttc ttgttctgtt atgcatgaag ccttgcataa tagatttacc 1320
cagaaatctt tgtctttgtc tccaggtcat catcatcatc atcat 1365
<210> 3
<211> 48
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 3
ccgctcgaga aaagagaggc tgaagctgag gtccagttgg tcgagtct 48
<210> 4
<211> 58
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 4
ataagaatgc ggccgctcaa tgatgatgat gatgatgacc tggagacaaa gacaaaga 58
<210> 5
<211> 214
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 5
Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
1 5 10 15
Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Asp Val Asn Thr Ala
20 25 30
Val Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
35 40 45
Tyr Ser Ala Ser Phe Leu Tyr Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60
Ser Arg Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
65 70 75 80
Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln His Tyr Thr Thr Pro Pro
85 90 95
Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala Ala
100 105 110
Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly
115 120 125
Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala
130 135 140
Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln
145 150 155 160
Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser
165 170 175
Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr
180 185 190
Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser
195 200 205
Phe Asn Arg Gly Glu Cys
210
<210> 6
<211> 642
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 6
gatattcaaa tgactcaatc tccttcttct ttgtctgctt ctgtcggaga tagagtcact 60
atcacttgta gagcttctca agacgtcaac accgctgttg cttggtatca gcaaaagcca 120
ggtaaggctc caaaattgtt gatttactct gcatcttttt tgtactctgg tgtcccttcc 180
agattctctg gttctaggtc tggaaccgat tttactttga ctatctcttc tttgcagcct 240
gaagatttcg caacttacta ctgtcaacag cattacacta ctccaccaac ttttggtcaa 300
ggaactaaag ttgagattaa gagaactgtc gctgcacctt ctgttttcat ttttcctcca 360
tctgacgagc agttgaagtc tggtacagca tctgttgtct gtttgttgaa caacttctac 420
ccaagagaag caaaggttca atggaaggtt gacaacgcct tgcaatctgg taactctcag 480
gaatctgtta ctgaacaaga ttctaaggat tctacttact ctttgtcttc tacattgaca 540
ttgtctaagg ctgattacga aaagcataag gtttacgctt gtgaagttac tcatcaagga 600
ttgtcttctc ctgtcacaaa atcttttaac agaggtgagt gt 642
<210> 7
<211> 53
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 7
ccgctcgaga aaagagaggc tgaagctgat attcaaatga ctcaatctcc ttc 53
<210> 8
<211> 40
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 8
ataagaatgc ggccgctcaa cactcacctc tgttaaaaga 40
<210> 9
<211> 1997
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 9
agacgagatc aattagaacc tgttttggca ataaccgagg attaggaaca aagtccgggt 60
aattatgcga ctctctcttt ttcatatgca ggtcgagcaa gaatcttgtt tttcgtggtg 120
ggactgggca gcaattaaca accaatcggc acttgcaata agtcgattag cgcatggtgg 180
gggacagtag atagctgctg aaatttttgg gtgcggacaa tttcaagagt ctgaggccct 240
gctctcacta gcagtcagaa tcatctgcct cacatacagt ctcctgatgc tgctacttac 300
ttggcaagcg atgatgttta cacaattgca gctttttagt tgctgtcatg gctctagaat 360
tccttggcct tttatcagca tctcaggcaa caatgtgaaa tgcgcacctt cagattttta 420
tattggtgga cggaaatggt aggaagtagt gaagaaaagg tagcgcgagg gcattgtccc 480
cccatgcgaa gaaaaattac tagcataaaa aaatggaaac aagtgacctc cgcagcatgt 540
ctgcccactt tatactgaaa ctacattctt gctaatggat cgtaaaacac tatcacctgg 600
tatgtcgtaa tggacttgat ggcgtgtact ttgctttact gagttctagt tgcctgctca 660
gtgccgaaga acatggggct ccatgtgtat tgtattctct tatctagaac aatcgaagcg 720
ctactgactt gaaatccttg aatgatagac atagattgga ccatgacaag gagaacttat 780
tcacaattga aaagtacatt ttcattgacc cattgggagg tatcccatct ttggagaggt 840
acaaaagtgc acatgtatat atcaatctat tacaagagta tgaagacatt gtgtcggagc 900
tttacatagg gttcttaaag actggagaaa gggaccagca tttgaagaac ttaaacttgc 960
ttcagaaatt gttgcaggta accacagatg catcaggaat agttactact cctcaaatcg 1020
ccatgttgaa tcagaccgac cgattcacca atccaataat ttacaatgtc ttaaccgata 1080
ggccgacaat atcatcgtca ttaccggttg atttgaaaaa gacccctttg ctaaacactt 1140
caatcattag gagaggcgta ccggttgaag tttatgtgga cgaatcatct gacaaaagtg 1200
ggctgtgcct agactctctt ctgaaacgag gagctttaga cttagaaaag cttaagaatg 1260
tgatcgattt gtcgtttcga aaggacttga atatgaaaaa gtacctagcc agagtaaaga 1320
acaatgttgc agctatctta atcgctggag attacgaagg cgtgatcata gttacttggg 1380
aggtaacgga tgaagaaaag ccgcagaaaa tagcttattt agataagttt gcagtgtctc 1440
ctaaggccca aggatcgaca ggggttgccg atgttctttt caagtcatta ttgtccaatt 1500
ttgagaacga attgttctgg agatctcgat ctaataatcc agtgaacaaa tggtactttg 1560
aacggagcaa aggttctctt actgttactg gcacaaattg gaaatgcttc tacaccggca 1620
agaactatcc ttcattggat agaatgaagg gctatttcaa catctgtgag agaatccaac 1680
cttcctggaa tggataagcg aatttcttat gatttatgat ttttattatt aaataagtta 1740
taaaaaaaat aagtgtatac aaattttaaa gtgactctta ggttttaaaa cgaaaattct 1800
tattcttgag taactctttc ctgtaggtca ggttgctttc tcaggtatag catgaggtcg 1860
ctcttattga ccacacctct accggcatgc cgagcaaatg cctgcaaatc gctccccatt 1920
tcacccaatt gtagatatgc taactccagc aatgagttga tgaatctcgg tgtgtatttt 1980
atgtcctcag aggacaa 1997
<210> 10
<211> 43
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 10
gaccttcgtt tgtgcggatc cagacgagat caattagaac ctg 43
<210> 11
<211> 45
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 11
gctatggtgt gtgggggatc cttgtcctct gaggacataa aatac 45
<210> 12
<211> 23
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 12
ggagaccaac atgtgagcaa aag 23
<210> 13
<211> 21
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 13
ggatccgcac aaacgaaggt c 21
<210> 14
<211> 35
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 14
cgtttgtgcg gatccgacct gcaggggggg ggggg 35
<210> 15
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 15
cacatgttgg tctccgcgcc agcaaccgca cctgtg 36
<210> 16
<211> 26
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 16
catcatcatc atcatcattg agtttg 26
<210> 17
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 17
agcttcagcc tctcttttct cgag 24
<210> 18
<211> 449
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 18
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Leu Ser Asn Tyr
20 25 30
Tyr Val Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Gly Ile Ile Tyr Gly Ser Asp Glu Thr Ala Tyr Ala Thr Ser Ala Ile
50 55 60
Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu
65 70 75 80
Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala
85 90 95
Arg Asp Asp Ser Ser Asp Trp Asp Ala Lys Phe Asn Leu Trp Gly Gln
100 105 110
Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val
115 120 125
Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala
130 135 140
Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser
145 150 155 160
Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val
165 170 175
Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro
180 185 190
Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys
195 200 205
Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Val Asp
210 215 220
Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly
225 230 235 240
Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile
245 250 255
Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu
260 265 270
Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His
275 280 285
Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg
290 295 300
Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys
305 310 315 320
Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu
325 330 335
Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr
340 345 350
Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu
355 360 365
Trp Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp
370 375 380
Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val
385 390 395 400
Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp
405 410 415
Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His
420 425 430
Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro
435 440 445
Gly
<210> 19
<211> 1347
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 19
gaggtccagt tggtcgagtc tggtggtggt ttggttcagc caggtggatc tttgagattg 60
tcttgtgcag catctggatt ctctttgtct aactactacg ttacttgggt tagacaggca 120
ccaggtaaag gtttggagtg ggttggtatt atttacggtt ctgatgaaac tgcttacgct 180
acttctgcta ttggtagatt cactatttct agagataact ctaaaaacac tttgtacttg 240
caaatgaact ctttgagagc tgaagataca gccgtttact attgcgctag agatgattct 300
tctgattggg atgctaagtt taacttgtgg ggacaaggta ctttggttac tgtttcttct 360
gcttctacta agggaccatc tgtctttcca ttggcaccat cttctaaatc tacttctgga 420
ggaactgccg ccttgggatg tttggtcaag gattatttcc ctgagcctgt cacagtttct 480
tggaactctg gtgcattgac atctggtgtt cacacattcc cagcagtctt gcaatcttct 540
ggtttgtact ctttgtcttc tgtcgttaca gtcccttctt cttctttggg tactcaaacc 600
tacatctgta atgttaatca taagccttct aacacaaaag ttgataagaa agtcgagcca 660
aaatctgttg acaaaacaca tacctgccca ccatgtccag ctcctgagtt gttgggaggt 720
ccttctgttt ttttgttccc acctaagcca aaggatacat tgatgatttc cagaactcct 780
gaagttacat gtgtcgttgt cgatgtttct catgaagatc ctgaggttaa attcaattgg 840
tacgttgatg gtgtcgaagt tcataacgct aagactaaac caagagaaga acagtacaat 900
tctacttata gagtcgtctc tgttttgacc gttttgcatc aagattggtt gaacggaaag 960
gagtataagt gcaaagtttc taataaggct ttgcctgccc ctattgagaa gaccatttct 1020
aaggctaaag gtcagcctag agaacctcaa gtttacactt tgccaccttc cagagaggaa 1080
atgactaaga accaggtctc tttgtggtgc ttggttaagg gtttttaccc ttctgacatc 1140
gctgttgagt gggaatctaa cggacagcct gaaaataact ataaaacaac acctccagtt 1200
ttggattctg acggttcttt ctttttgtat tctaagttga cagtcgataa gtccagatgg 1260
caacaaggaa acgtcttttc ttgttctgtt atgcatgaag ccttgcataa tcattacacc 1320
cagaaatctt tgtctttgtc tccaggt 1347
<210> 20
<211> 40
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 20
agagaggctg aagctgaggt ccagttggtc gagtctggtg 40
<210> 21
<211> 49
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 21
tcaatgatga tgatgatgat gtcaacctgg agacaaagac aaagatttc 49
<210> 22
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 22
gacagatggt cccttagtag aagc 24
<210> 23
<211> 26
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 23
ctaagggacc atctgtctgt ccattg 26
<210> 24
<211> 37
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 24
ctaagggacc atctgtcttt ccatgtgcac catcttc 37
<210> 25
<211> 41
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 25
ctaagggacc atctgtcttt ccattgtgtc catcttctaa a 41
<210> 26
<211> 49
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 26
ctaagggacc atctgtcttt ccattggcat gttcttctaa atctacttc 49
<210> 27
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 27
ctaagggacc atctgtcttt ccattggcac catgttct 38
<210> 28
<211> 43
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 28
ctaagggacc atctgtcttt ccattggcac catcttgtaa atc 43
<210> 29
<211> 47
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 29
ctaagggacc atctgtcttt ccattggcac catcttcttg ttctact 47
<210> 30
<211> 54
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 30
ctaagggacc atctgtcttt ccattggcac catcttctaa atgtacttct ggag 54
<210> 31
<211> 59
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 31
ctaagggacc atctgtcttt ccattggcac catcttctaa atcttgttct ggaggaact 59
<210> 32
<211> 23
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 32
agatgtcaat gcaccagagt tcc 23
<210> 33
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 33
ggtgcattga catcttgtgt tcac 24
<210> 34
<211> 30
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 34
ggtgcattga catctggtgt ttgtacattc 30
<210> 35
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 35
ggtgcattga catctggtgt tcacacatgt ccagca 36
<210> 36
<211> 39
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 36
ggtgcattga catctggtgt tcacacattc tgtgcagtc 39
<210> 37
<211> 45
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 37
ggtgcattga catctggtgt tcacacattc ccagcatgtt tgcaa 45
<210> 38
<211> 51
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 38
ggtgcattga catctggtgt tcacacattc ccagcagtct tgtgttcttc t 51
<210> 39
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 39
ttgcaagact gctgggaatg tgtg 24
<210> 40
<211> 27
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 40
ccagcagtct tgcaatgttc tggtttg 27
<210> 41
<211> 30
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 41
ccagcagtct tgcaatcttg tggtttgtac 30
<210> 42
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 42
ccagcagtct tgcaatcttc ttgtttgtac tctttgtc 38
<210> 43
<211> 41
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 43
ccagcagtct tgcaatcttc tggttgttac tctttgtctt c 41
<210> 44
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 44
gtacaaacca gaagattgca agac 24
<210> 45
<211> 26
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 45
caatcttctg gtttgtactg tttgtc 26
<210> 46
<211> 33
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 46
caatcttctg gtttgtactc tttgtgttct gtc 33
<210> 47
<211> 47
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 47
caatcttctg gtttgtactc tttgtcttct tgtgttacag tcccttc 47
<210> 48
<211> 45
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 48
caatcttctg gtttgtactc tttgtcttct gtcgtttgtg ctcct 45
<210> 49
<211> 21
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 49
tggctcgact ctcttatcaa c 21
<210> 50
<211> 27
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 50
aagaaagtcg agccatgttc tgttgac 27
<210> 51
<211> 27
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 51
aagaaagtcg agccaaaatg tgttgac 27
<210> 52
<211> 27
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 52
aagaaagtcg agccaaaatc ttgcgac 27
<210> 53
<211> 1987
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 53
aggttttata ctgagtttgt taatgataca ataaactgtt atagtacata caattgaaac 60
tctcttatct atactggggg accttctcgc agaatggtat aaatatctac taactgactg 120
tcgtacggcc taggggtctc ttcttcgatt atttgcaggt cggaacatcc ttcgtctgat 180
gcggatctcc tgagacaaag ttcacgggta tctagtattc tatcagcata aatggaggac 240
ctttctaaac taaactttga atcgtctcca gcagcatcct cgcataatcc ttttgtcatt 300
tcctctatgt ctattgtcac tgtggttggc gcatcaagag tcgtccttct gtaaaccggt 360
acagaattcc taccactaga agcttgaaat ggggagggtt tcagctttgt atcccgatac 420
tgtgctttaa aaagggagtc caaactgaaa tctttttcgg aatcattgga tgatacctct 480
gtattagatc tcctatgtat cggtttcctc gggtagatag aactgtcgac agagtctcta 540
gcaaattgag aattggcttt agacttcgga gaagtaggtg acgatgtggt agatatatca 600
gcagatgaaa agactgaatt ttttctctct ggtgatgagt tgattccctc ttggtgttga 660
tatcttgaac cgggctcatg ttgaaccttt gaattcaaaa aggtagcttg aagttgctca 720
ttgacagcat ctgccacgtc gtatcttgca acatctttgg gaaactgata cgaagtgttc 780
aacatctttg ttgcggtatg acaagagcac ttcgttgtac ttttatcaga gaaaagaaac 840
acctcaatta tggtatttag gtttatatat tacgcaaatt ctattagaaa acccgggagc 900
tggagctttg gctggtcatc cttatggaat tgatcgtgaa tacattgctg agagattagg 960
gtttgattct gttattggta attctttggc cgctgtttca gacagagatt ttgtagtcga 1020
aaccatgttc tggtcttcgt tgtttatgaa tcatatttct cgattctcag aagatttgat 1080
catttactcc actggagagt ttggatttat caagttggca gatgcttatt ctactggatc 1140
ttctctgatg cctacaaaaa aaaacccaga ctctttggag ttattgaggg gtaaatctgg 1200
tagatgtttt ggggccttgg ctggtttcct catgtctatt aagtccattc cgtcaaccta 1260
taacaaagat atgcaagagg ataaggagcc tttatttgat actctaatca ctgtagagca 1320
ctcgattttg atagcatccg gtgtagtttc taccttgaac attgatgccg aacgaatgaa 1380
gaatgctcta actatggata tgctggctac agatcttgcc gactatttag ttagaagggg 1440
agttccattc agagaaactc accacatttc tggtgaatgt gtcagacaag ccgaggagtt 1500
gaacctttct ggtattgatc agttgtccct cgaacaattg aaatccattg actcccgttt 1560
tgaggctgat gtggcttcaa cgtttgactt tgaagccagt gttgaaaaaa gaactgccac 1620
cggaggaact tctaagactg ctgttttaaa gcaattggat gcactgaatg aaaagctaga 1680
gtcttgagcg aatttcttat gatttatgat ttttattatt aaataagtta taaaaaaaat 1740
aagtgtatac aaattttaaa gtgactctta ggttttaaaa cgaaaattct tattcttgag 1800
taactctttc ctgtaggtca ggttgctttc tcaggtatag catgaggtcg ctcttattga 1860
ccacacctct accggcatgc cgagcaaatg cctgcaaatc gctccccatt tcacccaatt 1920
gtagatatgc taactccagc aatgagttga tgaatctcgg tgtgtatttt atgtcctcag 1980
aggacaa 1987
<210> 54
<211> 43
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 54
gaccttcgtt tgtgcggatc caggttttat actgagtttg tta 43
<210> 55
<211> 45
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 55
gctatggtgt gtgggggatc cttgtcctct gaggacataa aatac 45
<210> 56
<211> 217
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 56
Ala Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
1 5 10 15
Asp Arg Val Thr Ile Thr Cys Gln Ala Ser Gln Ser Ile Asn Asn Glu
20 25 30
Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
35 40 45
Tyr Arg Ala Ser Thr Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60
Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
65 70 75 80
Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Gly Tyr Ser Leu Arg Asn
85 90 95
Ile Asp Asn Ala Phe Gly Gly Gly Thr Lys Val Glu Ile Lys Arg Thr
100 105 110
Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu
115 120 125
Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro
130 135 140
Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly
145 150 155 160
Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr
165 170 175
Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His
180 185 190
Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val
195 200 205
Thr Lys Ser Phe Asn Arg Gly Glu Val
210 215
<210> 57
<211> 651
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 57
gctattcaaa tgactcaatc tccttcttct ttgtctgctt ctgtcggaga tagagtcact 60
atcacttgtc aagcttctca atctattaac aacgaattgt cttggtatca gcaaaagcca 120
ggtaaggctc caaaattgtt gatttacaga gcatctactt tggcttctgg tgtcccttcc 180
agattctctg gttctggttc tggaaccgat tttactttga ctatctcttc tttgcagcct 240
gatgatttcg caacttacta ctgtcaacag ggttactctt tgagaaacat tgataacgct 300
tttggtggtg gaactaaagt tgagattaag agaactgtcg ctgcaccttc tgttttcatt 360
tttcctccat ctgacgagca gttgaagtct ggtacagcat ctgttgtctg tttgttgaac 420
aacttctacc caagagaagc aaaggttcaa tggaaggttg acaacgcctt gcaatctggt 480
aactctcagg aatctgttac tgaacaagat tctaaggatt ctacttactc tttgtcttct 540
acattgacat tgtctaaggc tgattacgaa aagcataagg tttacgcttg tgaagttact 600
catcaaggat tgtcttctcc tgtcacaaaa tcttttaaca gaggtgaggt t 651
<210> 58
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 58
agagaggctg aagctgctat tcaaatgact caatctcc 38
<210> 59
<211> 50
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 59
tcaatgatga tgatgatgat gtcaaacctc acctctgtta aaagattttg 50
<210> 60
<211> 27
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 60
aggtgcagcg acagttctag taatttg 27
<210> 61
<211> 26
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 61
gaactgtcgc tgcaccttgt gttttc 26
<210> 62
<211> 40
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 62
gaactgtcgc tgcaccttct gtttgtattt ttcctccatc 40
<210> 63
<211> 44
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 63
gaactgtcgc tgcaccttct gttttcattt gtcctccatc tgac 44
<210> 64
<211> 50
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 64
gaactgtcgc tgcaccttct gttttcattt tttgtccatc tgacgagcag 50
<210> 65
<211> 53
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 65
gaactgtcgc tgcaccttct gttttcattt ttccttgttc tgacgagcag ttg 53
<210> 66
<211> 53
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 66
gaactgtcgc tgcaccttct gttttcattt ttcctccatg tgacgagcag ttg 53
<210> 67
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 67
accagattgc aaggcgttgt caac 24
<210> 68
<211> 31
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 68
gccttgcaat ctggttgttc tcaggaatct g 31
<210> 69
<211> 37
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 69
gccttgcaat ctggtaactc ttgtgaatct gttactg 37
<210> 70
<211> 40
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 70
gccttgcaat ctggtaactc tcaggaatgt gttactgaac 40
<210> 71
<211> 51
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 71
gccttgcaat ctggtaactc tcaggaatct gtttgtgaac aagattctaa g 51
<210> 72
<211> 23
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 72
agaatcctta gaatcttgtt cag 23
<210> 73
<211> 29
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 73
gattctaagg attcttgtta ctctttgtc 29
<210> 74
<211> 32
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 74
gattctaagg attctactta ctgtttgtct tc 32
<210> 75
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 75
gattctaagg attctactta ctctttgtgt tctaca 36
<210> 76
<211> 42
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 76
gattctaagg attctactta ctctttgtct tcttgtttga ca 42
<210> 77
<211> 55
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 77
gattctaagg attctactta ctctttgtct tctacattgt gtttgtctaa ggctg 55
<210> 78
<211> 45
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 78
tcaatgatga tgatgatgat gtcaaacctc acctctgtta caaga 45
<210> 79
<211> 44
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 79
tcaatgatga tgatgatgat gtcaaacctc acctctacaa aaag 44
<210> 80
<211> 44
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 80
tcaatgatga tgatgatgat gtcaaacctc accacagtta aaag 44
<210> 81
<211> 44
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 81
tcaatgatga tgatgatgat gtcaaacctc acatctgtta aaag 44
<210> 82
<211> 44
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 82
tcaatgatga tgatgatgat gtcaaacaca acctctgtta aaag 44
<210> 83
<211> 44
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 83
tcaatgatga tgatgatgat gtcaacactc acctctgtta aaag 44
<210> 84
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 84
atcaactttt gtgttaga 18
<210> 85
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 85
tctaacacaa aagttgatga taaagtcgag ccaaaa 36
<210> 86
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 86
tctaacacaa aagttgatga aaaagtcgag ccaaaa 36
<210> 87
<211> 15
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 87
agatggagga aaaat 15
<210> 88
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 88
atttttcctc catctgacaa gcagttgaag tctggt 36
<210> 89
<211> 21
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 89
acatggagga aaaatgaaaa c 21
<210> 90
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 90
atttttcctc catgtgacaa gcagttgaag tctggt 36
<210> 91
<211> 21
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 91
agaacaagga aaaatgaaaa c 21
<210> 92
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 92
atttttcctt gttctgacaa gcagttgaag tctggt 36
<210> 93
<211> 21
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 93
agatggacaa aaaatgaaaa c 21
<210> 94
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 94
attttttgtc catctgacaa gcagttgaag tctggt 36
<210> 95
<211> 21
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 95
agatggagga caaatgaaaa c 21
<210> 96
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 96
atttgtcctc catctgacaa gcagttgaag tctggt 36
<210> 97
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 97
atttttcctc catctgacag acagttgaag tctggt 36
<210> 98
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 98
atttttcctc catgtgacag acagttgaag tctggt 36
<210> 99
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 99
atttttcctt gttctgacag acagttgaag tctggt 36
<210> 100
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 100
attttttgtc catctgacag acagttgaag tctggt 36
<210> 101
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 101
atttgtcctc catctgacag acagttgaag tctggt 36
<210> 102
<211> 456
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 102
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15
Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr
20 25 30
Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Val
35 40 45
Gly Trp Ile Asn Pro Tyr Thr Gly Ser Ala Phe Tyr Ala Gln Lys Phe
50 55 60
Arg Gly Arg Val Thr Met Thr Arg Asp Thr Ser Ile Ser Thr Ala Tyr
65 70 75 80
Met Glu Leu Ser Arg Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Glu Pro Glu Lys Phe Asp Ser Asp Asp Ser Asp Val Trp Gly
100 105 110
Arg Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser
115 120 125
Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala
130 135 140
Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val
145 150 155 160
Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala
165 170 175
Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val
180 185 190
Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His
195 200 205
Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys
210 215 220
Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly
225 230 235 240
Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met
245 250 255
Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His
260 265 270
Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val
275 280 285
His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr
290 295 300
Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly
305 310 315 320
Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile
325 330 335
Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val
340 345 350
Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser
355 360 365
Leu Ser Cys Ala Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu
370 375 380
Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro
385 390 395 400
Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Val Ser Lys Leu Thr Val
405 410 415
Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met
420 425 430
His Glu Ala Leu His Asn Arg Phe Thr Gln Lys Ser Leu Ser Leu Ser
435 440 445
Pro Gly His His His His His His
450 455
<210> 103
<211> 1368
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 103
caagttcaat tggttcaatc aggagctgaa gttaagaagc caggtgcttc cgttaaggtt 60
tcttgtaagg cttcaggata cacttttact aactactaca tgcattgggt tagacaagct 120
ccaggacaag gtttggaatg ggttggatgg attaacccat acactgggag tgctttttac 180
gctcaaaagt ttagaggtag agttactatg actagagata cttctatttc cactgcttac 240
atggaattgt cgcgtttgag atcagatgat actgctgttt actactgtgc tagagaacct 300
gaaaagtttg attccgatga ttctgatgtt tggggtagag gtactttggt tactgtttct 360
tctgcttcta ctaagggacc atctgtcttt ccattggcac catcttctaa atctacttct 420
ggaggaactg ccgccttggg atgtttggtc aaggattatt tccctgagcc tgtcacagtt 480
tcttggaact ctggtgcatt gacatctggt gttcacacat tcccagcagt cttgcaatct 540
tctggtttgt actctttgtc ttctgtcgtt acagtccctt cttcttcttt gggtactcaa 600
acctacatct gtaatgttaa tcataagcct tctaacacaa aagttgataa gaaagtcgag 660
ccaaaatctt gcgacaaaac acatacctgc ccaccatgtc cagctcctga gttgttggga 720
ggtccttctg tttttttgtt cccacctaag ccaaaggata cattgatgat ttccagaact 780
cctgaagtta catgtgtcgt tgtcgatgtt tctcatgaag atcctgaggt taaattcaat 840
tggtacgttg atggtgtcga agttcataac gctaagacta aaccaagaga agaacagtac 900
aattctactt atagagtcgt ctctgttttg accgttttgc atcaagattg gttgaacgga 960
aaggagtata agtgcaaagt ttctaataag gctttgcctg cccctattga gaagaccatt 1020
tctaaggcta aaggtcagcc tagagaacct caagtttaca ctttgccacc ttccagagag 1080
gaaatgacta agaaccaggt ctctttgtct tgcgctgtta agggttttta cccttctgac 1140
atcgctgttg agtgggaatc taacggacag cctgaaaata actataaaac aacacctcca 1200
gttttggatt ctgacggttc tttctttttg gtttctaagt tgacagtcga taagtccaga 1260
tggcaacaag gaaacgtctt ttcttgttct gttatgcatg aagccttgca taatagattt 1320
acccagaaat ctttgtcttt gtctccaggt catcatcatc atcatcat 1368
<210> 104
<211> 49
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 104
ccgctcgaga aaagagaggc tgaagctcaa gttcaattgg ttcaatcag 49
<210> 105
<211> 52
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 105
atagtttagc ggccgctcaa tgatgatgat gatgatgacc tggagacaaa ga 52
<210> 106
<211> 217
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 106
Gln Ala Val Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly Gln
1 5 10 15
Arg Val Thr Ile Ser Cys Thr Gly Ser Ser Ser Asn Ile Gly Ala Gly
20 25 30
Tyr Gly Val His Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu
35 40 45
Leu Ile Tyr Gly Asp Ser Asn Arg Pro Ser Gly Val Pro Asp Arg Phe
50 55 60
Ser Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu
65 70 75 80
Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Asn Ser
85 90 95
Leu Ser Gly Tyr Val Phe Gly Gly Gly Thr Gln Leu Thr Val Leu Gly
100 105 110
Gln Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu
115 120 125
Glu Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe
130 135 140
Tyr Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val
145 150 155 160
Lys Ala Gly Val Glu Thr Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys
165 170 175
Tyr Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser
180 185 190
His Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu
195 200 205
Lys Thr Val Ala Pro Thr Glu Cys Ser
210 215
<210> 107
<211> 651
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 107
caagctgttt tgactcaacc accatccgtt tcaggggcgc ctggtcaaag agttactatt 60
tcatgtactg ggtcctcatc caacattggt gctggatacg gtgttcattg gtatcaacaa 120
ttgccaggaa ctgctcctaa gttgttgatt tacggtgatt ctaacagacc atctggtgtt 180
ccagatagat tttccggatc taagtccgga acttctgctt ccttggctat tactggtttg 240
caagctgaag atgaagctga ttactactgt caatcatacg ataactcctt gtccggatac 300
gtttttggtg gaggaactca attgactgtt ttgggacaac caaaggctgc tccatccgtt 360
actttgtttc caccatcttc agaagaattg caagctaaca aggctacttt ggtttgtttg 420
atttccgatt tttacccagg agctgttact gttgcttgga aggctgattc ctcaccagtt 480
aaggctggtg ttgaaactac tactccatct aagcaatcaa acaacaagta cgctgcttca 540
tcatacttgt ccttgactcc agaacaatgg aagtcacata gatcatactc atgtcaagtt 600
actcatgaag gaagtactgt tgaaaagact gttgctccaa ctgaatgttc t 651
<210> 108
<211> 47
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 108
ccgctcgaga aaagagaggc tgaagctcaa gctgttttga ctcaacc 47
<210> 109
<211> 42
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 109
aaggaaaaaa gcggccgctt aagaacattc agttggagca ac 42
<210> 110
<211> 448
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 110
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Phe
20 25 30
Pro Met Ala Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ser Thr Ile Ser Thr Ser Gly Gly Arg Thr Tyr Tyr Arg Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Lys Phe Arg Gln Tyr Ser Gly Gly Phe Asp Tyr Trp Gly Gln Gly
100 105 110
Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe
115 120 125
Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu
130 135 140
Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp
145 150 155 160
Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu
165 170 175
Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser
180 185 190
Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro
195 200 205
Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Val Asp Lys
210 215 220
Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro
225 230 235 240
Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser
245 250 255
Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp
260 265 270
Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn
275 280 285
Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val
290 295 300
Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu
305 310 315 320
Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys
325 330 335
Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr
340 345 350
Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Trp
355 360 365
Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu
370 375 380
Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu
385 390 395 400
Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys
405 410 415
Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu
420 425 430
Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly
435 440 445
<210> 111
<211> 1344
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 111
gaggtccagt tgttggagtc tggtggtggt ttggttcagc caggtggatc tttgagattg 60
tcttgtgcag catctggatt cactttttct tcttttccaa tggcttgggt tagacaggca 120
ccaggtaaag gtttggagtg ggtttctact atttctactt ctggtggtag aacttactac 180
agagattctg tcaagggtag attcactatt tctagagata actctaaaaa cactttgtac 240
ttgcaaatga actctttgag agctgaagat acagccgttt actattgcgc taagtttaga 300
caatactctg gtggttttga ttactgggga caaggtactt tggttactgt ttcttctgct 360
tctactaagg gaccatctgt ctttccattg gcaccatctt ctaaatctac ttctggagga 420
actgccgcct tgggatgttt ggtcaaggat tatttccctg agcctgtcac agtttcttgg 480
aactctggtg cattgacatc tggtgttcac acattcccag cagtcttgca atcttctggt 540
ttgtactctt tgtcttctgt cgttacagtc ccttcttctt ctttgggtac tcaaacctac 600
atctgtaatg ttaatcataa gccttctaac acaaaagttg ataagaaagt cgagccaaaa 660
tctgttgaca aaacacatac ctgcccacca tgtccagctc ctgagttgtt gggaggtcct 720
tctgtttttt tgttcccacc taagccaaag gatacattga tgatttccag aactcctgaa 780
gttacatgtg tcgttgtcga tgtttctcat gaagatcctg aggttaaatt caattggtac 840
gttgatggtg tcgaagttca taacgctaag actaaaccaa gagaagaaca gtacaattct 900
acttatagag tcgtctctgt tttgaccgtt ttgcatcaag attggttgaa cggaaaggag 960
tataagtgca aagtttctaa taaggctttg cctgccccta ttgagaagac catttctaag 1020
gctaaaggtc agcctagaga acctcaagtt tacactttgc caccttccag agaggaaatg 1080
actaagaacc aggtctcttt gtggtgcttg gttaagggtt tttacccttc tgacatcgct 1140
gttgagtggg aatctaacgg acagcctgaa aataactata aaacaacacc tccagttttg 1200
gattctgacg gttctttctt tttgtattct aagttgacag tcgataagtc cagatggcaa 1260
caaggaaacg tcttttcttg ttctgttatg catgaagcct tgcataatca ttacacccag 1320
aaatctttgt ctttgtctcc aggt 1344
<210> 112
<211> 37
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 112
agagaggctg aagctgaggt ccagttgttg gagtctg 37
<210> 113
<211> 49
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 113
tcaatgatga tgatgatgat gtcaacctgg agacaaagac aaagatttc 49
<210> 114
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 114
gacagatggt cccttagtag aagc 24
<210> 115
<211> 26
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 115
ctaagggacc atctgtctgt ccattg 26
<210> 116
<211> 37
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 116
ctaagggacc atctgtcttt ccatgtgcac catcttc 37
<210> 117
<211> 43
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 117
ctaagggacc atctgtcttt ccattgtgtc catcttctaa atc 43
<210> 118
<211> 49
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 118
ctaagggacc atctgtcttt ccattggcat gttcttctaa atctacttc 49
<210> 119
<211> 47
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 119
ctaagggacc atctgtcttt ccattggcac catgttctaa atctact 47
<210> 120
<211> 47
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 120
ctaagggacc atctgtcttt ccattggcac catcttgtaa atctact 47
<210> 121
<211> 54
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 121
ctaagggacc atctgtcttt ccattggcac catcttcttg ttctacttct ggag 54
<210> 122
<211> 54
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 122
ctaagggacc atctgtcttt ccattggcac catcttctaa atgtacttct ggag 54
<210> 123
<211> 59
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 123
ctaagggacc atctgtcttt ccattggcac catcttctaa atcttgttct ggaggaact 59
<210> 124
<211> 59
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 124
ctaagggacc atctgtcttt ccattggcac catcttctaa atctacttgt ggaggaact 59
<210> 125
<211> 23
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 125
agatgtcaat gcaccagagt tcc 23
<210> 126
<211> 33
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 126
ggtgcattga catcttgtgt tcacacattc cca 33
<210> 127
<211> 35
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 127
ggtgcattga catctggtgt ttgtacattc ccagc 35
<210> 128
<211> 43
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 128
ggtgcattga catctggtgt tcacacatgt ccagcagtct tgc 43
<210> 129
<211> 45
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 129
ggtgcattga catctggtgt tcacacattc tgtgcagtct tgcaa 45
<210> 130
<211> 51
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 130
ggtgcattga catctggtgt tcacacattc ccagcatgtt tgcaatcttc t 51
<210> 131
<211> 57
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 131
ggtgcattga catctggtgt tcacacattc ccagcagtct tgtgttcttc tggtttg 57
<210> 132
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 132
ttgcaagact gctgggaatg tgtg 24
<210> 133
<211> 27
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 133
ccagcagtct tgcaatgttc tggtttg 27
<210> 134
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 134
ccagcagtct tgcaatcttg tggtttgtac tctttg 36
<210> 135
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 135
ccagcagtct tgcaatcttc ttgtttgtac tctttgtc 38
<210> 136
<211> 41
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 136
ccagcagtct tgcaatcttc tggttgttac tctttgtctt c 41
<210> 137
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 137
gtacaaacca gaagattgca agac 24
<210> 138
<211> 33
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 138
caatcttctg gtttgtactg tttgtcttct gtc 33
<210> 139
<211> 40
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 139
caatcttctg gtttgtactc tttgtgttct gtcgttacag 40
<210> 140
<211> 47
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 140
caatcttctg gtttgtactc tttgtcttct tgtgttacag tcccttc 47
<210> 141
<211> 53
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 141
caatcttctg gtttgtactc tttgtcttct gtcgtttgtg tcccttcttc ttc 53
<210> 142
<211> 23
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 142
tttcttatca acttttgtgt tag 23
<210> 143
<211> 33
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 143
caaaagttga taagaaatgt gagccaaaat ctg 33
<210> 144
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 144
caaaagttga taagaaagtc tgtccaaaat ctgttg 36
<210> 145
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 145
caaaagttga taagaaagtc gagtgtaaat ctgttgac 38
<210> 146
<211> 33
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 146
aagaaagtcg agccatgttc tgttgacaaa aca 33
<210> 147
<211> 33
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 147
aagaaagtcg agccaaaatg tgttgacaaa aca 33
<210> 148
<211> 37
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 148
aagaaagtcg agccaaaatc ttgcgacaaa acacata 37
<210> 149
<211> 216
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 149
Asp Ile Gln Leu Thr Gln Pro Asn Ser Val Ser Thr Ser Leu Gly Ser
1 5 10 15
Thr Val Lys Leu Ser Cys Thr Leu Ser Ser Gly Asn Ile Glu Asn Asn
20 25 30
Tyr Val His Trp Tyr Gln Leu Tyr Glu Gly Arg Ser Pro Thr Thr Met
35 40 45
Ile Tyr Asp Asp Asp Lys Arg Pro Asp Gly Val Pro Asp Arg Phe Ser
50 55 60
Gly Ser Ile Asp Arg Ser Ser Asn Ser Ala Phe Leu Thr Ile His Asn
65 70 75 80
Val Ala Ile Glu Asp Glu Ala Ile Tyr Phe Cys His Ser Tyr Val Ser
85 90 95
Ser Phe Asn Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Arg Gln
100 105 110
Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu
115 120 125
Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr
130 135 140
Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys
145 150 155 160
Ala Gly Val Glu Thr Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr
165 170 175
Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His
180 185 190
Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys
195 200 205
Thr Val Ala Pro Thr Glu Val Ser
210 215
<210> 150
<211> 648
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 150
gatattcaat tgactcaacc taactcagtt tccacttcct tgggttcgac tgttaagttg 60
tcatgtactt tgtcctctgg taacattgaa aacaactacg ttcattggta tcaattgtac 120
gaaggtagat cccctactac tatgatttac gatgatgata agagacctga tggagttcct 180
gatagatttt ccggttctat tgatagaagc tctaactccg cttttttgac tattcataac 240
gttgctattg aagatgaagc tatttacttt tgtcattctt acgtttcttc ctttaacgtt 300
tttggaggtg gaactaagtt gactgttttg agacaaccaa aggctgctcc atccgttact 360
ttgtttccac catcttcaga agaattgcaa gctaacaagg ctactttggt ttgtttgatt 420
tccgattttt acccaggagc tgttactgtt gcttggaagg ctgattcctc accagttaag 480
gctggtgttg aaactactac tccatctaag caatcaaaca acaagtacgc tgcttcatca 540
tacttgtcct tgactccaga acaatggaag tcacatagat catactcatg tcaagttact 600
catgaaggaa gtactgttga aaagactgtt gctccaactg aagtttct 648
<210> 151
<211> 34
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 151
agagaggctg aagctgatat tcaattgact caac 34
<210> 152
<211> 45
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 152
tcaatgatga tgatgatgat gtcaagaaac ttcagttgga gcaac 45
<210> 153
<211> 22
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 153
tggagcagcc tttggttgtc tc 22
<210> 154
<211> 35
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 154
ccaaaggctg ctccatgtgt tactttgttt ccacc 35
<210> 155
<211> 41
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 155
ccaaaggctg ctccatccgt ttgtttgttt ccaccatctt c 41
<210> 156
<211> 43
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 156
ccaaaggctg ctccatccgt tactttgtgt ccaccatctt cag 43
<210> 157
<211> 51
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 157
ccaaaggctg ctccatccgt tactttgttt tgtccatctt cagaagaatt g 51
<210> 158
<211> 51
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 158
ccaaaggctg ctccatccgt tactttgttt ccaccatgtt cagaagaatt g 51
<210> 159
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 159
agccttaact ggtgaggaat cagc 24
<210> 160
<211> 34
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 160
tcaccagtta aggcttgtgt tgaaactact actc 34
<210> 161
<211> 42
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 161
tcaccagtta aggctggtgt ttgtactact actccatcta ag 42
<210> 162
<211> 47
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 162
tcaccagtta aggctggtgt tgaaacttgt actccatcta agcaatc 47
<210> 163
<211> 48
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 163
tcaccagtta aggctggtgt tgaaactact tgtccatcta agcaatca 48
<210> 164
<211> 51
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 164
tcaccagtta aggctggtgt tgaaactact acttgttcta agcaatcaaa c 51
<210> 165
<211> 47
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 165
tcaccagtta aggctggtgt tgaaactact actccatgta agcaatc 47
<210> 166
<211> 59
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 166
tcaccagtta aggctggtgt tgaaactact actccatcta agtgttcaaa caacaagta 59
<210> 167
<211> 23
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 167
gttgtttgat tgcttagatg gag 23
<210> 168
<211> 37
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 168
taagcaatca aacaactgtt acgctgcttc atcatac 37
<210> 169
<211> 42
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 169
taagcaatca aacaacaagt actgtgcttc atcatacttg tc 42
<210> 170
<211> 48
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 170
taagcaatca aacaacaagt acgctgcttg ttcatacttg tccttgac 48
<210> 171
<211> 53
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 171
taagcaatca aacaacaagt acgctgcttc atcatgtttg tccttgactc cag 53
<210> 172
<211> 59
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 172
taagcaatca aacaacaagt acgctgcttc atcatacttg tgtttgactc cagaacaat 59
<210> 173
<211> 58
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 173
caatgatgat gatgatgatg tcaagaaact tcagttggag cacaagtctt ttcaacag 58
<210> 174
<211> 58
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 174
caatgatgat gatgatgatg tcaagaaact tcagttggac aaacagtctt ttcaacag 58
<210> 175
<211> 57
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 175
tcaatgatga tgatgatgat gtcaagaaac ttcagtacaa gcaacagtct tttcaac 57
<210> 176
<211> 54
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 176
tcaatgatga tgatgatgat gtcaagaaac ttcacatgga gcaacagtct tttc 54
<210> 177
<211> 49
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 177
tcaatgatga tgatgatgat gtcaagaaac acaagttgga gcaacagtc 49
<210> 178
<211> 45
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 178
tcaatgatga tgatgatgat gtcaagaaca ttcagttgga gcaac 45
<210> 179
<211> 45
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 179
tcaatgatga tgatgatgat gtcaacaaac ttcagttgga gcaac 45
<210> 180
<211> 22
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 180
atcaactttt gtgttagaag gc 22
<210> 181
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 181
taacacaaaa gttgatgata aagtcgagcc aaaatctg 38
<210> 182
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 182
taacacaaaa gttgatgata aatgtgagcc aaaatctg 38
<210> 183
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 183
taacacaaaa gttgatgata aagtctgtcc aaaatctg 38
<210> 184
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 184
taacacaaaa gttgatgata aagtcgagtg taaatctg 38
<210> 185
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 185
taacacaaaa gttgatgata aagtcgagcc atgttctg 38
<210> 186
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 186
taacacaaaa gttgatgata aagtcgagcc aaaatgtg 38
<210> 187
<211> 22
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 187
atcaactttt gtgttagaag gc 22
<210> 188
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 188
taacacaaaa gttgatgaaa aagtcgagcc aaaatctg 38
<210> 189
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 189
taacacaaaa gttgatgaaa aatgtgagcc aaaatctg 38
<210> 190
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 190
taacacaaaa gttgatgaaa aagtctgtcc aaaatctg 38
<210> 191
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 191
taacacaaaa gttgatgaaa aagtcgagtg taaatctg 38
<210> 192
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 192
taacacaaaa gttgatgaaa aagtcgagcc atgttctg 38
<210> 193
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 193
taacacaaaa gttgatgaaa aagtcgagcc aaaatgtg 38
<210> 194
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 194
tgaagatggt ggaaacaaag taac 24
<210> 195
<211> 42
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 195
gtttccacca tcttcaaagg aattgcaagc taacaaggct ac 42
<210> 196
<211> 27
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 196
tgaagatggt ggaaacaaag taacaca 27
<210> 197
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 197
tgaagatggt ggaaacaaac aaac 24
<210> 198
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 198
gttagcttgc aattcctttg aacatggtgg aaacaaag 38
<210> 199
<211> 23
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 199
gaattgcaag ctaacaaggc tac 23
<210> 200
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 200
gttagcttgc aattcctttg aagatggaca aaacaaag 38
<210> 201
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 201
gttagcttgc aattcctttg aagatggtgg acacaaag 38
<210> 202
<211> 451
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 202
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
1 5 10 15
Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Ser Phe Thr Asp Tyr
20 25 30
His Ile His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45
Gly Val Ile Asn Pro Met Tyr Gly Thr Thr Asp Tyr Asn Gln Arg Phe
50 55 60
Lys Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr
65 70 75 80
Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Tyr Asp Tyr Phe Thr Gly Thr Gly Val Tyr Trp Gly Gln Gly
100 105 110
Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe
115 120 125
Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu
130 135 140
Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp
145 150 155 160
Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu
165 170 175
Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser
180 185 190
Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His Lys Pro
195 200 205
Ser Asn Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr Gly Pro Pro
210 215 220
Cys Pro Pro Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val Phe
225 230 235 240
Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro
245 250 255
Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu Val
260 265 270
Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr
275 280 285
Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser Val
290 295 300
Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys
305 310 315 320
Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser
325 330 335
Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro
340 345 350
Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Ser Cys Ala Val
355 360 365
Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly
370 375 380
Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp
385 390 395 400
Gly Ser Phe Phe Leu Val Ser Arg Leu Thr Val Asp Lys Ser Arg Trp
405 410 415
Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His
420 425 430
Asn Arg Phe Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly His His His
435 440 445
His His His
450
<210> 203
<211> 1353
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 203
caagttcaat tggttcaatc cggagctgaa gttaagaagc ctgggtcatc cgttaaggtt 60
tcatgtaagg cttcaggata ctcttttact gattaccata ttcattgggt tagacaagct 120
ccaggtcaag gtttggaatg gatgggagtt attaacccta tgtacggaac tactgattac 180
aaccaaagat ttaagggtag agttactatt actgctgatg aatccacttc cactgcttac 240
atggaattgt cctctttgag atcagaagat actgctgttt actactgtgc tagatacgat 300
tactttactg gaactggtgt ttactgggga caaggaactt tggttactgt ttcttccgct 360
tccactaagg gaccatccgt ttttccattg gctccatgtt ctagatccac ttccgaatca 420
actgctgctt tgggatgttt ggttaaggat tactttccag aaccagttac tgtttcatgg 480
aactcaggag ctttgacttc cggagttcat acttttccag ctgttttgca atcctcagga 540
ttgtactctt tgtcttcagt tgttactgtt ccatcttctt ccttgggtac taagacttac 600
acttgtaacg ttgatcataa gccatctaac actaaggttg ataagagagt tgaatctaag 660
tacggacctc catgtccacc atgtccagct cctgaatttt tgggtggacc atccgttttt 720
ttgtttccac caaagccaaa ggatactttg atgatttcta gaactcctga agttacttgt 780
gttgttgttg atgtttcaca agaagatcct gaagttcaat ttaactggta cgttgatgga 840
gttgaagttc ataacgctaa gactaagcct agagaagaac aatttaactc cacttacaga 900
gttgtttccg ttttgactgt tttgcatcaa gattggttga acggtaagga atacaagtgt 960
aaggtttcta acaagggatt gccatcctct attgaaaaga ctatttcaaa ggctaagggt 1020
caacctagag aacctcaagt ttacactttg ccaccttcac aagaagaaat gactaagaac 1080
caagtttcct tgtcttgtgc tgttaaggga ttttacccat ccgatattgc tgttgaatgg 1140
gaatcaaacg gtcaacctga aaacaactac aagactactc caccagtttt ggattctgat 1200
ggatcatttt ttttggtttc tagattgact gttgataagt ctagatggca agaaggtaac 1260
gttttttcat gttccgttat gcatgaagct ttgcataaca gatttactca aaagtccttg 1320
tccttgtcat tgggacatca tcatcatcat cat 1353
<210> 204
<211> 49
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 204
ccgctcgaga aaagagaggc tgaagctcaa gttcaattgg ttcaatccg 49
<210> 205
<211> 58
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 205
aaggaaaaaa gcggccgctt aatgatgatg atgatgatgt cccaatgaca aggacaag 58
<210> 206
<211> 219
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 206
Asp Ile Val Met Thr Gln Thr Pro Leu Ser Leu Ser Val Thr Pro Gly
1 5 10 15
Gln Pro Ala Ser Ile Ser Cys Arg Ser Ser Arg Ser Leu Val His Ser
20 25 30
Arg Gly Asn Thr Tyr Leu His Trp Tyr Leu Gln Lys Pro Gly Gln Ser
35 40 45
Pro Gln Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ile Gly Val Pro
50 55 60
Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile
65 70 75 80
Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Ser Gln Ser
85 90 95
Thr His Leu Pro Phe Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys
100 105 110
Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu
115 120 125
Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe
130 135 140
Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln
145 150 155 160
Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser
165 170 175
Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu
180 185 190
Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser
195 200 205
Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
210 215
<210> 207
<211> 657
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 207
gatattgtta tgactcaaac tccattgtcc ttgtccgtta ctccaggtca acctgcttct 60
atttcatgta gatcatctag gtccttggtt cattccagag gtaacactta cttgcattgg 120
tacttgcaaa agccaggaca atcaccacaa ttgttgattt acaaggtttc taacagattt 180
attggtgttc ctgatagatt ttccggatct ggatcaggaa ctgattttac tttgaagatt 240
tcgcgggttg aagctgaaga tgttggagtt tactactgtt cccaatccac tcatttgcct 300
tttacttttg gtcaaggaac taagttggaa attaagagaa ctgttgctgc accttctgtt 360
ttcatttttc ctccatctga cgagcagttg aagtctggta cagcatctgt tgtctgtttg 420
ttgaacaact tctacccaag agaagcaaag gttcaatgga aggttgacaa cgccttgcaa 480
tctggtaact ctcaggaatc tgttactgaa caagattcta aggattctac ttactctttg 540
tcttctacat tgacattgtc taaggctgat tacgaaaagc ataaggttta cgcttgtgaa 600
gttactcatc aaggattgtc ttctcctgtc acaaaatctt ttaacagagg tgagtgt 657
<210> 208
<211> 49
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 208
ccgctcgaga aaagagaggc tgaagctgat attgttatga ctcaaactc 49
<210> 209
<211> 41
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 209
aaggaaaaaa gcggccgctt aacactcacc tctgttaaaa g 41
<210> 210
<211> 446
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 210
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Asn Phe Asn Asp Tyr
20 25 30
Phe Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ala Gln Met Arg Asn Lys Asn Tyr Gln Tyr Gly Thr Tyr Tyr Ala Glu
50 55 60
Ser Leu Glu Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Asn Ser
65 70 75 80
Leu Tyr Leu Gln Met Asn Ser Leu Lys Thr Glu Asp Thr Ala Val Tyr
85 90 95
Tyr Cys Ala Arg Glu Ser Tyr Tyr Gly Phe Thr Ser Tyr Trp Gly Gln
100 105 110
Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val
115 120 125
Phe Pro Leu Ala Pro Ser Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala
130 135 140
Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser
145 150 155 160
Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val
165 170 175
Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro
180 185 190
Ser Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His Lys
195 200 205
Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr Gly Pro
210 215 220
Pro Cys Pro Pro Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val
225 230 235 240
Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr
245 250 255
Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu
260 265 270
Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys
275 280 285
Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser
290 295 300
Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys
305 310 315 320
Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile
325 330 335
Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro
340 345 350
Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Cys Cys Leu
355 360 365
Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn
370 375 380
Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser
385 390 395 400
Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg
405 410 415
Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu
420 425 430
His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly
435 440 445
<210> 211
<211> 1146
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 211
gaagttcaat tggttgaatc tggaggtgga ttggttcaac ctggtggatc attgagattg 60
tcatgtgctg cttctggatt taactttaac gattacttta tgaactgggt tagacaagct 120
ccaggaaagg gattggaatg ggttgctcaa atgagaaaca agaactacca atacggtact 180
tactacgctg aatccttgga aggtagattt actatttcta gagatgattc aaagaactcc 240
ttgtacttgc aaatgaactc attgaagact gaagatactg ctgtttacta ctgtgctaga 300
gaatcatact acggatttac ttcttactgg ggacaaggaa ctttggttac tgtttcttcc 360
gcttccacta agggaccatc cgtttttcca ttggctccat cttctagatc cacttccgaa 420
tcaactgctg ctttgggatg tttggttaag gattactttc cagaaccagt tactgtttca 480
tggaactcag gagctttgac ttccggagtt catacttttc cagctgtttt gcaatcctca 540
ggattgtact ctttgtcttc agttgttact gttccatctt cttccttggg tactaagact 600
tacacttgta acgttgatca taagccatct aacactaagg ttgataagag agttgaatct 660
aagtacggac ctccatgtcc accatgtcca gctcctgaat ttttgggtgg accatccgtt 720
tttttgtttc caccaaagcc aaaggatact ttgatgattt ctagaactcc tgaagttact 780
tgtgttgttg ttgatgtttc acaagaagat cctgaagttc aatttaactg gtacgttgat 840
ggagttgaag ttcataacgc taagactaag cctagagaag aacaatttaa ctccacttac 900
agagttgttt ccgttttgac tgttttgcat caagattggt tgaacggtaa ggaatacaag 960
tgtaaggttt ctaacaaggg attgccatcc tctattgaaa agactatttc aaaggctaag 1020
ggtcaaccta gagaacctca agtttacact ttgccacctt cacaagaaga aatgactaag 1080
aaccaagttt ccttgtgttg tttggttaag ggattttacc catccgatat tgctgttgaa 1140
tgggaa 1146
<210> 212
<211> 37
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 212
agagaggctg aagctgaagt tcaattggtt gaatctg 37
<210> 213
<211> 40
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 213
tcaatgatga tgatgatgat gttatcccaa tgacaaggac 40
<210> 214
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 214
aacggatggt cccttagtgg aagc 24
<210> 215
<211> 31
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 215
taagggacca tccgtttgtc cattggctcc a 31
<210> 216
<211> 39
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 216
taagggacca tccgtttttc catgtgctcc atcttctag 39
<210> 217
<211> 42
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 217
taagggacca tccgtttttc cattgtgtcc atcttctaga tc 42
<210> 218
<211> 45
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 218
taagggacca tccgtttttc cattggcttg ttcttctaga tccac 45
<210> 219
<211> 45
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 219
taagggacca tccgtttttc cattggctcc atgttctaga tccac 45
<210> 220
<211> 48
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 220
taagggacca tccgtttttc cattggctcc atcttgtaga tccacttc 48
<210> 221
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 221
agaagatgga gccaatggaa aaac 24
<210> 222
<211> 32
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 222
ttggctccat cttcttgttc cacttccgaa tc 32
<210> 223
<211> 32
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 223
ttggctccat cttctagatg tacttccgaa tc 32
<210> 224
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 224
ttggctccat cttctagatc ctgttccgaa tcaactgc 38
<210> 225
<211> 41
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 225
ttggctccat cttctagatc cacttgtgaa tcaactgctg c 41
<210> 226
<211> 45
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 226
ttggctccat cttctagatc cacttcctgt tcaactgctg ctttg 45
<210> 227
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 227
ggaagtcaaa gctcctgagt tcca 24
<210> 228
<211> 31
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 228
ggagctttga cttcctgtgt tcatactttt c 31
<210> 229
<211> 37
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 229
ggagctttga cttccggagt ttgtactttt ccagctg 37
<210> 230
<211> 42
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 230
ggagctttga cttccggagt tcatacttgt ccagctgttt tg 42
<210> 231
<211> 50
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 231
ggagctttga cttccggagt tcatactttt tgtgctgttt tgcaatcctc 50
<210> 232
<211> 53
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 232
ggagctttga cttccggagt tcatactttt ccagcttgtt tgcaatcctc agg 53
<210> 233
<211> 23
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 233
aacagctgga aaagtatgaa ctc 23
<210> 234
<211> 33
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 234
acttttccag ctgtttgtca atcctcagga ttg 33
<210> 235
<211> 34
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 235
acttttccag ctgttttgtg ttcctcagga ttgt 34
<210> 236
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 236
acttttccag ctgttttgca atgttcagga ttgtactc 38
<210> 237
<211> 42
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 237
acttttccag ctgttttgca atcctgtgga ttgtactctt tg 42
<210> 238
<211> 44
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 238
acttttccag ctgttttgca atcctcatgt ttgtactctt tgtc 44
<210> 239
<211> 47
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 239
acttttccag ctgttttgca atcctcagga tgttactctt tgtcttc 47
<210> 240
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 240
gtacaatcct gaggattgca aaac 24
<210> 241
<211> 28
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 241
tcctcaggat tgtactgttt gtcttcag 28
<210> 242
<211> 35
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 242
tcctcaggat tgtactcttt gtgttcagtt gttac 35
<210> 243
<211> 47
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 243
tcctcaggat tgtactcttt gtcttcatgt gttactgttc catcttc 47
<210> 244
<211> 50
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 244
tcctcaggat tgtactcttt gtcttcagtt gtttgtgttc catcttcttc 50
<210> 245
<211> 59
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 245
tcctcaggat tgtactcttt gtcttcagtt gttactgttt gttcttcttc cttgggtac 59
<210> 246
<211> 23
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 246
aaccaaacat cccaaagcag cag 23
<210> 247
<211> 35
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 247
ctttgggatg tttggttgat gattactttc cagaa 35
<210> 248
<211> 214
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 248
Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
1 5 10 15
Asp Arg Val Thr Ile Thr Cys Gln Ala Ser Gln Asp Ile Gly Ile Ser
20 25 30
Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
35 40 45
Tyr Asn Ala Asn Asn Leu Ala Asp Gly Val Pro Ser Arg Phe Ser Gly
50 55 60
Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
65 70 75 80
Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gln His Asn Ser Ala Pro Tyr
85 90 95
Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg Thr Val Ala Ala
100 105 110
Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly
115 120 125
Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala
130 135 140
Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln
145 150 155 160
Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser
165 170 175
Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr
180 185 190
Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser
195 200 205
Phe Asn Arg Gly Glu Val
210
<210> 249
<211> 642
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 249
gatattcaaa tgactcaatc accatcctcc ttgtctgctt ccgttggaga tagagttact 60
attacttgtc aagcttccca agatattgga atttcattgt catggtatca acaaaagcca 120
ggtaaggctc ctaagttgtt gatttacaac gctaacaact tggctgatgg tgttccatct 180
agattttctg ggagtggttc tggaactgat tttactttga ctatttcttc attgcaacct 240
gaagattttg ctacttacta ctgtttgcaa cataactcag ctccatacac ttttggtcaa 300
ggaactaagt tggagattaa gagaactgtc gctgcacctt ctgttttcat ttttcctcca 360
tctgacgagc agttgaagtc tggtacagca tctgttgtct gtttgttgaa caacttctac 420
ccaagagaag caaaggttca atggaaggtt gacaacgcct tgcaatctgg taactctcag 480
gaatctgtta ctgaacaaga ttctaaggat tctacttact ctttgtcttc tacattgaca 540
ttgtctaagg ctgattacga aaagcataag gtttacgctt gtgaagttac tcatcaagga 600
ttgtcttctc ctgtcacaaa atcttttaac agaggtgagg tt 642
<210> 250
<211> 35
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 250
agagaggctg aagctgatat tcaaatgact caatc 35
<210> 251
<211> 50
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 251
tcaatgatga tgatgatgat gttaaacctc acctctgtta aaagattttg 50
<210> 252
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 252
aggtgcagcg acagttctct taatc 25
<210> 253
<211> 26
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 253
gaactgtcgc tgcaccttgt gttttc 26
<210> 254
<211> 40
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 254
gaactgtcgc tgcaccttct gtttgtattt ttcctccatc 40
<210> 255
<211> 44
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 255
gaactgtcgc tgcaccttct gttttcattt gtcctccatc tgac 44
<210> 256
<211> 50
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 256
gaactgtcgc tgcaccttct gttttcattt tttgtccatc tgacgagcag 50
<210> 257
<211> 53
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 257
gaactgtcgc tgcaccttct gttttcattt ttccttgttc tgacgagcag ttg 53
<210> 258
<211> 53
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 258
gaactgtcgc tgcaccttct gttttcattt ttcctccatg tgacgagcag ttg 53
<210> 259
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 259
accagattgc aaggcgttgt caac 24
<210> 260
<211> 31
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 260
gccttgcaat ctggttgttc tcaggaatct g 31
<210> 261
<211> 37
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 261
gccttgcaat ctggtaactc ttgtgaatct gttactg 37
<210> 262
<211> 40
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 262
gccttgcaat ctggtaactc tcaggaatgt gttactgaac 40
<210> 263
<211> 47
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 263
gccttgcaat ctggtaactc tcaggaatct tgtactgaac aagattc 47
<210> 264
<211> 51
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 264
gccttgcaat ctggtaactc tcaggaatct gtttgtgaac aagattctaa g 51
<210> 265
<211> 51
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 265
gccttgcaat ctggtaactc tcaggaatct gttacttgtc aagattctaa g 51
<210> 266
<211> 23
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 266
agaatcctta gaatcttgtt cag 23
<210> 267
<211> 29
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 267
gattctaagg attcttgtta ctctttgtc 29
<210> 268
<211> 32
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 268
gattctaagg attctactta ctgtttgtct tc 32
<210> 269
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 269
gattctaagg attctactta ctctttgtgt tctaca 36
<210> 270
<211> 42
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 270
gattctaagg attctactta ctctttgtct tcttgtttga ca 42
<210> 271
<211> 55
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 271
gattctaagg attctactta ctctttgtct tctacattgt gtttgtctaa ggctg 55
<210> 272
<211> 55
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 272
gattctaagg attctactta ctctttgtct tctacattga cattgtgtaa ggctg 55
<210> 273
<211> 51
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 273
tcaatgatga tgatgatgat gtcaaacctc acctctgtta caagattttg t 51
<210> 274
<211> 51
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 274
tcaatgatga tgatgatgat gtcaaacctc acctctacaa aaagattttg t 51
<210> 275
<211> 51
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 275
tcaatgatga tgatgatgat gtcaaacctc accacagtta aaagattttg t 51
<210> 276
<211> 44
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 276
tcaatgatga tgatgatgat gtcaaacctc acatctgtta aaag 44
<210> 277
<211> 44
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 277
tcaatgatga tgatgatgat gtcaaacaca acctctgtta aaag 44
<210> 278
<211> 44
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 278
tcaatgatga tgatgatgat gtcaacactc acctctgtta aaag 44
<210> 279
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 279
accagacttc aactgctcgt caga 24
<210> 280
<211> 33
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 280
gcagttgaag tctggtagag catctgttgt ctg 33

Claims (14)

1. A method for increasing the correct pairing ratio of heavy and light chains during the manufacture of a bispecific antibody, said method comprising the steps of:
in the CH1-CL domain of one Fab arm, the natural interchain disulfide bond is eliminated by amino acid substitution, while the engineered interchain disulfide bond is formed by amino acid substitution.
2. The method of claim 1, wherein the amino acids in the CH1-CL domain of IgG1 that form the engineered interchain disulfide bond are selected from the following table:
Figure FDA0002762995070000011
3. the method of claim 2, wherein the amino acids in the CH1-CL domain of IgG1 that form the engineered interchain disulfide bond are selected from the group consisting of: mutation of selected amino acids [ EU numbering ] in the heavy chain to cysteine/selected amino acids [ EU numbering ] in the kappa chain to cysteine:
F126C/F118C、L128C/P120C、A129C/P120C、P130C/F118C、S132C/F118C、K133C/S121C、S134C/F118C、G166C/T172C、G166C/S174C、G166C/T180C、H168C/T180C、F170C/Q160C、F170C/T164C、F170C/T172C、F170C/S174C、F170C/S176C、F170C/T180C、P171C/T172C、P171C/S174C、P171C/T180C、V173C/S174C、Q175C/S174C、Q175C/S176C、Q175C/T180C、S176C/S162C、S181C/T172C、S181C/S176C、S181C/T180C、S183C/S114C、S183C/F118C、S183C/Q160C、S183C/S174C、S183C/T178C、S183C/T180C、V185C/T172C、V185C/S174C、V185C/T178C、V185C/T180C、T187C/S114C、T187C/T172C、T187C/S174C、T187C/T178C、K218C/F118C、S219C/F116C、S219C/F118C、S219C/P120C。
4. the method of claim 1, wherein the amino acids in the CH1-CL domain of IgG1 that form the engineered interchain disulfide bond are selected from the following table:
Figure FDA0002762995070000021
5. the method of claim 4, wherein the amino acids in the CH1-CL domain of IgG1 that form the engineered interchain disulfide bond are selected from the group consisting of: mutation of selected amino acids [ EU numbering ] in the heavy chain to cysteine/selected amino acids [ Kabat numbering ] in the lambda chain to cysteine
S132C/S121C、K133C/T116C、K133C/P211C、S136C/S121C、F170C/G158C、P171C/T162C、P171C/P164C、S176C/T162C、L179C/G158C、S181C/P164C、V215C/T116C、E216C/F118C。
6. The method of claim 1, wherein the amino acids in the CH1-CL domain of IgG4 that form the engineered interchain disulfide bond are selected from the following table:
Figure FDA0002762995070000031
7. the method of claim 6, wherein the amino acids in the CH1-CL domain of IgG4 that form the engineered interchain disulfide bond are selected from the group consisting of: mutation of selected amino acids [ EU numbering ] in the heavy chain to cysteine/selected amino acids [ EU numbering ] in the kappa chain to cysteine;
A129C/F209C、A129C/N210C、P130C/F116C、P130C/F118C、P130C/P119C、P130C/N210C、P130C/R211C、S132C/S114C、S132C/F116C、S132C/F118C、S132C/P120C、S132C/R211C、S132C/E213C、R133C/P119C、R133C/R211C、R133C/E213C、T135C/F116C、T135C/P120C、G166C/T178C、H168C/N158C、F170C/F182C、V173C/Q160C、V173C/S162C、Q175C/S162C、Q175C/T180C、S181C/T172C、S181C/S176C、S183C/N158C、S183C/S176C、V185C/E165C、V185C/T178C。
8. the method of claim 1, wherein the amino acids in the CH1-CL domain of IgG4 that form the engineered interchain disulfide bond are selected from the following table:
Figure FDA0002762995070000032
Figure FDA0002762995070000041
9. the method of any one of claims 1-8, further comprising the steps of: the charge of a pair of amino acids of the CH1-CL domain of the Fab arm is reversed by amino acid substitution.
10. The method of claim 9, wherein the wild-type positively charged lysine at position 213 of the heavy chain is substituted with a negatively charged amino acid (e.g., K213E, K213D); the wild-type negatively charged glutamic acid at position 123 of the light chain is substituted with a positively charged amino acid (e.g., E123K, E123R).
11. The method of claim 10, wherein the formation of the engineered interchain disulfide bond by amino acid substitution and the charge reversal of a pair of amino acids of the CH1-CL domain of the Fab arm by amino acid substitution can occur on the same Fab arm or on different Fab arms.
12. A method for increasing the correct pairing rate of heavy and light chains during the production of a bispecific antibody, said method comprising the steps of: charge-reversing a pair of amino acids of the CH1-CL domain of the Fab arm by amino acid substitution, wherein the wild-type positively charged lysine at position 213 of the heavy chain is substituted with a negatively charged amino acid (e.g., K213E, K213D); the wild-type negatively charged glutamic acid at position 123 of the light chain is substituted with a positively charged amino acid (e.g., E123K, E123R).
13. A method of making a bispecific antibody comprising the step of employing the method of any one of claims 1-12 during the manufacture of a bispecific antibody so as to increase the correct heavy and light chain pairing rate in the bispecific antibody.
14. A bispecific antibody prepared by the method of claim 13 or having an increased rate of correct heavy and light chain pairing in said bispecific antibody by the method of any one of claims 1-12.
CN202011223835.5A 2020-11-05 2020-11-05 Methods of making bispecific antibodies Pending CN114437226A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202011223835.5A CN114437226A (en) 2020-11-05 2020-11-05 Methods of making bispecific antibodies
PCT/CN2021/129107 WO2022095977A1 (en) 2020-11-05 2021-11-05 Method for preparing bispecific antibody

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011223835.5A CN114437226A (en) 2020-11-05 2020-11-05 Methods of making bispecific antibodies

Publications (1)

Publication Number Publication Date
CN114437226A true CN114437226A (en) 2022-05-06

Family

ID=81361219

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011223835.5A Pending CN114437226A (en) 2020-11-05 2020-11-05 Methods of making bispecific antibodies

Country Status (2)

Country Link
CN (1) CN114437226A (en)
WO (1) WO2022095977A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102398736B1 (en) * 2011-10-31 2022-05-16 추가이 세이야쿠 가부시키가이샤 Antigen-binding molecule having regulated conjugation between heavy-chain and light-chain
JP6506024B2 (en) * 2012-11-05 2019-04-24 全薬工業株式会社 Method of producing antibody or antibody composition
CA3025162A1 (en) * 2016-05-26 2017-11-30 Qilu Puget Sound Biotherapeutics Corporation Mixtures of antibodies
RU2745648C2 (en) * 2016-07-19 2021-03-30 Ибентрус, Инк. Bispecific proteins and methods of their production

Also Published As

Publication number Publication date
WO2022095977A1 (en) 2022-05-12

Similar Documents

Publication Publication Date Title
USRE43898E1 (en) Altered antibodies and their preparation
EP1542725B1 (en) Method of humanizing immune system molecules
JP2009508467A (en) Methods for generating monoclonal antibodies against CD20 for the treatment of B-cell lymphoma
CN108283001B (en) Antigen binding polypeptide constructs comprising kappa and lambda light chains and uses thereof
JP2016014020A (en) OPTIMIZED Fc VARIANTS
CN101646775A (en) Methods and vectors for generating asialylated immunoglobulins
EP3019531A1 (en) Immunoglobulin fusion proteins and compositions thereof
WO2018158719A1 (en) Engineered heterodimeric proteins
MX2013010966A (en) Hetero-dimeric immunoglobulins.
CN115991777A (en) Novel anti-CD 3 epsilon antibodies
JP7432365B2 (en) Stable multispecific antibodies
US20090220520A1 (en) Recombinant method for the production of a monoclonal antibody to CD52 for the treatment of chronic lymphocytic leukemia
CN110964110B (en) anti-EGFR humanized single-domain antibody, Fc fusion protein, heavy chain Fab protein and application thereof
CN113164593A (en) Veterinary anti-IL 4 receptor antibodies
CN114746440A (en) Novel polypeptide complexes
CN114292331A (en) Anti-human BDCA-2 antibody, method for producing same, polynucleotide, expression vector, host cell and pharmaceutical composition
CN114989305A (en) Novel bispecific antibodies and uses thereof
CN113544275A (en) Yeast display system for displaying and secreting target polypeptide and application thereof
EP2990485B1 (en) Fd chain gene or l chain gene each capable of increasing secretion amount of fab-type antibody
CN115515635A (en) Veterinary anti-IL 4 receptor antibodies
CN114437226A (en) Methods of making bispecific antibodies
CN114450406A (en) Preparation method of fragmentation type intein and recombinant polypeptide using same
CN110831978A (en) Stable chimeric FAB
EP3440110A1 (en) MONOVALENT INHIBITOR OF huTNFR1 INTERACTION
WO2023025214A1 (en) Heterodimeric immunoglobulins

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination