CN114437112A - 一种检测Cu2+的香豆1素类荧光探针、其制备方法及用途 - Google Patents

一种检测Cu2+的香豆1素类荧光探针、其制备方法及用途 Download PDF

Info

Publication number
CN114437112A
CN114437112A CN202210146710.XA CN202210146710A CN114437112A CN 114437112 A CN114437112 A CN 114437112A CN 202210146710 A CN202210146710 A CN 202210146710A CN 114437112 A CN114437112 A CN 114437112A
Authority
CN
China
Prior art keywords
probe
fluorescent probe
coumarin
mol
fluorescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210146710.XA
Other languages
English (en)
Other versions
CN114437112B (zh
Inventor
王海滨
薛蕾
徐新
刘世巍
韩新宁
曾俊柱
徐阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningxia Normal University
Original Assignee
Ningxia Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningxia Normal University filed Critical Ningxia Normal University
Priority to CN202210146710.XA priority Critical patent/CN114437112B/zh
Publication of CN114437112A publication Critical patent/CN114437112A/zh
Application granted granted Critical
Publication of CN114437112B publication Critical patent/CN114437112B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • C09K9/02Organic tenebrescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1051Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明涉及化学分析领域,具体涉及一种检测Cu2+的香豆1素类荧光探针、其制备方法及用途。本发明利用咪唑并[2,1‑b]噻唑与香豆素醛脱水缩合成功制备出一种新型识别Cu2+的荧光探针:(E)‑N′‑(7‑(二乙氨基)‑2‑氧代‑2H‑苯并吡喃‑4‑基亚甲基)咪唑并[2,1‑b]噻唑‑6‑酰肼,该探针结构新颖,与Cu2+实现二配位结合,符合ICT机理,整体表现出对铜离子的特异性识别。

Description

一种检测Cu2+的香豆1素类荧光探针、其制备方法及用途
技术领域
本发明涉及化学分析领域具体涉及一种检测Cu2+的香豆1素类荧光探针、其制备方法及用途。
背景技术
目前,可用于检测Cu2+的方法包括伏安法和电位计、电感耦合等离子体原子发射光谱法、电感耦合等离子体质谱法、原子吸收光谱法等.与这些方法相较而言,荧光探针由于灵敏度高、简便易行、响应迅速等优点被广泛应用于金属离子的检测中。其中,席夫碱探针有着成本较低、易于合成、产率较高等优点,此外,其特征基团(HC=N-或-RC=N-)上N原子杂化轨道上具有孤对电子,使其对金属离子具有良好的配位能力。
现有技术已经研究并报道了一些可用于检测Cu2+的酰腙类荧光探针,在这些酰腙类Cu2+荧光探针的结构设计中,他们引入了常见的荧光团,如香豆素、罗丹明、喹啉类等。现有酰腙类探针在最初结构设计时常在罗丹明B的基础上进行修饰与改造,或者引入香豆素或喹啉等荧光团进行连接。虽能够实现对Cu2+的检测,但结构设计不够新颖,且与铜离子配位多以常见的四配位为主。
发明内容
本发明的要解决的技术问题是解决现有技术的不足,提供一种检测Cu2+的香豆1素类荧光探针、其制备方法及用途。
本发明采用的技术方案为:
一种检测Cu2+的香豆1素类荧光探针,该探针命名为L,其具有如下结构式(1):
Figure BDA0003508551370000021
基于同一个发明构思,本发明还提供了所述的荧光探针的制备方法,包括以下步骤:
将咪唑并[2,1-b]噻唑-6-酰肼和7-二乙氨基-4-醛基香豆素在无水乙醇中加热回流过夜,反应完成后,将反应混合物冷却至室温,抽滤,用无水乙醇重结晶即得探针L,所述咪唑并[2,1-b]噻唑-6-酰肼和7-二乙氨基-4-醛基香豆素的结结构式如分别如式(2)和式(3)所示;
Figure BDA0003508551370000022
基于同一个发明构思,本发明还提供了所述荧光探针的用途,用于化学体系中Cu2+的检测分析。
进一步的,所述化学体系中含有乙腈。
基于同一个发明构思,本发明还提供了实现所述用途的检测Cu2+的方法,包括如下步骤:
在无水乙醇溶液中制备Cu2+的盐酸盐或硝酸盐储备液,浓度为20~50μmol·L-1;以无水乙醇为溶剂,将探针L配置成浓度为1.0×10-3mol·L-1的溶液,再用乙腈稀释至2.0×10-5mol·L-1,得到检测液;将储备液和检测液按照1∶1体积比混合,然后在室温下记录紫外-可见吸收光谱和荧光光谱。
进一步的,所述荧光光谱的测试条件如下:
保持激发与发射狭缝宽度均为5.0nm,激发波长λex为335nm,于350~660nm范围内测试荧光。
本发明具有如下有益效果:
本发明构建探针时引入咪唑并[2,1-b]噻唑这一杂环化合物,该杂环化合物具有咪唑环和噻唑环两个共轭的环分子结构,体系中含有八个中心原子和十个离域π电子,是一种潜在的荧光团,且杂环上有可为金属离子提供配位位点的氮原子与硫原子,由此可作为良好的荧光基团或识别基团应用于荧光探针的设计与合成。在本发明中利用酰腙结构将咪唑并[2,1-b]噻唑与香豆素连接起来合成了新型的Cu2+荧光探针,且与铜离子发生了少有的二配位结合方式。
本发明的探针L在乙腈中可高效识别Cu2+,发射波长发生明显蓝移,且具有较强的抗干扰能力。探针L与Cu2+的结合常数1.32×104L·mol-1,检测限为6.90×10-8mol·L-1,低于WHO规定的饮用水中Cu2+的最大含量(20μmol·L-1)。因此,该探针L在检测水环境中Cu2+含量方面具有潜在的应用价值。
附图说明
图1为探针L的结构式。
图2为探针L的合成反应式,图中:(a)THF/乙醇,25℃/回流,24h/4h;(b)乙醇,室温,过夜;(c)1,4-二氧六环,回流,14h;(d)e乙醇,室温,过夜。
图3为向探针L的CH3CN溶液(2.0×10-5mol·L-1)中加入2×10-4mol·L-1不同金属离子后的荧光强度变化(λex=335nm);插图:在365nm紫外灯下溶液颜色的变化。
图4为探针L的CH3CN溶液(2.0×10-5mol·L-1)中加入不同浓度Cu2+(0~20μmol·L-1)的紫外-可见吸收光谱。
图5为探针L的CH3CN溶液(2.0×10-5mol·L-1)中加入不同浓度Cu2+(0~70μmol·L-1)的荧光发射光谱(λex=335nm)。
图6为荧光强度与Cu2+浓度在乙腈中的线性关系。
图7为探针L与Cu2+的Benesi-Hildebrand曲线。
图8为其它金属离子(2.0×10-5mol·L-1)和Cu2+(2.0×10-5mol·L-1)共存时探针L(2×10-5mol·L-1)在乙腈中的荧光发射光谱(λex=335nm)。
图9为探针L和Cu2+的Job曲线(λex=335nm)。
图10为加入Cu2+(50mmol·L-1)时探针L(10mmol·L-1)的阳离子ESI-MS谱。
图11为在DMSO-d6中逐渐加入Cu(NO3)2·3H2O时探针L的1H NMR谱。
图12为探针L和L-Cu2+的前线分子轨道密度分布图和能级间隙。
图13为探针L与Cu2+可能的识别机理。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明,但不应理解为本发明的限制。如未特殊说明,下述实施例中所用的技术手段为本领域技术人员所熟知的常规手段,下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1:探针L的制备方法及使用方法
本发明的检测Cu2+的香豆1素类荧光探针命名为(E)-N′-(7-(二乙氨基)-2-氧代-2H-苯并吡喃-4-基亚甲基)咪唑并[2,1-b]噻唑-6-酰肼,以下或简称为探针L,结构式如图1所示。
1)制备方法如下(制备反应式如图2所示):
咪唑[2,1-b]噻唑-6-羧酸乙酯(1)的合成:向2-氨基噻唑(1.00g,10mmol)的四氢呋喃溶液(100mL)中慢慢滴加3-溴丙酮酸乙酯(2.68g,11mmol),5min滴加完毕,溶液颜色变为棕色,室温搅拌24h,有沉淀生成,过滤沉淀并用四氢呋喃淋洗三次,得白色粉末。将其溶于50mL无水乙醇中,回流4h,减压过滤,经乙醇重结晶得0.86g褐色固体1,产率46.95%。
咪唑并[2,1-b]噻唑-6-酰肼(2)的合成:将褐色固体1(0.86g,4.4mmol)加入无水乙醇(5.0mL)中,逐滴加入80%水合肼(2.20g,35mmol),室温下反应过夜,过滤得0.32g白色块状固体2,产率40.00%。
7-二乙氨基-4-醛基香豆素(3)的合成:将0.23g(1.0mmol)7-二乙氨基-4-甲基香豆素和0.171g(15.0mmol)SeO2溶解于5.0mL 1,4-二氧六环中,搅拌下加热回流14h,减压蒸馏除去有机溶剂得粗产品后,用硅胶进行柱层析分离[V(石油醚)∶V(乙酸乙酯)=20∶1],得180.3mg红色固体3,产率73.5%。
探针(E)-N′-(7-(二乙氨基)-2-氧代-2H-苯并吡喃-4-基亚甲基)咪唑并[2,1-b]噻唑-6-酰肼(L)的合成:在50mL干燥的茄形瓶中依次加入0.090g(0.5mmol)化合物2、0.135g(0.55mmol)化合物3、10.0mL无水乙醇,加热回流过夜,薄层色谱(TLC)监测反应进程.反应完成后,将反应混合物冷却至室温,抽滤,用无水乙醇重结晶即得到0.120g探针L,橙黄色片状固体,产率80.6%。
2)使用方法:
以无水乙醇为溶剂,将探针L配置成1.0×10-3mol·L-1的溶液备用,测试时移取40μL用乙腈稀释至2.0×10-5mol·L-1,以无水乙醇配置金属离子(Li+、Na+、K+、Ag+、Ca2+、Mg2+、Zn2+、Ba2+、Co2+、Cd2+、Sn2+、Ni2+、Mn2+、Cu2+、Fe2+、pb2+、Sr2+、Fe3+、Al3+、Cr3+)的盐酸盐或硝酸盐溶液(1.0×10-2mol·L-1)并用于紫外-可见光谱和荧光光谱测定。
荧光光谱测试条件:所用样品池为1cm×1cm×4cm石英比色皿,室温下,保持激发与发射狭缝宽度均为5.0nm,激发波长λex为335nm,于350~660nm范围内测试荧光。
实施例2:探针L对金属离子的识别
为研究探针L在乙腈溶液中对不同金属离子的识别,如图3所示,当激发波长为335nm时,探针L(2.0×10-5mol·L-1)在568nm处有一个最大发射峰,当加入2×10-4mol·L-1各种不同金属离子(K+、Na+、Li+、Ag+、Ca2+、Mg2+、Zn2+、Ba2+、Co2+、Cd2+、Sn2+、Ni2+、Mn2+、Fe2+、Pb2 +、Sr2+、Fe3+、Al3+、Cr3+)时,其荧光发射峰强度出现差异,但发射峰位置未发生明显变化;但加入Cu2+后,探针L在568nm处的发射峰则蓝移至462nm,在365nm紫外灯照射下溶液由橙色荧光变为蓝色荧光。由此说明,探针L对Cu2+具有高度选择性识别.
实施例3:探针L与Cu2+的紫外滴定实验
为探究探针L与Cu2+的结合特性,开展紫外滴定实验,如图4所示,在乙腈溶液中,随着Cu2+浓度(0~20μmol·L-1)的增加,探针L(2.0×10-5mol·L-1)在256和497nm处的吸收值逐渐增强,同时在280、316和428nm处的吸收值逐渐降低,且在268和474nm处出现等吸收点,表明探针L与Cu2+形成了稳定络合物。
实施例4:探针L与Cu2+的荧光滴定实验
为探究不同浓度的Cu2+对探针L荧光光谱的影响,开展了荧光滴定实验,如图5所示,向探针L的溶液中逐渐加入Cu2+(0~70μmol·L-1)时,伴随着568nm处荧光发射峰的降低,在462nm处出现了一个新的荧光发射峰。并且,探针L在462nm下的荧光强度与Cu2+浓度在20~50μmol·L-1区间呈现良好的线性关系,经拟合得到线性回归方程:y=3×10-7x-0.0028,R2=0.9854(图6),并通过Benesi-Hildebrand方程计算得到络合常数1.32×104L.mol-1(图7),以探针L的10次荧光强度相对标准偏差计算得到探针L对Cu2+检测限为6.90×10-8mol·L-1.世界卫生组织(World Health Organization,WHO)规定饮用水中Cu2+的最大含量(20μmol·L-1)。实验所得检测限低于WHO所规定饮用水中Cu2+含量的安全值,由此表明,探针L可以用于饮用水中Cu2+的定量检测。
实施例5:常见金属离子干扰
为考察探针L与Cu2+络合后的抗干扰能力,在探针L的乙腈溶液中先加入2.0×10-5mol·L-1其他金属离子(K+、Na+、Li+、Ag+、Ca2+、Mg2+、Zn2+、Ba2+、Co2+、Cd2+、Sn2+、Ni2+、Mn2+、Fe2 +、Pb2+、Sr2+、Fe3+、Al3+、Cr3+),再加入2.0×10-5mol·L-1Cu2+,混合均匀后,测试荧光强度变化,如图8所示,在其他金属离子存在下,Fe3+、Mn2+、Sn2+、Fe2+对其荧光有部分猝灭作用,而其他金属离子均无明显干扰作用。因此,探针L对Cu2+的识别具有较强的抗干扰能力。
实施例6:探针L与Cu2+的络合比
采用Job’s Plot方法探究了探针L与Cu2+之间的络合比,随着Cu2+摩尔分数的不断改变,体系在462nm处的荧光强度随之变化,如图9所示,当Cu2+摩尔分数为0.5时,体系在462nm处的荧光强度最大,由此表明,探针L与Cu2+的络合比为1∶1。
为了进一步确定探针L与Cu2+之间的络合比,通过电喷雾质谱分析(ESI-MS),结果如图10所示,得到了探针L与Cu2+结合的分子离子峰472.83(理论计算[L+Cu2+-H+]+=472.01),从而证实了探针L与Cu2+的络合比为1∶1。
实施例7:1H NMR滴定
通过累计滴加法,对探针L与Cu2+的络合机理进行了初步探究,探针L(20mmol·L-1)在DMSO-d6中的1H NMR滴定实验,如图11所示,探针L在δ12.18、8.74和8.44处出现三个单峰,他们分别归属于NH(Ha)、CH=N(Hb)和咪唑环上(Hc)的质子信号峰。随着Cu2+浓度的增加,Ha、Hb和Hc信号峰均移向低场,当加入20mmol·L-1的Cu2+时,Hb信号峰低移至δ8.99,Hc信号峰低移至δ8.53,而NH质子峰Ha在加入Cu2+后消失,说明NH与Cu2+发生了络合。当咪唑环上的N原子与Cu2+配位,会引起电子云密度的降低,咪唑并噻唑环上的某些质子信号峰也向低场移动,促使探针L分子内电荷移动。这表明,探针L中酰胺基(-NHCOR)和咪唑环上的N与Cu2+发生了配位,结合ESI-MS谱可知形成1∶1配位的L-Cu2+络合物。
实施例8:探针L与Cu2+的络合机理
为进一步探究探针L与Cu2+的络合机理,本发明利用了Gaussian 09程序DFT/B3LYP/6-31G+(d)基组对探针L及L-Cu2+配合物进行结构优化和密度泛函理论(DFT)计算。如图12所示,探针L结构中酰胺和咪唑环上的氮原子提供了络合位点,在两络合位点间形成一个空腔,可牢固包裹Cu2+,形成一个新的五元环。通常,探针的光谱性质与最高占据分子轨道(HOMO)和最低未占据分子轨道(LUMO)之间的能隙值与电子云分布有关。结果显示,探针L的HOMO-LUMO能隙值为3.25eV.探针L的HOMO电子云主要集中在苯并吡喃环上,有良好的共轭性。当受到电子激发后,苯并吡喃环上的电子云向酰肼结构转移,探针L与Cu2+配位后,L-Cu2 +配合物的HOMO-LUMO能隙值为2.96eV能隙值降低0.29eV说明形成了稳定的复合物。L-Cu2+配合物的HOMO电子云分布与探针L相近,不同的是受到电子激发后,原本集中在苯并吡喃环的电子云,以铜离子为中心,大部分转移到酰肼与咪唑环上,荧光发射则表现为蓝移,我们认为这是因为探针L中的供体与Cu2+结合改变了探针L的电子云分布,发生了显著的分子内电荷转移效应(ICT),该结构中供电子基酰胺基(-NHCOR)和咪唑上N与Cu2+结合时,通过去质子化使得体系供电子能力减弱,共轭程度降低,所以发射波长发生蓝移现象。
根据上述UV-Vis和荧光光谱分析、ESI-MS分析、1H NMR滴定以及DFT计算,探针L与Cu2+的络合模式如图13所示。
需要说明的是,本发明权利要求书中涉及数值范围时,应理解为每个数值范围的两个端点以及两个端点之间任何一个数值均可选用,为了防止赘述,本发明描述了优选的实施例。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (6)

1.一种检测Cu2+的香豆1素类荧光探针,其特征在于,该探针命名为L,其具有如下结构式(1):
Figure FDA0003508551360000011
2.权利要求1所述的荧光探针的制备方法,其特征在于,包括以下步骤:
将咪唑并[2,1-b]噻唑-6-酰肼和7-二乙氨基-4-醛基香豆素在无水乙醇中加热回流过夜,反应完成后,将反应混合物冷却至室温,抽滤,用无水乙醇重结晶即得探针L,所述咪唑并[2,1-b]噻唑-6-酰肼和7-二乙氨基-4-醛基香豆素的结结构式如分别如式(2)和式(3)所示;
Figure FDA0003508551360000012
3.权利要求1所述荧光探针的用途,其特征在于,用于化学体系中Cu2+的检测分析。
4.根据权利要求3所述的用途,其特征在于,所述化学体系中含有乙腈。
5.一种实现如权利要求4所述用途的检测Cu2+的方法,其特征在于,包括如下步骤:
在无水乙醇溶液中制备Cu2+的盐酸盐或硝酸盐储备液,浓度为20~50μmol·L-1;以无水乙醇为溶剂,将探针L配置成浓度为1.0×10-3mol·L-1的溶液,再用乙腈稀释至2.0×10- 3mol·L-1,得到检测液;将储备液和检测液按照1∶1的体积比混合,然后在室温下记录紫外-可见吸收光谱和荧光光谱。
6.根据权利要求5所述的用途,其特征在于,所述荧光光谱的测试条件如下:
保持激发与发射狭缝宽度均为5.0nm,激发波长λex为335nm,于350~660nm范围内测试荧光。
CN202210146710.XA 2022-02-17 2022-02-17 一种检测Cu2+的香豆素类荧光探针、其制备方法及用途 Active CN114437112B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210146710.XA CN114437112B (zh) 2022-02-17 2022-02-17 一种检测Cu2+的香豆素类荧光探针、其制备方法及用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210146710.XA CN114437112B (zh) 2022-02-17 2022-02-17 一种检测Cu2+的香豆素类荧光探针、其制备方法及用途

Publications (2)

Publication Number Publication Date
CN114437112A true CN114437112A (zh) 2022-05-06
CN114437112B CN114437112B (zh) 2024-03-08

Family

ID=81372955

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210146710.XA Active CN114437112B (zh) 2022-02-17 2022-02-17 一种检测Cu2+的香豆素类荧光探针、其制备方法及用途

Country Status (1)

Country Link
CN (1) CN114437112B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108409726A (zh) * 2018-01-17 2018-08-17 南通大学 一种香豆素2-肼基苯并噻唑席夫碱Cd2+荧光探针的制备及应用
CN113527283A (zh) * 2021-06-10 2021-10-22 温州医科大学 一种小分子荧光HClO探针、制备方法及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108409726A (zh) * 2018-01-17 2018-08-17 南通大学 一种香豆素2-肼基苯并噻唑席夫碱Cd2+荧光探针的制备及应用
CN113527283A (zh) * 2021-06-10 2021-10-22 温州医科大学 一种小分子荧光HClO探针、制备方法及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAIBIN WANG: "A Highly Selective "Turn-On" Fluorescent Sensor for Aluminum Ion Detection in Aqueous Solution Based on Imidazo[2, 1-b]thiazole Schiff Base", 《CHEMISTRYSELECT》, vol. 6, pages 6454 - 6459 *
YUANKANG XU: "A dual functional fluorescent sensor for the detection of Al3+ and Zn2+ in different solvents", 《NEW J. CHEM.》, vol. 43, pages 14320 *

Also Published As

Publication number Publication date
CN114437112B (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
Rout et al. Triazole-based novel bis Schiff base colorimetric and fluorescent turn-on dual chemosensor for Cu 2+ and Pb 2+: application to living cell imaging and molecular logic gates
Wang et al. Highly sensitive and selective fluorometric off–on K+ probe constructed via host–guest molecular recognition and aggregation-induced emission
Wang et al. Nickel (II) and iron (III) selective off-on-type fluorescence probes based on perylene tetracarboxylic diimide
Chen et al. A highly selective naked-eye and fluorescent probe for fluoride ion based on 1, 8-naphalimide and benzothizazole
Gunnlaugsson et al. Synthesis and photophysical evaluation of charge neutral thiourea or urea based fluorescent PET sensors for bis-carboxylates and pyrophosphate
Kolcu et al. A Schiff base based on triphenylamine and thiophene moieties as a fluorescent sensor for Cr (III) ions: Synthesis, characterization and fluorescent applications
Feng et al. Multi-functional lanthanide-CPs based on tricarboxylphenyl terpyridyl ligand as ratiometric luminescent thermometer and highly sensitive ion sensor with turn on/off effect
Li et al. Novel mercury sensor based on water soluble styrylindolium dye
Mikata et al. Tetrakis (2-quinolinylmethyl) ethylenediamine (TQEN) as a new fluorescent sensor for zinc
Eseola et al. ESIPT-capable 2, 6-di (1 H-imidazol-2-yl) phenols with very strong fluorescent sensing signals towards Cr (iii), Zn (ii), and Cd (ii): molecular variation effects on turn-on efficiency
Chen et al. Rational design and synthesis of Y-shaped fluorophores with multifarious emission properties and their application in the sensitive detection of PA
Ma et al. A pyridine based Schiff base as a selective and sensitive fluorescent probe for cadmium ions with “turn-on” fluorescence responses
Seenan et al. A multisensing ratiometric fluorescent sensor for recognition of Al3+, Th4+ and picric acid
Li Benzimidazole-isoquinolinone functioned thiourea for selective and reversible recognition of fluoride ion
Pan et al. The preparation of a special fluorescent probe with an aggregation-induced emission effect for detecting hydrazine in water
Alreja et al. A new multifunctional 1, 10-phenanthroline based fluorophore for anion and cation sensing
CN109251746B (zh) 蒽环桥联双核钌配合物荧光探针的制备及其应用
Huang et al. BODIPY-based hydroxypyridyl derivative as a highly Ni2+-selective fluorescent chemosensor
Zhang et al. Multiresponsive chemosensors based on ferrocenylimidazo [4, 5-b] pyridines: Solvent-dependent selective dual sensing of Hg2+ and Pb2+
Du et al. Naked-eye and fluorescence detection of basic pH and F− with a 1, 8-naphthalimide-based multifunctional probe
Dong et al. A simple and Rapid Quinoline Schiff Base as a fluorescent probe for Zn2+ and its application in Test strips
Kajjam et al. Carbazole–acenaphthene (donor–acceptor)-based luminophores for picric acid detection: a combined experimental and theoretical study
Fedorova et al. Effect of metal cations on the photochromic properties of spironaphthoxazines conjugated with aza-15 (18)-crown-5 (6) ethers
Xu et al. Highly selective and sensitive optical probe for Fe 3+ based on a water-soluble squarylium dye
CN114437112A (zh) 一种检测Cu2+的香豆1素类荧光探针、其制备方法及用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Xue Lei

Inventor after: Wang Haibin

Inventor after: Xu Xin

Inventor after: Liu Shiwei

Inventor after: Han Xinning

Inventor after: Zeng Junzhu

Inventor after: Xu Yang

Inventor before: Wang Haibin

Inventor before: Xue Lei

Inventor before: Xu Xin

Inventor before: Liu Shiwei

Inventor before: Han Xinning

Inventor before: Zeng Junzhu

Inventor before: Xu Yang

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant