CN114422083A - PDCCH estimation parameter acquisition method, device, network device and storage medium - Google Patents
PDCCH estimation parameter acquisition method, device, network device and storage medium Download PDFInfo
- Publication number
- CN114422083A CN114422083A CN202210037605.2A CN202210037605A CN114422083A CN 114422083 A CN114422083 A CN 114422083A CN 202210037605 A CN202210037605 A CN 202210037605A CN 114422083 A CN114422083 A CN 114422083A
- Authority
- CN
- China
- Prior art keywords
- pdcch
- data
- initial
- dmrs
- several
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 74
- 238000012545 processing Methods 0.000 claims abstract description 84
- 238000000605 extraction Methods 0.000 claims abstract description 29
- 238000004590 computer program Methods 0.000 claims description 6
- 238000012795 verification Methods 0.000 claims description 4
- 239000000284 extract Substances 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 abstract description 18
- 238000001514 detection method Methods 0.000 abstract description 18
- 230000008569 process Effects 0.000 description 12
- 238000004891 communication Methods 0.000 description 9
- 230000002776 aggregation Effects 0.000 description 8
- 238000004220 aggregation Methods 0.000 description 8
- 101000601047 Homo sapiens Nidogen-1 Proteins 0.000 description 4
- 102100037369 Nidogen-1 Human genes 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 101000601048 Homo sapiens Nidogen-2 Proteins 0.000 description 2
- 102100037371 Nidogen-2 Human genes 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical group [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000013468 resource allocation Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007723 transport mechanism Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0036—Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
- H04L1/0038—Blind format detection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/0238—Channel estimation using blind estimation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/32—Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
- H04L27/34—Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
- H04L27/38—Demodulator circuits; Receiver circuits
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/06—Testing, supervising or monitoring using simulated traffic
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Power Engineering (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本公开提供了一种PDCCH估计参数获取方法、装置、网络设备及存储介质,所述方法包括:获取5G空口信号,基于所述5G空口信号确定物理下行控制信道PDCCH数据,其中,所述PDCCH数据包括控制信道单元CCE数据;对所述PDCCH数据进行解调处理得到初始比特数据;根据所述CCE数据的起始位置,对所述初始比特数据进行滑动提取处理得到若干个初始序列;对若干个所述初始序列进行解扰和求逆处理得到参数pdcch‑DMRS‑ScramblingID。根据本公开实施例的方案,能够减少计算量,提升PDCCH盲检的效率。
The present disclosure provides a method, apparatus, network device and storage medium for obtaining PDCCH estimation parameters. The method includes: obtaining a 5G air interface signal, and determining physical downlink control channel PDCCH data based on the 5G air interface signal, wherein the PDCCH data Including control channel unit CCE data; demodulating the PDCCH data to obtain initial bit data; according to the starting position of the CCE data, performing sliding extraction processing on the initial bit data to obtain several initial sequences; The initial sequence is descrambled and reversed to obtain the parameter pdcch-DMRS-ScramblingID. According to the solution of the embodiment of the present disclosure, the amount of calculation can be reduced, and the efficiency of the blind detection of the PDCCH can be improved.
Description
技术领域technical field
本公开实施例涉及通信技术领域,尤其涉及一种PDCCH估计参数获取方法、装置、网络设备及存储介质。The embodiments of the present disclosure relate to the field of communications technologies, and in particular, to a method, an apparatus, a network device, and a storage medium for obtaining a PDCCH estimation parameter.
背景技术Background technique
在5G NR(New Radio,新空口)系统中的参数pdcch-DMRS-Scrambl ingID主要用于生成PDCCH(Physical Downlink Control Channel,物理下行控制信道)对应的DMRS(Demodulation Reference Signal,解调参考信号);通常情况下,UE(User Equipment,用户设备)需要根据pdcch-DMRS-ScramblingID和其本身的RNTI(Radio Network TemporaryIdentity,无线网络临时标识)在PDCCH候选集中进行盲检,从而得到属于其本身的DCI(Downlink Control Information,下行控制信息)。The parameter pdcch-DMRS-Scrambl ingID in a 5G NR (New Radio, new air interface) system is mainly used to generate a DMRS (Demodulation Reference Signal, demodulation reference signal) corresponding to a PDCCH (Physical Downlink Control Channel, physical downlink control channel); Usually, UE (User Equipment, user equipment) needs to perform blind detection in the PDCCH candidate set according to pdcch-DMRS-ScramblingID and its own RNTI (Radio Network TemporaryIdentity, wireless network temporary identity), so as to obtain its own DCI ( Downlink Control Information, downlink control information).
发明内容SUMMARY OF THE INVENTION
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。The following is an overview of the topics detailed in this article. This summary is not intended to limit the scope of protection of the claims.
发明人发现,在进行PDCCH盲检的过程中,首先要进行信道估计,在未知pdcch-DMRS-ScramblingID的情况下,需要先检测出该参数;相关的方案中主要是根据pdcch-DMRS-ScramblingID的取值范围,遍历所有的取值进行相关计算,然后根据运算的相关结果得到相应的pdcch-DMRS-ScramblingID,但是pdcch-DMRS-ScramblingID的取值范围是0-65535,如果遍历所有的取值,就会造成计算量过大的问题,从而影响PDCCH盲检的效率。The inventor found that in the process of performing blind detection of PDCCH, channel estimation should be performed first. In the case of unknown pdcch-DMRS-ScramblingID, this parameter needs to be detected first; the related scheme is mainly based on pdcch-DMRS-ScramblingID. Value range, traverse all the values to perform related calculations, and then obtain the corresponding pdcch-DMRS-ScramblingID according to the relevant results of the operation, but the value range of pdcch-DMRS-ScramblingID is 0-65535, if all the values are traversed, This will cause the problem of excessive calculation load, thereby affecting the efficiency of PDCCH blind detection.
本公开实施例提供了一种PDCCH估计参数获取方法、装置、网络设备及计算机可读存储介质,能够减少计算量,提升PDCCH盲检的效率。The embodiments of the present disclosure provide a method, an apparatus, a network device, and a computer-readable storage medium for obtaining a PDCCH estimation parameter, which can reduce the amount of calculation and improve the efficiency of PDCCH blind detection.
第一方面,本公开实施例提供了PDCCH估计参数获取方法,所述方法包括:In a first aspect, an embodiment of the present disclosure provides a method for obtaining PDCCH estimation parameters, and the method includes:
获取5G空口信号,基于所述5G空口信号确定物理下行控制信道PDCCH数据,其中,所述PDCCH数据包括控制信道单元CCE数据;obtaining a 5G air interface signal, and determining physical downlink control channel PDCCH data based on the 5G air interface signal, wherein the PDCCH data includes control channel element CCE data;
确定所述PDCCH数据的信道极性值,根据所述信道极性值,对所述PDCCH数据进行解调处理得到初始比特数据;其中,所述信道极性值与信道估计值有关;determining a channel polarity value of the PDCCH data, and performing demodulation processing on the PDCCH data according to the channel polarity value to obtain initial bit data; wherein the channel polarity value is related to a channel estimation value;
根据所述CCE数据的起始位置,对所述初始比特数据进行滑动提取处理得到若干个初始序列;其中,所述初始序列与伪随机序列相关联;According to the starting position of the CCE data, a sliding extraction process is performed on the initial bit data to obtain several initial sequences; wherein, the initial sequences are associated with pseudo-random sequences;
对若干个所述初始序列进行解扰和求逆处理,得到若干个参数pdcch-DMRS-ScramblingID。Perform descrambling and inversion processing on several of the initial sequences to obtain several parameters pdcch-DMRS-ScramblingID.
在本公开的一些具体实施例中,CCE数据为多个,第一遍历条件为对所述PDCCH数据中所有的所述CCE数据进行遍历;所述对若干个所述初始序列进行解扰和求逆处理,得到若干个参数pdcch-DMRS-ScramblingID之后,还包括:In some specific embodiments of the present disclosure, there are multiple CCE data, and the first traversal condition is to traverse all the CCE data in the PDCCH data; the descrambling and calculation of several initial sequences are performed. Inverse processing, after obtaining several parameters pdcch-DMRS-ScramblingID, it also includes:
在未满足所述第一遍历条件的情况下,选定新的所述CCE数据;In the case that the first traversal condition is not met, select new CCE data;
根据新的所述CCE数据的起始位置,重新对所述初始比特数据进行滑动提取处理得到若干个新的所述初始序列;According to the starting position of the new CCE data, perform sliding extraction processing on the initial bit data again to obtain several new initial sequences;
对若干个新的所述初始序列进行解扰和求逆处理,得到若干个新的参数pdcch-DMRS-ScramblingID。Perform descrambling and inversion processing on several new initial sequences to obtain several new parameters pdcch-DMRS-ScramblingID.
在本公开的一些具体实施例中,所述信道极性值为多个,第二遍历条件为对所有的所述信道极性值进行遍历;所述对若干个所述初始序列进行解扰和求逆处理,得到若干个参数pdcch-DMRS-ScramblingID之后,还包括:In some specific embodiments of the present disclosure, the channel polarity values are multiple, and the second traversal condition is to traverse all the channel polarity values; the descrambling and summation of several initial sequences is performed. After inversion processing, after obtaining several parameters pdcch-DMRS-ScramblingID, it also includes:
在未满足所述第二遍历条件的情况下,选定新的所述信道极性值;In the case that the second traversal condition is not met, select a new value of the channel polarity;
重新根据新的所述信道极性值,对所述PDCCH数据进行解调处理得到新的初始比特数据;Perform demodulation processing on the PDCCH data again according to the new channel polarity value to obtain new initial bit data;
根据所述CCE数据的起始位置,对新的所述初始比特数据进行滑动提取处理得到若干个初始序列。According to the starting position of the CCE data, a sliding extraction process is performed on the new initial bit data to obtain several initial sequences.
在本公开的一些具体实施例中,第三遍历条件为所述PDCCH数据中所有的所述CCE数据被完全遍历并且所有的所述信道极性被完全遍历,所述对若干个所述初始序列进行解扰和求逆处理,得到若干个参数pdcch-DMRS-ScramblingID之后,还包括:In some specific embodiments of the present disclosure, the third traversal condition is that all the CCE data in the PDCCH data are completely traversed and all the channel polarities are completely traversed, and the pair of several initial sequences After descrambling and inversion processing are performed, several parameters pdcch-DMRS-ScramblingID are obtained, including:
在满足所述第三遍历条件的情况下,输出所有所述参数pdcch-DMRS-ScramblingID。When the third traversal condition is satisfied, all the parameters pdcch-DMRS-ScramblingID are output.
在本公开的一些具体实施例中,所述对所述PDCCH数据进行解调处理得到初始比特数据,包括:In some specific embodiments of the present disclosure, performing demodulation processing on the PDCCH data to obtain initial bit data includes:
对所述PDCCH数据进行时频变换得到PDCCH频域数据;performing time-frequency transform on the PDCCH data to obtain PDCCH frequency domain data;
对所述PDCCH频域数据进行信道均衡处理得到解调参考信号DMRS符号;performing channel equalization processing on the PDCCH frequency domain data to obtain demodulation reference signal DMRS symbols;
对所述DMRS符号进行解调处理得到所述初始比特数据。The initial bit data is obtained by demodulating the DMRS symbols.
在本公开的一些具体实施例中,所述根据所述CCE数据的起始位置,对所述初始比特数据进行滑动提取处理得到若干个初始序列,包括:In some specific embodiments of the present disclosure, according to the starting position of the CCE data, performing sliding extraction processing on the initial bit data to obtain several initial sequences, including:
根据所述CCE数据的起始位置,从所述初始比特数据中抽取第一预设长度的第一连续比特数据;According to the starting position of the CCE data, extract the first continuous bit data of the first preset length from the initial bit data;
对所述第一连续比特数据进行滑动提取处理得到若干个第二预设长度的第二连续比特数据;Perform sliding extraction processing on the first continuous bit data to obtain several second continuous bit data of a second preset length;
将若干个所述第二连续比特数据确定为若干个所述初始序列;其中,第一预设长度和第二预设长度由所述CCE数据的个数决定。Several pieces of the second continuous bit data are determined as several pieces of the initial sequence; wherein, the first preset length and the second preset length are determined by the number of the CCE data.
在本公开的一些具体实施例中,所述对若干个所述初始序列进行解扰和求逆处理得到若干个参数pdcch-DMRS-ScramblingID,包括:In some specific embodiments of the present disclosure, performing descrambling and inversion processing on several initial sequences to obtain several parameters pdcch-DMRS-ScramblingID, including:
将若干个所述初始序列与预设的第一序列进行异或运算得到若干个第二序列;performing XOR operation on several of the initial sequences and preset first sequences to obtain several second sequences;
对若干个所述第二序列进行求逆处理得到若干个第三序列;其中,第一序列与伪随机序列相关联;Perform inversion processing on several of the second sequences to obtain several third sequences; wherein, the first sequence is associated with a pseudo-random sequence;
获取若干个所述第三序列对应的初始估计参数;obtaining several initial estimation parameters corresponding to the third sequence;
对所述初始估计参数进行判断验证处理得到若干个所述参数pdcch-DMRS-ScramblingID。Judging and verifying the initial estimated parameters to obtain several parameters pdcch-DMRS-ScramblingID.
在本公开的一些具体实施例中,所述对所述初始估计参数进行判断验证处理得到若干个所述参数pdcch-DMRS-ScramblingID,包括:In some specific embodiments of the present disclosure, the process of judging and verifying the initial estimated parameter to obtain a plurality of the parameters pdcch-DMRS-ScramblingID includes:
获取当前小区的小区ID,在所述初始估计参数小于预设阈值并且大于所述小区ID的情况下,将相应的所述初始估计参数确定为所述参数pdcch-DMRS-ScramblingID,所述预设阈值与参数pdcch-DMRS-ScramblingID的取值范围相关联。Obtain the cell ID of the current cell, and when the initial estimated parameter is less than a preset threshold and greater than the cell ID, determine the corresponding initial estimated parameter as the parameter pdcch-DMRS-ScramblingID, the preset The threshold is associated with the value range of the parameter pdcch-DMRS-ScramblingID.
第二方面,本公开实施例还提供了一种PDCCH估计参数获取装置,所述装置包括:In a second aspect, an embodiment of the present disclosure further provides an apparatus for obtaining a PDCCH estimation parameter, the apparatus comprising:
第一单元,用于获取5G空口信号,基于所述5G空口信号确定物理下行控制信道PDCCH数据,其中,所述PDCCH数据包括控制信道单元CCE数据;a first unit, configured to acquire a 5G air interface signal, and determine physical downlink control channel PDCCH data based on the 5G air interface signal, wherein the PDCCH data includes control channel element CCE data;
第二单元,用于确定所述PDCCH数据的信道极性值,根据所述信道极性值,对所述PDCCH数据进行解调处理得到初始比特数据;其中,所述信道极性值与信道估计值有关;The second unit is configured to determine the channel polarity value of the PDCCH data, and perform demodulation processing on the PDCCH data according to the channel polarity value to obtain initial bit data; wherein the channel polarity value and channel estimation value related;
第三单元,用于根据所述CCE数据的起始位置,对所述初始比特数据进行滑动提取处理得到若干个初始序列;其中,所述初始序列与伪随机序列相关联;A third unit, configured to perform sliding extraction processing on the initial bit data according to the starting position of the CCE data to obtain several initial sequences; wherein, the initial sequences are associated with pseudo-random sequences;
第四单元,用于对若干个所述初始序列进行解扰和求逆处理,得到若干个参数pdcch-DMRS-ScramblingID。The fourth unit is configured to perform descrambling and inversion processing on several initial sequences to obtain several parameters pdcch-DMRS-ScramblingID.
第三方面,本公开实施例还提供了一种网络设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如第一方面实施例所述的PDCCH估计参数获取方法。In a third aspect, an embodiment of the present disclosure further provides a network device, including: a memory, a processor, and a computer program stored in the memory and running on the processor, wherein the processor executes the computer During the procedure, the method for obtaining the PDCCH estimation parameter described in the embodiment of the first aspect is implemented.
第四方面,本公开实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行如第一方面实施例所述的PDCCH估计参数获取方法。In a fourth aspect, an embodiment of the present disclosure further provides a computer-readable storage medium storing computer-executable instructions, where the computer-executable instructions are used to execute the method for obtaining a PDCCH estimation parameter according to the embodiment of the first aspect.
根据本公开实施例提供的方案,首先获取5G空口信号,然后基于获取得到的5G空口信号确定PDCCH数据;接着基于PDCCH数据和信道极性值,进行解调处理得到初始比特数据;接着根据CCE数据的起始位置对初始比特数据进行滑动提取处理得到若干个初始序列;最后对若干个初始序列进行解扰和求逆处理得到若干个参数pdcch-DMRS-ScramblingID。通过本实施例可得到的所有可能的参数pdcch-DMRS-ScramblingID,这些参数pdcch-DMRS-ScramblingID可被PDCCH盲检测过程利用,减少计算量,进而提升PDCCH盲检的效率。According to the solution provided by the embodiment of the present disclosure, firstly obtain the 5G air interface signal, then determine the PDCCH data based on the obtained 5G air interface signal; then perform demodulation processing based on the PDCCH data and the channel polarity value to obtain initial bit data; then according to the CCE data The starting position of the initial bit data is subjected to sliding extraction processing to obtain several initial sequences; finally, several initial sequences are descrambled and inverted to obtain several parameters pdcch-DMRS-ScramblingID. All possible parameters pdcch-DMRS-ScramblingID that can be obtained in this embodiment can be used by the PDCCH blind detection process, thereby reducing the amount of calculation and improving the efficiency of PDCCH blind detection.
本公开的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本公开而了解。本公开的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。Other features and advantages of the present disclosure will be set forth in the description that follows, and in part will be apparent from the description, or will be learned by practice of the present disclosure. The objectives and other advantages of the present disclosure may be realized and attained by the structure particularly pointed out in the description, claims and drawings.
附图说明Description of drawings
附图用来提供对本公开技术方案的进一步理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。The accompanying drawings are used to provide a further understanding of the technical solutions of the present disclosure, and constitute a part of the specification. They are used to explain the technical solutions of the present disclosure together with the embodiments of the present disclosure, and do not constitute a limitation on the technical solutions of the present disclosure.
图1是本公开一个实施例提供的PDCCH估计参数获取方法流程图;1 is a flowchart of a method for obtaining PDCCH estimation parameters provided by an embodiment of the present disclosure;
图2是本公开另一个实施例提供的PDCCH估计参数获取方法流程图;2 is a flowchart of a method for obtaining PDCCH estimation parameters provided by another embodiment of the present disclosure;
图3是本公开另一个实施例提供的PDCCH估计参数获取方法流程图;3 is a flowchart of a method for obtaining PDCCH estimation parameters provided by another embodiment of the present disclosure;
图4是本公开另一个实施例提供的PDCCH估计参数获取方法流程图;4 is a flowchart of a method for obtaining PDCCH estimation parameters provided by another embodiment of the present disclosure;
图5是本公开一个实施例提供的PDCCH估计参数获取方法的确定PDCCH数据的具体流程图;5 is a specific flowchart of determining PDCCH data in a method for obtaining PDCCH estimation parameters provided by an embodiment of the present disclosure;
图6是本公开另一实施例提供的PDCCH估计参数获取方法的获取初始比特数据的具体流程图;6 is a specific flowchart of obtaining initial bit data of a method for obtaining PDCCH estimation parameters provided by another embodiment of the present disclosure;
图7是本公开一个实施例提供的PDCCH估计参数获取方法的获取初始化序列的具体流程图;7 is a specific flowchart of an acquisition initialization sequence of a method for acquiring PDCCH estimation parameters provided by an embodiment of the present disclosure;
图8是本公开一个实施例提供的PDCCH估计参数获取方法的获取参数的具体流程图;FIG. 8 is a specific flowchart of acquiring parameters of a method for acquiring PDCCH estimation parameters provided by an embodiment of the present disclosure;
图9是本公开另一个实施例提供的PDCCH估计参数获取方法的获取参数的具体流程图;FIG. 9 is a specific flowchart of acquiring parameters of a method for acquiring PDCCH estimation parameters provided by another embodiment of the present disclosure;
图10是本公开一个实施例提供的PDCCH估计参数获取方法具体流程图;10 is a specific flowchart of a method for obtaining PDCCH estimation parameters provided by an embodiment of the present disclosure;
图11是本公开一个实施例提供的PDCCH估计参数获取装置构造示意图;11 is a schematic structural diagram of an apparatus for obtaining PDCCH estimation parameters provided by an embodiment of the present disclosure;
图12是本公开一个实施例提供的网络设备构造示意图。FIG. 12 is a schematic structural diagram of a network device provided by an embodiment of the present disclosure.
具体实施方式Detailed ways
为了使本公开的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本公开进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本公开,并不用于限定本公开。In order to make the objectives, technical solutions and advantages of the present disclosure more clear, the present disclosure will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present disclosure, but not to limit the present disclosure.
在本公开的描述中,若干的含义是一个或者多个,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。In the description of the present disclosure, the meaning of several is one or more, the meaning of multiple is two or more, greater than, less than, exceeding, etc. are understood as not including this number, above, below, within, etc. are understood as including this number. If it is described that the first and the second are only for the purpose of distinguishing technical features, it cannot be understood as indicating or implying relative importance, or indicating the number of the indicated technical features or the order of the indicated technical features. relation.
本公开的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本公开中的具体含义。In the description of the present disclosure, unless otherwise clearly defined, terms such as setting, installation, and connection should be understood in a broad sense, and those skilled in the art can reasonably determine the specific meanings of the above terms in the present disclosure in combination with the specific content of the technical solution.
本公开提供了一种PDCCH估计参数获取方法、装置、网络设备及计算机可读存储介质,获取5G空口信号,基于所述5G空口信号确定物理下行控制信道PDCCH数据,其中,所述PDCCH数据包括控制信道单元CCE数据;对所述PDCCH数据进行解调处理得到初始比特数据;根据所述CCE数据的起始位置,对所述初始比特数据进行滑动提取处理得到若干个初始序列;对若干个所述初始序列进行解扰和求逆处理得到参数pdcch-DMRS-ScramblingID。通过上述技术方案,能够减少计算量,提升PDCCH盲检的效率。The present disclosure provides a method, apparatus, network device, and computer-readable storage medium for obtaining PDCCH estimation parameters, obtaining a 5G air interface signal, and determining physical downlink control channel PDCCH data based on the 5G air interface signal, wherein the PDCCH data includes control channel element CCE data; perform demodulation processing on the PDCCH data to obtain initial bit data; perform sliding extraction processing on the initial bit data according to the starting position of the CCE data to obtain several initial sequences; The initial sequence is descrambled and reversed to obtain the parameter pdcch-DMRS-ScramblingID. Through the above technical solutions, the amount of calculation can be reduced, and the efficiency of blind detection of the PDCCH can be improved.
需要说明的是,在5G-NR通信系统中,物理下行控制信道(PDCCH,PhysicalDownlink Control Channel)通常承载基站发送给用户设备(UE,User Equipment)的下行控制信息(DCI,Downlink Control Information),这些控制信息具体包含传输格式、资源分配、上行调度许可、功率控制以及上行重传信息等。控制信道单元(CCE,Control-ChannelElement)是PDCCH传输的基本单位,一个PDCCH可以由一个或多个CCE构成,如1个、2个、4个、8个和16个CCE等,构成PDCCH的CCE数据的个数被称为聚合等级(AL,Aggregation Level)。在生成解调参考信号(DMRS,Demodulation Reference Signal)序列时需要使用到参数pdcch-DMRS-ScramblingID,通常参数pdcch-DMRS-ScramblingID由高层配置,UE需要根据pdcch-DMRS-ScramblingID和其本身的无线网络临时标识(RNTI,Radio NetworkTemporary Identity)在PDCCH候选集中进行盲检,从而得到下行控制信息(DownlinkControl Information,DCI)。It should be noted that in the 5G-NR communication system, the Physical Downlink Control Channel (PDCCH, Physical Downlink Control Channel) usually carries the downlink control information (DCI, Downlink Control Information) sent by the base station to the user equipment (UE, User Equipment). The control information specifically includes transmission format, resource allocation, uplink scheduling grant, power control, and uplink retransmission information. Control Channel Element (CCE, Control-ChannelElement) is the basic unit of PDCCH transmission. A PDCCH can be composed of one or more CCEs, such as 1, 2, 4, 8, and 16 CCEs, etc., which constitute the CCEs of the PDCCH. The number of data is called the aggregation level (AL, Aggregation Level). When generating a demodulation reference signal (DMRS, Demodulation Reference Signal) sequence, the parameter pdcch-DMRS-ScramblingID needs to be used. Usually, the parameter pdcch-DMRS-ScramblingID is configured by the high layer. The UE needs to use pdcch-DMRS-ScramblingID and its own wireless network A temporary identity (RNTI, Radio Network Temporary Identity) is blindly checked in the PDCCH candidate set, thereby obtaining downlink control information (Downlink Control Information, DCI).
本PDCCH估计参数获取方法应用在第三方通信设备,如单兵设备、监听设备等。在进行PDCCH盲检的过程中,首先要进行信道估计,在未知pdcch-DMRS-ScramblingID的情况下,需要先检测出该参数;相关的方案中主要是根据pdcch-DMRS-ScramblingID的取值范围,遍历所有的取值进行相关计算,然后根据运算得到的相关结果获取相应的pdcch-DMRS-ScramblingID,但是pdcch-DMRS-ScramblingID的取值范围是0-65535,如果遍历所有的取值,就会造成计算量过大的问题,从而影响PDCCH盲检的效率。The PDCCH estimation parameter acquisition method is applied to third-party communication equipment, such as individual soldier equipment, monitoring equipment, and the like. In the process of PDCCH blind detection, channel estimation must be carried out first. In the case of unknown pdcch-DMRS-ScramblingID, this parameter needs to be detected first; Traverse all the values to perform related calculations, and then obtain the corresponding pdcch-DMRS-ScramblingID according to the relevant results obtained by the operation, but the value range of pdcch-DMRS-ScramblingID is 0-65535. If all the values are traversed, it will cause The problem of excessive calculation load affects the efficiency of PDCCH blind detection.
下面结合附图,对本公开实施例作进一步阐述。The embodiments of the present disclosure will be further described below with reference to the accompanying drawings.
如图1所示,图1是本公开一个实施例提供的PDCCH估计参数获取方法。该方法包括但不限于有步骤S100、步骤S200、步骤S300和步骤S400。As shown in FIG. 1 , FIG. 1 is a method for obtaining PDCCH estimation parameters provided by an embodiment of the present disclosure. The method includes but is not limited to step S100, step S200, step S300 and step S400.
步骤S100,获取5G空口信号,基于5G空口信号确定物理下行控制信道PDCCH数据,其中,PDCCH数据包括控制信道单元CCE数据;Step S100, acquiring a 5G air interface signal, and determining physical downlink control channel PDCCH data based on the 5G air interface signal, wherein the PDCCH data includes control channel element CCE data;
步骤S200,确定PDCCH数据的信道极性值,根据信道极性值,对PDCCH数据进行解调处理得到初始比特数据;其中,信道极性值与信道估计值有关;Step S200, determining the channel polarity value of the PDCCH data, and performing demodulation processing on the PDCCH data according to the channel polarity value to obtain initial bit data; wherein, the channel polarity value is related to the channel estimation value;
步骤S300,根据CCE数据的起始位置,对初始比特数据进行滑动提取处理得到若干个初始序列;其中,初始序列与伪随机序列相关联;Step S300, performing sliding extraction processing on the initial bit data according to the starting position of the CCE data to obtain several initial sequences; wherein, the initial sequences are associated with pseudo-random sequences;
步骤S400,对若干个初始序列进行解扰和求逆处理,得到若干个参数pdcch-DMRS-ScramblingID。Step S400, performing descrambling and inversion processing on several initial sequences to obtain several parameters pdcch-DMRS-ScramblingID.
需要说明的是,5G空口信号是由基站向UE发送的信号,其中,5G空口信号中可以包括主同步信号、辅同步信号和PDCCH数据等;主同步信号和辅同步信号主要用于跟踪同步,由于主同步信号和辅同步信号在帧数据中的位置相对固定,根据主同步信号和辅同步信号所在符号就可以找到PDCCH数据的起始位置。本公开实施例中信道极性值与信道估计值有关,信道极性值可以根据PDCCH符号QPSK调制方式预测获得,也可以通过信道估计过程获得,存在一种或多种不同的取值情况。CCE数据是PDCCH传输的基本单位,一个PDCCH可以包含一个或多个CCE数据,由PDCCH的聚合等级决定。参数pdcch-DMRS-ScramblingID主要用于生成PDCCH对应的DMRS,通常情况下,需要根据pdcch-DMRS-ScramblingID和RNTI在PDCCH候选集中进行盲检,从而得到DCI下行控制信息。因而本实施例中,首先获取5G空口信号,然后基于获取得到的5G空口信号确定PDCCH数据;接着确定PDCCH数据的信道极性值,根据信道极性值,对PDCCH数据进行解调处理得到初始比特数据;接着根据CCE数据的起始位置,对初始比特数据进行滑动提取处理得到若干个初始序列;最后对若干个初始序列进行解扰和求逆处理得到若干个参数pdcch-DMRS-ScramblingID。通过本实施例得到的参数pdcch-DMRS-ScramblingID,可被PDCCH盲检测过程利用,减少计算量,提升PDCCH盲检的效率。It should be noted that the 5G air interface signal is a signal sent by the base station to the UE, and the 5G air interface signal may include primary synchronization signal, secondary synchronization signal and PDCCH data, etc.; the primary synchronization signal and the secondary synchronization signal are mainly used for tracking synchronization, Since the positions of the primary synchronization signal and the secondary synchronization signal in the frame data are relatively fixed, the starting position of the PDCCH data can be found according to the symbols where the primary synchronization signal and the secondary synchronization signal are located. In the embodiment of the present disclosure, the channel polarity value is related to the channel estimation value. The channel polarity value can be predicted and obtained according to the QPSK modulation mode of the PDCCH symbol, or obtained through the channel estimation process, and there are one or more different values. CCE data is the basic unit of PDCCH transmission, and one PDCCH may contain one or more CCE data, which is determined by the aggregation level of the PDCCH. The parameter pdcch-DMRS-ScramblingID is mainly used to generate the DMRS corresponding to the PDCCH. Usually, blind detection needs to be performed in the PDCCH candidate set according to the pdcch-DMRS-ScramblingID and the RNTI to obtain the DCI downlink control information. Therefore, in this embodiment, the 5G air interface signal is first obtained, and then the PDCCH data is determined based on the obtained 5G air interface signal; then the channel polarity value of the PDCCH data is determined, and the PDCCH data is demodulated according to the channel polarity value to obtain the initial bit. Then, according to the starting position of the CCE data, perform sliding extraction processing on the initial bit data to obtain several initial sequences; finally, perform descrambling and inversion processing on several initial sequences to obtain several parameters pdcch-DMRS-ScramblingID. The parameter pdcch-DMRS-ScramblingID obtained by this embodiment can be used by the PDCCH blind detection process, thereby reducing the amount of calculation and improving the efficiency of the PDCCH blind detection.
另外,在一实施例中,如图2所示,CCE数据为多个,第一遍历条件为对PDCCH数据中所有的CCE数据进行遍历;上述步骤S400之后还可以包括但不限于步骤S310、步骤S320和步骤S330。In addition, in an embodiment, as shown in FIG. 2 , there are multiple CCE data, and the first traversal condition is to traverse all the CCE data in the PDCCH data; the above step S400 may also include but not limited to steps S310, S320 and step S330.
步骤S310,在未满足第一遍历条件的情况下,选定新的CCE数据;Step S310, in the case that the first traversal condition is not met, select new CCE data;
步骤S320,根据新的CCE数据的起始位置,重新对初始比特数据进行滑动提取处理得到若干个新的初始化序列;Step S320, according to the starting position of the new CCE data, perform sliding extraction processing on the initial bit data again to obtain several new initialization sequences;
步骤S330,对若干个新的初始序列进行解扰和求逆处理,得到若干个新的参数pdcch-DMRS-ScramblingID。Step S330, performing descrambling and inversion processing on several new initial sequences to obtain several new parameters pdcch-DMRS-ScramblingID.
需要说明的是,在计算得到参数pdcch-DMRS-ScramblingID的情况下,由于PDCCH数据中包含着多个CCE数据,因为在对前一个CCE数据遍历完成之后还需要基于其他CCE数据继续进行遍历处理,以得到每个CCE数据对应的参数pdcch-DMRS-ScramblingID。因此,在PDCCH数据中的CCE数据未被完全遍历,就会选定下一个CCE数据作为新的CCE数据再次进行计算,以获得该新的CCE数据相关的参数pdcch-DMRS-ScramblingID,直至全部把所有的CCE数据遍历完。譬如,若包含有4个CCE数据,则需要遍历4次,计算得到所有可能的参数pdcch-DMRS-ScramblingID。It should be noted that when the parameter pdcch-DMRS-ScramblingID is obtained by calculation, since the PDCCH data contains multiple CCE data, it is necessary to continue the traversal processing based on other CCE data after the previous CCE data traversal is completed. to obtain the parameter pdcch-DMRS-ScramblingID corresponding to each CCE data. Therefore, if the CCE data in the PDCCH data is not completely traversed, the next CCE data will be selected as the new CCE data to be calculated again to obtain the parameter pdcch-DMRS-ScramblingID related to the new CCE data, until all the All CCE data is traversed. For example, if 4 CCE data are included, it needs to be traversed 4 times to calculate all possible parameters pdcch-DMRS-ScramblingID.
另外,在一实施例中,如图3所示,信道极性值为多个,第二遍历条件为对所有的信道极性值进行遍历,上述步骤S400之后还可以包括但不限于步骤S410、步骤S420和步骤S430。In addition, in an embodiment, as shown in FIG. 3 , there are multiple channel polarity values, and the second traversal condition is to traverse all the channel polarity values. The above step S400 may also include but not limited to steps S410, Step S420 and Step S430.
步骤S410,在未满足第二遍历条件的情况下,选定新的信道极性值;Step S410, in the case that the second traversal condition is not met, select a new channel polarity value;
步骤S420,重新根据新的信道极性值,对PDCCH数据进行解调处理得到新的初始比特数据;Step S420, demodulate the PDCCH data according to the new channel polarity value again to obtain new initial bit data;
步骤S430,根据CCE数据的起始位置,对新的初始比特数据进行滑动提取处理得到若干个初始序列。Step S430: Perform sliding extraction processing on the new initial bit data according to the starting position of the CCE data to obtain several initial sequences.
需要说明的是,在所有的信道极性值没有被遍历完成的情况下,就会选定新的信道极性值;然后重新根据新的信道极性值,对PDCCH数据进行解调处理得到新的初始比特数据;然后根据CCE数据的起始位置,对新的初始比特数据进行滑动提取处理得到若干个初始序列。信道极性值与信道估计值有关,信道极性值可能存在多种不同取值的情况,基于不同的信道极性值对PDCCH数据进行解调处理,会得到不同的初始比特数据,由此根据CCE数据进行计算时,会存在不同的可能。如存在信道极性值H1、信道极性值H2和信道极性值H3的情况下,先根据信道极性值H1进行解调处理,得到解调数据(也就是初始比特数据),再根据所述PDCCH数据中CCE数据的起始位置,对初始比特数据进行后续的参数pdcch-DMRS-ScramblingID的计算;在PDCCH数据中的CCE数据被完全遍历并且信道极性值未被完全遍历的情况下,重新对PDCCH数据进行信道极性进行遍历,如选定信道极性值H2或信道极性值H3作为下一信道极性值进行处理,基于当前遍历的信道极性值H2或H3得到新的初始比特数据,以继续进行后续的参数pdcch-DMRS-ScramblingID计算处理,获取新的参数pdcch-DMRS-ScramblingID。It should be noted that when all the channel polarity values have not been traversed, a new channel polarity value will be selected; then, according to the new channel polarity value, the PDCCH data is demodulated to obtain a new channel polarity value. Then, according to the starting position of the CCE data, the new initial bit data is subjected to sliding extraction processing to obtain several initial sequences. The channel polarity value is related to the channel estimation value. The channel polarity value may have many different values. The PDCCH data is demodulated based on different channel polarity values, and different initial bit data will be obtained. When calculating CCE data, there are different possibilities. If there is a channel polarity value H1, a channel polarity value H2, and a channel polarity value H3, first perform demodulation processing according to the channel polarity value H1 to obtain demodulated data (that is, the initial bit data), and then perform demodulation according to the channel polarity value H1. The starting position of the CCE data in the PDCCH data is described, and the subsequent parameter pdcch-DMRS-ScramblingID is calculated for the initial bit data; in the case where the CCE data in the PDCCH data is completely traversed and the channel polarity value is not completely traversed, Re-traverse the channel polarity of the PDCCH data. For example, select the channel polarity value H2 or the channel polarity value H3 as the next channel polarity value for processing, and obtain a new initial value based on the currently traversed channel polarity value H2 or H3. bit data, so as to continue the subsequent calculation processing of the parameter pdcch-DMRS-ScramblingID to obtain a new parameter pdcch-DMRS-ScramblingID.
另外,在一实施例中,如图4所示,第三遍历条件为PDCCH数据中所有的CCE数据被完全遍历并且所有的信道极性值被完全遍历,上述步骤S400之后还可以包括但不限于步骤S440。In addition, in an embodiment, as shown in FIG. 4 , the third traversal condition is that all CCE data in the PDCCH data are completely traversed and all channel polarity values are completely traversed. After the above step S400, it may also include but not limited to Step S440.
步骤S440,在满足第三遍历条件的情况下,输出所有参数pdcch-DMRS-ScramblingID。Step S440, when the third traversal condition is satisfied, output all parameters pdcch-DMRS-ScramblingID.
需要说明的是,在PDCCH数据中所有的CCE数据被完全遍历并且所有的信道极性值被完全遍历的情况下,就会将基于所有可能情况(如存在多个CCE数据的情况和多个信道极性值的情况)计算得到的所有参数pdcch-DMRS-ScramblingID进行输出处理,也即输出参数pdcch-DMRS-ScramblingID的集合,而在后续相关的PDCCH盲检测能够利用这个集合中的参数pdcch-DMRS-ScramblingID进行运算,缩小计算范围,大大降低了计算量,以利于完成PDCCH盲检操作,得到有效的DCI信息。如信道极性值存在3种情况,CCE数据存在4个的情况,则需要进行12次进行相关步骤的运算,得到12个不同的pdcch-DMRS-ScramblingID参数集合并输出。It should be noted that in the case where all CCE data in the PDCCH data are completely traversed and all channel polarity values are completely traversed, it will be based on all possible situations (such as the existence of multiple CCE data and multiple channels). In the case of polar values) all the parameters pdcch-DMRS-ScramblingID calculated by the calculation are output and processed, that is, the set of output parameters pdcch-DMRS-ScramblingID, and the subsequent related PDCCH blind detection can use the parameter pdcch-DMRS in this set - ScramblingID performs operations, reduces the calculation range, and greatly reduces the calculation amount, so as to facilitate the completion of the PDCCH blind detection operation and obtain effective DCI information. For example, if there are 3 cases of channel polarity values and 4 cases of CCE data, it is necessary to perform 12 operations of related steps to obtain 12 different pdcch-DMRS-ScramblingID parameter sets and output them.
另外,在一实施例中,如图5所示,5G空口信号包括主同步信号和辅同步信号,上述步骤S100还可以包括但不限于步骤S110和步骤S120。In addition, in an embodiment, as shown in FIG. 5 , the 5G air interface signal includes a primary synchronization signal and a secondary synchronization signal, and the above-mentioned step S100 may also include, but is not limited to, steps S110 and S120.
步骤S110,根据主同步信号和辅同步信号进行小区搜索处理,确定小区ID和数据帧起始位置信息;Step S110, perform cell search processing according to the primary synchronization signal and the secondary synchronization signal, and determine the cell ID and the starting position information of the data frame;
步骤S120,根据小区ID和数据帧起始位置信息确定PDCCH数据。Step S120: Determine the PDCCH data according to the cell ID and the starting position information of the data frame.
示例地,采集5G空口信号,解析主同步信号(Primary Synchronization Signals,PSS)得到NID2(范围为{0,1,2})和时域粗同步点,然后解析辅同步信号(SecondarySynchronization Signals,SSS)得到NID1(范围为{0,1….335})和时域精同步点,根据公式PCI=(3×NID1)+NID2,可以得到小区物理小区ID(Physical Cell Identity,PCI,范围为{0,1…,1007})。由于5G空口信号中包括主同步信号和辅同步信号,并且两者在数据帧中的位置相对固定,因为能够通过主同步信号和辅同步信号,可以获取当前小区的小区ID和数据帧起始位置信息,然后根据小区ID和数据帧起始位置信息确定PDCCH数据。For example, collect 5G air interface signals, parse the primary synchronization signal (Primary Synchronization Signals, PSS) to obtain NID2 (range {0, 1, 2}) and time domain coarse synchronization point, and then analyze the secondary synchronization signal (Secondary Synchronization Signals, SSS) Obtain NID1 (range: {0, 1....335}) and time-domain precise synchronization point. According to the formula PCI=(3×NID1)+NID2, the physical cell ID (Physical Cell Identity, PCI, range of {0) can be obtained. , 1..., 1007}). Since the 5G air interface signal includes the primary synchronization signal and the secondary synchronization signal, and their positions in the data frame are relatively fixed, because the primary synchronization signal and the secondary synchronization signal can be used to obtain the cell ID of the current cell and the starting position of the data frame information, and then determine the PDCCH data according to the cell ID and the starting position information of the data frame.
另外,在一实施例中,如图6所示,上述步骤S200可以包括但不限于步骤S210、步骤S220和步骤S230。In addition, in an embodiment, as shown in FIG. 6 , the above-mentioned step S200 may include, but is not limited to, step S210 , step S220 and step S230 .
步骤S210,对PDCCH数据进行时频变换得到PDCCH频域数据;Step S210, performing time-frequency transformation on the PDCCH data to obtain PDCCH frequency domain data;
步骤S220,对PDCCH频域数据进行信道均衡处理得到解调参考信号DMRS符号;Step S220, performing channel equalization processing on the PDCCH frequency domain data to obtain a demodulation reference signal DMRS symbol;
步骤S230,对DMRS符号进行解调处理得到初始比特数据。Step S230, performing demodulation processing on the DMRS symbols to obtain initial bit data.
需要说明的是,首先对PDCCH数据进行时频变换得到PDCCH频域数据,接着对PDCCH频域数据进行信道均衡处理得到解调参考信号DMRS符号,最后对DMRS符号进行解调处理得到初始比特数据。It should be noted that the PDCCH data is first subjected to time-frequency transform to obtain PDCCH frequency domain data, then channel equalization processing is performed on the PDCCH frequency domain data to obtain demodulation reference signal DMRS symbols, and finally the DMRS symbols are demodulated to obtain initial bit data.
示例地,根据帧同步位置,还有PDCCH所在的时隙,符号,可以获得PDCCH数据,然后将时域数据转换为频域数据,由于信道极性值与信道估计值相关,因此可以利用信道极性值进行信道均衡,得到的均衡数据,再进行解调处理。如一个RB包含3个DMRS符号时,M个RB共有3*M个DMRS符号,DMRS符号使用QPSK调制,转化为比特就是对每个DMRS符号进行解调。For example, according to the frame synchronization position, as well as the time slot and symbol where the PDCCH is located, the PDCCH data can be obtained, and then the time domain data is converted into frequency domain data. Channel equalization is performed according to the characteristic value, and the obtained equalized data is then demodulated. For example, when one RB contains 3 DMRS symbols, the M RBs have a total of 3*M DMRS symbols, and the DMRS symbols are modulated by QPSK, and the conversion into bits is to demodulate each DMRS symbol.
另外,在一实施例中,如图7所示,上述步骤S300还可以包括但不限于步骤S340、步骤S350和步骤S360。In addition, in an embodiment, as shown in FIG. 7 , the foregoing step S300 may further include, but is not limited to, step S340 , step S350 and step S360 .
步骤S340,根据CCE数据的起始位置,从初始比特数据中抽取第一预设长度的第一连续比特数据;Step S340, extracts the first continuous bit data of the first preset length from the initial bit data according to the starting position of the CCE data;
步骤S350,对第一连续比特数据进行滑动提取处理得到若干个第二预设长度的第二连续比特数据;Step S350, performing sliding extraction processing on the first continuous bit data to obtain several second continuous bit data of the second preset length;
步骤S360,将若干个第二连续比特数据确定为若干个初始序列;其中,第一预设长度和第二预设长度由CCE数据的个数决定。Step S360, determining several second continuous bit data as several initial sequences; wherein, the first preset length and the second preset length are determined by the number of CCE data.
需要说明的是,首先根据CCE数据的起始位置,从初始比特数据中抽取第一预设长度的第一连续比特数据,接着对第一连续比特数据进行滑动提取处理得到若干个第二预设长度的第二连续比特数据;最后将若干个第二连续比特数据确定为若干个初始序列。It should be noted that, first, according to the starting position of the CCE data, the first continuous bit data of the first preset length is extracted from the initial bit data, and then the first continuous bit data is subjected to sliding extraction processing to obtain several second presets. length of second continuous bit data; finally, several second continuous bit data are determined as several initial sequences.
示例性地,从第一种信道极性开始,对一个时隙的PDCCH数据进行时频转化,得到频域数据,然后进行均衡和解调,得到初始比特数据seq1;从CCE起始位置0开始,从初始比特数据seq1中取出长度为K的第一连续比特数据seq2,K的取值与聚合等级相关,CCE数据个数与聚合等级相关,K的取值可以是聚合等级的整数倍,也即K的取值与CCE数据个数存在关联。本实施例中,滑动提取指的是在待处理的数据中通过步进的方式连续抽取预设长度的数据,示例性地,如当K=6,则从初始比特数据中当前CCE数据对应的起始位置开始抽取长度为6的第一连续比特数据,第一连续比特数据为(a1,a2,a3,a4,a5,a6);然后再从第一连续比特数据中滑动提取长度为L的第二连续比特数据,其中,当L=3的情况下,则滑动提取到的第二连续比特数据为(a1,a2,a3)、(a2,a3,a4)、(a3,a4,a5)和(a4,a5,a6),也就是能够得到K-L+1个初始序列。Exemplarily, starting from the first channel polarity, time-frequency conversion is performed on the PDCCH data of a time slot to obtain frequency domain data, and then equalization and demodulation are performed to obtain initial bit data seq1; starting from CCE starting position 0 , take out the first continuous bit data seq2 of length K from the initial bit data seq1, the value of K is related to the aggregation level, the number of CCE data is related to the aggregation level, the value of K can be an integer multiple of the aggregation level, or That is, the value of K is related to the number of CCE data. In this embodiment, sliding extraction refers to continuously extracting data of a preset length from the data to be processed by stepping. The starting position starts to extract the first continuous bit data with a length of 6, and the first continuous bit data is (a1, a2, a3, a4, a5, a6); then slide to extract the length of L from the first continuous bit data. The second continuous bit data, wherein, when L=3, the second continuous bit data extracted by sliding is (a1, a2, a3), (a2, a3, a4), (a3, a4, a5) and (a4, a5, a6), that is, K-L+1 initial sequences can be obtained.
另外,在一实施例中,如图8所示,上述步骤S400还可以包括但不限于步骤S450、步骤S460、步骤S470和步骤S480。In addition, in an embodiment, as shown in FIG. 8 , the foregoing step S400 may further include, but is not limited to, step S450 , step S460 , step S470 and step S480 .
步骤S450,将若干个初始序列与预设的第一序列进行异或运算得到若干个第二序列;Step S450, performing XOR operation on several initial sequences and preset first sequences to obtain several second sequences;
步骤S460,对若干个第二序列进行求逆处理得到若干个第三序列;其中,第一序列与伪随机序列相关联;Step S460, performing inversion processing on several second sequences to obtain several third sequences; wherein, the first sequence is associated with the pseudo-random sequence;
步骤S470,获取若干个所述第三序列对应的初始估计参数;Step S470, obtaining several initial estimation parameters corresponding to the third sequence;
步骤S480,对初始估计参数进行判断验证处理得到若干参数pdcch-DMRS-ScramblingID。Step S480, performing judgment and verification processing on the initial estimated parameters to obtain several parameters pdcch-DMRS-ScramblingID.
需要说明的是,首先将若干个初始序列与预设的第一序列进行异或运算得到若干个第二序列;接着对若干个第二序列进行求逆处理得到若干个第三序列;接着获取若干个所述第三序列对应的初始估计参数;最后对初始估计参数进行判断验证处理得到若干参数pdcch-DMRS-ScramblingID。It should be noted that, first, perform XOR operation on several initial sequences and preset first sequences to obtain several second sequences; then perform inversion processing on several second sequences to obtain several third sequences; then obtain several initial estimation parameters corresponding to the third sequence; finally, the initial estimation parameters are judged and verified to obtain several parameters pdcch-DMRS-ScramblingID.
示例性地,在长度为K的第一连续比特数据seq2内,遍历K-L+1次,滑动取出第二连续比特数据,每次步进1比特,得到K-L+1个长度为L的初始序列,K-L+1个长度为L的初始序列和第一序列异或得到K-L+1个第二序列,第一序列和第二序列和伪随机序列有关。求逆处理指的是逆向推导处理的过程,如根据第二序列的生成矩阵对应的逆矩阵,求出第二序列对应的初始化序列,也就是可能的第三序列,基于这个第三序列,根据时隙号、PDCCH所在的OFDM符号编号,可以计算得到可能的pdcch-DMRS-ScramblingID。此时得到的参数pdcch-DMRS-ScramblingID可能会超出实际参数pdcch-DMRS-ScramblingID的范围取值,如在5G通信系统中,pdcch-DMRS-ScramblingID的取值范围为0~65535,由此如果这个参数值大于65535,则可知当前得到的参数pdcch-DMRS-ScramblingID是错误的,可以舍弃;如果这个值小于65535,且大于小区ID,则通过验证,可以保存当前得到的参数pdcch-DMRS-ScramblingID;直至完成K-L+1次计算后,从K-L+1个初始序列对应的参数pdcch-DMRS-ScramblingID中筛选出可能的值。Exemplarily, in the first continuous bit data seq2 of length K, traverse K-L+1 times, slide out the second continuous bit data, step 1 bit each time, and obtain K-L+1 length L. The initial sequence of , K-L+1 initial sequences of length L are XORed with the first sequence to obtain K-L+1 second sequences, and the first sequence and the second sequence are related to the pseudo-random sequence. Inversion processing refers to the process of reverse derivation processing. For example, according to the inverse matrix corresponding to the generator matrix of the second sequence, the initialization sequence corresponding to the second sequence is obtained, that is, the possible third sequence. Based on this third sequence, according to The possible pdcch-DMRS-ScramblingID can be obtained by calculating the time slot number and the OFDM symbol number where the PDCCH is located. The parameter pdcch-DMRS-ScramblingID obtained at this time may exceed the range of the actual parameter pdcch-DMRS-ScramblingID. For example, in the 5G communication system, the value range of pdcch-DMRS-ScramblingID is 0~65535, so if this If the parameter value is greater than 65535, it can be seen that the currently obtained parameter pdcch-DMRS-ScramblingID is wrong and can be discarded; if the value is less than 65535 and greater than the cell ID, the current obtained parameter pdcch-DMRS-ScramblingID can be saved after verification; After K-L+1 calculations are completed, possible values are screened out from the parameters pdcch-DMRS-ScramblingID corresponding to the K-L+1 initial sequences.
示例性地,在5G通信系统中,DMRS序列和加扰序列通常由PN(Pseudo-Noise Code)序列生成,PN序列由第一序列X1和第二序列X2生成,其中第一序列X1的初始化序列中每一比特的生成方式固定;第二序列X2的初始化序列与pdcch-DMRS-ScramblingID有关。如果能计算出第二序列X2的初始化序列,就能计算出pdcch-DMRS-ScramblingID。Exemplarily, in a 5G communication system, the DMRS sequence and the scrambling sequence are usually generated by a PN (Pseudo-Noise Code) sequence, and the PN sequence is generated by a first sequence X1 and a second sequence X2, wherein the initialization sequence of the first sequence X1 The generation method of each bit is fixed; the initialization sequence of the second sequence X2 is related to pdcch-DMRS-ScramblingID. If the initialization sequence of the second sequence X2 can be calculated, the pdcch-DMRS-ScramblingID can be calculated.
进一步,在5G通信系统中,DMRS序列生成公式如下:Further, in the 5G communication system, the DMRS sequence generation formula is as follows:
其中,l表示时隙内符号序号,m表示序列长度,c是伪随机序列(31长度的Gold序列),c序列生成公式如下:Among them, l represents the symbol sequence number in the time slot, m represents the sequence length, c is the pseudo-random sequence (Gold sequence of length 31), and the formula for generating the c sequence is as follows:
c(n)=(x1(n+NC)+x2(n+NC))mod2c(n)=(x 1 (n+ NC )+x 2 (n+ NC ))mod2
x1(n+31)=(x1(n+3)+x1(n))mod2x 1 (n+31)=(x 1 (n+3)+x 1 (n))mod2
x2(n+31)=(x2(n+3)+x2(n+2)+x2(n+1)+x2(n))mod2x 2 (n+31)=(x 2 (n+3)+x 2 (n+2)+x 2 (n+1)+x 2 (n))mod2
其中,Nc为常量;x1(n)表征的是第一序列X1,由x1(0)=1,x1(n)=0,n=1,2,...,30来计算得到;x2(n)表征的是第二序列X2,由来计算得到。Among them, N c is a constant; x 1 (n) represents the first sequence X1, which is calculated by x 1 (0)=1, x 1 (n)=0, n=1,2,...,30 Obtained; x 2 (n) characterizes the second sequence X2, which is represented by to be calculated.
而在5G通信系统中,cinit(第二序列X2序列初始化)的方法,如下所示:In the 5G communication system, the method of c init (the second sequence X2 sequence initialization) is as follows:
其中,上述公式中:表示一个时隙包含的OFDM符号个数,在某一子载波间隔下是固定值;表示PDCCH所在的时隙编号;l表示PDCCH所在的OFDM符号编号;NID即pdcch-DMRS-ScramblingID。Among them, in the above formula: Indicates the number of OFDM symbols contained in a time slot, which is a fixed value under a certain subcarrier interval; Indicates the slot number where the PDCCH is located; 1 represents the OFDM symbol number where the PDCCH is located; N ID is pdcch-DMRS-ScramblingID.
因而在计算出cinit后,转化为31比特的序列,即可以得到对应第二序列X2的初始化序列,基于得到的第二序列X2的初始化序列,可以计算得到参数pdcch-DMRS-ScramblingID。Therefore, after calculating c init , it is converted into a 31-bit sequence, that is, an initialization sequence corresponding to the second sequence X2 can be obtained. Based on the obtained initialization sequence of the second sequence X2, the parameter pdcch-DMRS-ScramblingID can be calculated.
另外,在一实施例中,如图9所示,上述步骤S440还可以包括但不限于步骤S441。In addition, in an embodiment, as shown in FIG. 9 , the above-mentioned step S440 may further include, but is not limited to, step S441.
步骤S441,获取当前小区的小区ID,在初始估计参数小于预设阈值并且大于小区ID的情况下,将相应的初始估计参数确定为参数pdcch-DMRS-ScramblingID。Step S441: Obtain the cell ID of the current cell, and determine the corresponding initial estimation parameter as the parameter pdcch-DMRS-ScramblingID when the initial estimation parameter is smaller than the preset threshold and larger than the cell ID.
需要说明的是,可以基于上述步骤S110计算得到当前小区的小区ID,在初始估计参数小于预设阈值并且大于小区ID的情况下,将相应的初始估计参数确定为参数pdcch-DMRS-ScramblingID。预设阈值与参数pdcch-DMRS-ScramblingID的取值范围相关联。It should be noted that the cell ID of the current cell can be calculated based on the above step S110, and when the initial estimated parameter is less than the preset threshold and greater than the cell ID, the corresponding initial estimated parameter is determined as the parameter pdcch-DMRS-ScramblingID. The preset threshold is associated with the value range of the parameter pdcch-DMRS-ScramblingID.
为了更加清楚地说明本发明实施例提供的PDCCH估计参数获取方法的流程,下面以具体的示例进行说明。In order to more clearly describe the process of the method for obtaining the PDCCH estimation parameter provided by the embodiment of the present invention, a specific example is used for description below.
如图10所示,小区搜索时,使用主同步信号PSS和辅同步信号SSS完成下行定时同步,由于PSS和SSS信号在帧数据中的位置相对固定,根据PSS和SSS所在符号就可以找到帧数据的起始位置和当前小区ID。持续获取5G空口信号,基于所述5G空口信号确定物理下行控制信道PDCCH数据,对一个时隙的PDCCH数据进行时频转化,得到频域数据,接着根据帧同步位置,还有PDCCH所在的时隙,符号,获得PDCCH数据,然后将时域数据转换为频域数据,也即PDCCH数据时频转换。接着从第一种信道极性值开始,进行均衡处理和解调处理,也即遍历信道极性值进行信道估计处理。该解调处理的过程与DMRS符号解调过程有关,从PDCCH频域数据中抽出全部3*M个DMRS符号,转化成初始比特数据seq1。接着从CCE起始位置0开始,也即遍历所有的CCE起始位置,根据CCE位置取出数据,从初始比特数据seq1中取出K比特的第一连续比特数据seq2,K的取值与聚合等级有关;接着在第一连续比特数据seq2内,遍历K-L+1次,滑动取出若干个长度为L的第二连续比特数据,得到的第二连续比特数据和相关的第一序列X1异或得到可能的第二序列X2序列,再根据第二序列X2序列的生成矩阵对应的逆矩阵,求出可能的第二序列X2初始化序列,之后根据时隙号、PDCCH所在的OFDM符号编号,计算得到NID值,从而得到参数pdcch-DMRS-ScramblingID,如果这个值小于65535,且大于小区ID,则验证通过,保存此值。否则舍弃,直到完成K-L+1次遍历。在判断CCE位置是否遍历完为否时,继续遍历下一个CCE的起始位置,直到遍历完所有的CCE数据。在判断信道极性值是否遍历完为否时,继续遍历下一个信道极性值,基于新的信道极性值进行DMRS符号解调处理及后续计算参数pdcch-DMRS-ScramblingID的相关步骤,直至遍历完所有的信道极性值。最后输出所有计算得到的NID,也即输出所有计算得到的参数pdcch-DMRS-ScramblingID。As shown in Figure 10, during cell search, the primary synchronization signal PSS and the secondary synchronization signal SSS are used to complete downlink timing synchronization. Since the positions of the PSS and SSS signals in the frame data are relatively fixed, the frame data can be found according to the symbols of the PSS and SSS. the starting position and current cell ID. Continuously acquire the 5G air interface signal, determine the PDCCH data of the physical downlink control channel based on the 5G air interface signal, perform time-frequency conversion on the PDCCH data of a time slot to obtain frequency domain data, and then according to the frame synchronization position, and the time slot where the PDCCH is located , symbol, obtain PDCCH data, and then convert the time domain data into frequency domain data, that is, time-frequency conversion of PDCCH data. Then, starting from the first channel polarity value, equalization processing and demodulation processing are performed, that is, channel estimation processing is performed by traversing the channel polarity value. The demodulation process is related to the DMRS symbol demodulation process. All 3*M DMRS symbols are extracted from the PDCCH frequency domain data and converted into initial bit data seq1. Then start from the CCE starting position 0, that is, traverse all the CCE starting positions, take out the data according to the CCE position, and take out the first continuous bit data seq2 of K bits from the initial bit data seq1, and the value of K is related to the aggregation level. Then in the first continuous bit data seq2, traverse K-L+1 times, slide out several second continuous bit data of length L, the obtained second continuous bit data and the relevant first sequence X1 XOR obtain The possible second sequence X2 sequence, and then according to the inverse matrix corresponding to the generation matrix of the second sequence X2 sequence, the possible second sequence X2 initialization sequence is obtained, and then the NID is calculated according to the time slot number and the OFDM symbol number where the PDCCH is located. value to obtain the parameter pdcch-DMRS-ScramblingID, if the value is less than 65535 and greater than the cell ID, the verification is passed and the value is saved. Otherwise, discard it until K-L+1 traversals are completed. When judging whether the CCE position has been traversed or not, it continues to traverse the starting position of the next CCE until all CCE data are traversed. When judging whether the channel polarity value has been traversed or not, continue to traverse the next channel polarity value, perform DMRS symbol demodulation processing based on the new channel polarity value and the related steps of subsequent calculation of the parameter pdcch-DMRS-ScramblingID, until the traversal Complete all channel polarity values. Finally, output all calculated NIDs, that is, output all calculated parameters pdcch-DMRS-ScramblingID.
如图11所示,本公开另一个实施例提供一种PDCCH估计参数获取装置1000,装置包括:As shown in FIG. 11 , another embodiment of the present disclosure provides an
第一单元1100,用于获取5G空口信号,基于5G空口信号确定物理下行控制信道PDCCH数据,其中,PDCCH数据包括控制信道单元CCE数据;A
第二单元1200,用于确定PDCCH数据的信道极性值,根据信道极性值,对PDCCH数据进行解调处理得到初始比特数据;其中,信道极性值与信道估计值有关;The
第三单元1300,用于根据CCE数据的起始位置,对初始比特数据进行滑动提取处理得到若干个初始序列;其中,初始序列与伪随机序列相关联;The
第四单元1400,用于对若干个初始序列进行解扰和求逆处理,得到若干个参数pdcch-DMRS-ScramblingID。The
需要说明的是,5G空口信号是由基站向UE发送的信号,其中,5G空口信号中可以包括主同步信号、辅同步信号和PDCCH数据等;主同步信号和辅同步信号主要用于跟踪同步,由于主同步信号和辅同步信号在帧数据中的位置相对固定,根据主同步信号和辅同步信号所在符号就可以找到PDCCH数据的起始位置。本公开实施例中信道极性值与信道估计值有关,信道极性值可以根据PDCCH符号QPSK调制方式预测获得,也可以通过信道估计过程获得,存在一种或多种不同的取值情况。CCE数据是PDCCH传输的基本单位,一个PDCCH可以包含一个或多个CCE数据,由PDCCH的聚合等级决定。参数pdcch-DMRS-ScramblingID主要用于生成PDCCH对应的DMRS,通常情况下,需要根据pdcch-DMRS-ScramblingID和RNTI在PDCCH候选集中进行盲检,从而得到DCI下行控制信息。因而本实施例中,首先利用第一单元1100获取5G空口信号,然后基于获取得到的5G空口信号确定PDCCH数据;接着利用第二单元1200确定PDCCH数据的信道极性值,根据信道极性值,对PDCCH数据进行解调处理得到初始比特数据;接着利用第三单元1300根据CCE数据的起始位置,对初始比特数据进行滑动提取处理得到若干个初始序列;最后利用第四单元1400对若干个初始序列进行解扰和求逆处理得到若干个参数pdcch-DMRS-ScramblingID。通过本实施例得到的参数pdcch-DMRS-ScramblingID,可被PDCCH盲检测过程利用,减少计算量,提升PDCCH盲检的效率。It should be noted that the 5G air interface signal is a signal sent by the base station to the UE, and the 5G air interface signal may include primary synchronization signal, secondary synchronization signal and PDCCH data, etc.; the primary synchronization signal and the secondary synchronization signal are mainly used for tracking synchronization, Since the positions of the primary synchronization signal and the secondary synchronization signal in the frame data are relatively fixed, the starting position of the PDCCH data can be found according to the symbols where the primary synchronization signal and the secondary synchronization signal are located. In the embodiment of the present disclosure, the channel polarity value is related to the channel estimation value. The channel polarity value can be predicted and obtained according to the QPSK modulation mode of the PDCCH symbol, or obtained through the channel estimation process, and there are one or more different values. CCE data is the basic unit of PDCCH transmission, and one PDCCH may contain one or more CCE data, which is determined by the aggregation level of the PDCCH. The parameter pdcch-DMRS-ScramblingID is mainly used to generate the DMRS corresponding to the PDCCH. Usually, blind detection needs to be performed in the PDCCH candidate set according to the pdcch-DMRS-ScramblingID and the RNTI to obtain the DCI downlink control information. Therefore, in this embodiment, the
可选地,CCE数据为多个,第一遍历条件为对PDCCH数据中所有的CCE数据进行遍历;第四单元1400对若干个初始序列进行解扰和求逆处理,得到若干个参数pdcch-DMRS-ScramblingID之后,第三单元1300还包括用于:在未满足第一遍历条件的情况下,选定新的CCE数据;根据新的CCE数据的起始位置,重新对初始比特数据进行滑动提取处理得到若干个新的初始序列;第四单元1400对若干个新的初始序列进行解扰和求逆处理,得到若干个新的参数pdcch-DMRS-ScramblingID。Optionally, there are multiple CCE data, and the first traversal condition is to traverse all the CCE data in the PDCCH data; the
可选地,信道极性值为多个,第二遍历条件为对所有的信道极性值进行遍历;第四单元1400对若干个初始序列进行解扰和求逆处理,得到若干个参数pdcch-DMRS-ScramblingID之后,第二单元1200还包括用于:在未满足第二遍历条件的情况下,选定新的信道极性值;重新根据新的信道极性值,对PDCCH数据进行解调处理得到新的初始比特数据;第三单元1300根据CCE数据的起始位置,对新的初始比特数据进行滑动提取处理得到若干个初始序列。Optionally, there are multiple channel polarity values, and the second traversal condition is to traverse all the channel polarity values; the
可选地,第三遍历条件为PDCCH数据中所有的CCE数据被完全遍历并且所有的信道极性被完全遍历,第四单元1400对若干个初始序列进行解扰和求逆处理,得到若干个参数pdcch-DMRS-ScramblingID之后,第四单元1400还包括用于:在满足第三遍历条件的情况下,输出所有参数pdcch-DMRS-ScramblingID。Optionally, the third traversal condition is that all CCE data in the PDCCH data are completely traversed and all channel polarities are completely traversed, and the
可选地,第二单元1200在对PDCCH数据进行解调处理得到初始比特数据的步骤中,包括:对PDCCH数据进行时频变换得到PDCCH频域数据;对PDCCH频域数据进行信道均衡处理得到解调参考信号DMRS符号;对DMRS符号进行解调处理得到初始比特数据。Optionally, in the step of demodulating the PDCCH data to obtain initial bit data, the
可选地,第三单元1300在根据CCE数据的起始位置,对初始比特数据进行滑动提取处理得到若干个初始序列的步骤中,包括:根据CCE数据的起始位置,从初始比特数据中抽取第一预设长度的第一连续比特数据;对第一连续比特数据进行滑动提取处理得到若干个第二预设长度的第二连续比特数据;将若干个第二连续比特数据确定为若干个初始序列;其中,第一预设长度和第二预设长度由CCE数据的个数决定。Optionally, the
可选地,第四单元1400在对若干个初始序列进行解扰和求逆处理得到若干个参数pdcch-DMRS-ScramblingID的步骤中,包括:将若干个初始序列与预设的第一序列进行异或运算得到若干个第二序列;对若干个第二序列进行求逆处理得到若干个第三序列;其中,第一序列与伪随机序列相关联;获取若干个第三序列对应的初始估计参数;对初始估计参数进行判断验证处理得到若干个参数pdcch-DMRS-ScramblingID。具体地,在对初始估计参数进行判断验证处理得到若干个参数pdcch-DMRS-ScramblingID的步骤中,包括:获取当前小区的小区ID,在初始估计参数小于预设阈值并且大于小区ID的情况下,将相应的初始估计参数确定为参数pdcch-DMRS-ScramblingID,预设阈值与参数pdcch-DMRS-ScramblingID的取值范围相关联。Optionally, in the step of performing descrambling and inversion processing on several initial sequences to obtain several parameters pdcch-DMRS-ScramblingID, the
需要说明的是,由于本实施例中的PDCCH估计参数获取装置1000与上述实施例中的PDCCH估计参数获取方法基于相同的发明构思,因此,方法实施例中的相应内容和有益效果同样适用于本系统实施例,在此不再赘述。It should be noted that, since the
此外,如图12所示,本公开的一个实施例还提供了一种网络设备700,包括:存储器720、处理器710及存储在存储器720上并可在处理器710上运行的计算机程序,处理器710执行计算机程序时实现上述实施例中的PDCCH估计参数获取方法,例如,执行以上描述的图1中的方法步骤S100至步骤S400、图2中的方法步骤S310至步骤S330、图3中的方法步骤S410至步骤S430、图4中的方法步骤S440、图5中的方法步骤S110至步骤S120、图6中的方法步骤S210至步骤S230、图7中的方法步骤S340至步骤S360、图8中的方法步骤S450至步骤S480、图9中的方法步骤S441。In addition, as shown in FIG. 12, an embodiment of the present disclosure further provides a
此外,本公开的一个实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个处理器或控制器执行,例如,被上述设备实施例中的一个处理器执行,可使得上述处理器执行上述实施例中的PDCCH估计参数获取方法,例如,执行以上描述的图1中的方法步骤S100至步骤S400、图2中的方法步骤S310至步骤S330、图3中的方法步骤S410至步骤S430、图4中的方法步骤S440、图5中的方法步骤S110至步骤S120、图6中的方法步骤S210至步骤S230、图7中的方法步骤S340至步骤S360、图8中的方法步骤S450至步骤S480、图9中的方法步骤S441。In addition, an embodiment of the present disclosure also provides a computer-readable storage medium storing computer-executable instructions, the computer-executable instructions being executed by a processor or controller, for example, by the above-mentioned Executed by a processor in the device embodiment, the above-mentioned processor can execute the method for obtaining PDCCH estimation parameters in the above-mentioned embodiment, for example, execute the method steps S100 to S400 in FIG. 1 and the method steps in FIG. 2 described above. S310 to S330, method steps S410 to S430 in FIG. 3, method step S440 in FIG. 4, method steps S110 to S120 in FIG. 5, method steps S210 to S230 in FIG. Method steps S340 to S360 , method steps S450 to S480 in FIG. 8 , method step S441 in FIG. 9 .
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、元素结构、程序模块或其他元素)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、元素结构、程序模块或者诸如载波或其他传输机制之类的调制元素信号中的其他元素,并且可包括任何信息递送介质。Those of ordinary skill in the art can understand that all or some of the steps and systems in the methods disclosed above can be implemented as software, firmware, hardware, and appropriate combinations thereof. Some or all physical components may be implemented as software executed by a processor, such as a central processing unit, digital signal processor or microprocessor, or as hardware, or as an integrated circuit, such as an application specific integrated circuit . Such software may be distributed on computer-readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media). As known to those of ordinary skill in the art, the term computer storage media includes both volatile and nonvolatile implemented in any method or technology for storage of information, such as computer readable instructions, element structures, program modules or other elements flexible, removable and non-removable media. Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, magnetic disk storage or other magnetic storage devices, or may Any other medium used to store desired information and which can be accessed by a computer. Furthermore, communication media typically embodies computer readable instructions, element structures, program modules, or other elements in a modulated element signal such as a carrier wave or other transport mechanism, and can include any information delivery medium, as is well known to those of ordinary skill in the art .
以上是对本公开的较佳实施进行了具体说明,但本公开并不局限于上述实施方式,熟悉本领域的技术人员在不违背本公开精神的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本公开权利要求所限定的范围内。The above is a specific description of the preferred implementation of the present disclosure, but the present disclosure is not limited to the above-mentioned embodiments, and those skilled in the art can make various equivalent deformations or replacements without departing from the spirit of the present disclosure. Equivalent modifications or substitutions are included within the scope defined by the claims of the present disclosure.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210037605.2A CN114422083B (en) | 2022-01-13 | 2022-01-13 | PDCCH estimation parameter acquisition method, device, network equipment and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210037605.2A CN114422083B (en) | 2022-01-13 | 2022-01-13 | PDCCH estimation parameter acquisition method, device, network equipment and storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114422083A true CN114422083A (en) | 2022-04-29 |
CN114422083B CN114422083B (en) | 2024-12-03 |
Family
ID=81273787
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210037605.2A Active CN114422083B (en) | 2022-01-13 | 2022-01-13 | PDCCH estimation parameter acquisition method, device, network equipment and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114422083B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115051774A (en) * | 2022-05-09 | 2022-09-13 | 山东闻远通信技术有限公司 | PDCCH channel blind solution NID method and device in NR system |
CN118804051A (en) * | 2024-09-11 | 2024-10-18 | 广东杰创智能科技有限公司 | Physical downlink control channel NID initial screening method, device and storage medium |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100266053A1 (en) * | 2007-11-30 | 2010-10-21 | Panasonic Corporation | Wireless communication method, radio transmitter apparatus and radio receiver apparatus |
US20190273592A1 (en) * | 2018-03-05 | 2019-09-05 | Qualcomm Incorporated | V2x control and data channel indication during lbt |
CN110855587A (en) * | 2019-11-19 | 2020-02-28 | 重庆邮电大学 | A blind detection method of downlink control channel in 5G system |
CN111817821A (en) * | 2020-09-04 | 2020-10-23 | 翱捷科技股份有限公司 | Method and device for DCI blind detection of NR system |
CN111901876A (en) * | 2020-04-30 | 2020-11-06 | 中兴通讯股份有限公司 | Transmission method, device, communication node and storage medium |
-
2022
- 2022-01-13 CN CN202210037605.2A patent/CN114422083B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100266053A1 (en) * | 2007-11-30 | 2010-10-21 | Panasonic Corporation | Wireless communication method, radio transmitter apparatus and radio receiver apparatus |
US20190273592A1 (en) * | 2018-03-05 | 2019-09-05 | Qualcomm Incorporated | V2x control and data channel indication during lbt |
CN110855587A (en) * | 2019-11-19 | 2020-02-28 | 重庆邮电大学 | A blind detection method of downlink control channel in 5G system |
CN111901876A (en) * | 2020-04-30 | 2020-11-06 | 中兴通讯股份有限公司 | Transmission method, device, communication node and storage medium |
CN111817821A (en) * | 2020-09-04 | 2020-10-23 | 翱捷科技股份有限公司 | Method and device for DCI blind detection of NR system |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115051774A (en) * | 2022-05-09 | 2022-09-13 | 山东闻远通信技术有限公司 | PDCCH channel blind solution NID method and device in NR system |
CN118804051A (en) * | 2024-09-11 | 2024-10-18 | 广东杰创智能科技有限公司 | Physical downlink control channel NID initial screening method, device and storage medium |
CN118804051B (en) * | 2024-09-11 | 2024-12-17 | 广东杰创智能科技有限公司 | Method, equipment and storage medium for preliminary screening of physical downlink control channel (NID) |
Also Published As
Publication number | Publication date |
---|---|
CN114422083B (en) | 2024-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109495234B (en) | Method and device for detecting physical downlink control channel | |
WO2016127819A1 (en) | Blind detection method and system for physical downlink control channel (pdcch) | |
CN105490779B (en) | Physical Downlink Control Channel blind checking method | |
US10165559B2 (en) | Method for detection of ePDCCH using DMRS quality measure | |
US9203582B2 (en) | Methods and nodes in a wireless communication system | |
CN114598439B (en) | PDCCH blind detection method, terminal and storage medium for 5G communication system | |
CN104170496A (en) | Terminal device, base station device, and integrated circuit | |
CN108476511B (en) | Random access method, device, base station and UE | |
CN110855587A (en) | A blind detection method of downlink control channel in 5G system | |
US10448349B2 (en) | Cell ID determination method and device in wireless communication system | |
CN105680996A (en) | PDCCH blind detection method in LTE system | |
CN114422083B (en) | PDCCH estimation parameter acquisition method, device, network equipment and storage medium | |
CN109495221B (en) | Search space determination method and device | |
US10700831B2 (en) | Wireless communication systems and methods of operating the same | |
US9991982B2 (en) | Interference cancellation in a cellular communication network | |
WO2018024088A1 (en) | Information indication method, device and system | |
EP3562070A1 (en) | Data receiving and transmitting method and receiving and transmitting device | |
CN108418657B (en) | Method for judging DCI format and transmission mode in LTE system | |
CN119544413A (en) | Downlink control information detection method, device, electronic device, storage medium and computer program product | |
CN104380614A (en) | Method and apparatus for transmitting/receiving signal in wireless communication system | |
CN114553366A (en) | PDCCH blind detection method, equipment and storage medium | |
CN114553367A (en) | Method, device and equipment for PDCCH blind detection and storage medium | |
CN115988553A (en) | A signal monitoring method, device and monitoring equipment | |
CN120017452A (en) | Blind detection method, device, equipment and storage medium for physical downlink control channel | |
CN113067673B (en) | PDCCH detection method, device and terminal equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |