CN114418975A - 一种基于半径增量约束的大面积动物毛皮轮廓图像的切割方法 - Google Patents

一种基于半径增量约束的大面积动物毛皮轮廓图像的切割方法 Download PDF

Info

Publication number
CN114418975A
CN114418975A CN202210017401.2A CN202210017401A CN114418975A CN 114418975 A CN114418975 A CN 114418975A CN 202210017401 A CN202210017401 A CN 202210017401A CN 114418975 A CN114418975 A CN 114418975A
Authority
CN
China
Prior art keywords
contour
point
radius
points
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202210017401.2A
Other languages
English (en)
Inventor
胡连华
倪隽
侯苗
洪杰
魏玄颖
郑传辉
刘涛
廉柯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN202210017401.2A priority Critical patent/CN114418975A/zh
Publication of CN114418975A publication Critical patent/CN114418975A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • CCHEMISTRY; METALLURGY
    • C14SKINS; HIDES; PELTS; LEATHER
    • C14BMECHANICAL TREATMENT OR PROCESSING OF SKINS, HIDES OR LEATHER IN GENERAL; PELT-SHEARING MACHINES; INTESTINE-SPLITTING MACHINES
    • C14B5/00Clicking, perforating, or cutting leather
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/136Segmentation; Edge detection involving thresholding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/194Segmentation; Edge detection involving foreground-background segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/66Analysis of geometric attributes of image moments or centre of gravity
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30124Fabrics; Textile; Paper

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Quality & Reliability (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

一种基于半径增量约束的大面积动物毛皮轮廓图像的切割方法,将动物毛皮水平放置在橡胶板上进行预处理,获取图像的轮廓图像;建立相应的坐标系,得到质心坐标,将质心坐标设为新的坐标系原点,建立新的坐标系;以坐标原点为中心,沿着X轴正方向顺时针作射线,将该轮廓分为角度相同的n等份,将射线与边缘轮廓点的交点用点进行标记记为初始点,将初始点与质心的欧式距离定义为轮廓半径长度,定义当前初始点与上一个初始点的轮廓半径长度的比值为当前初始点的轮廓半径增长率,依次对轮廓初始点进行检测,将不符合的点剔除;满足的点进行保留,并连接这些点形成最终的切割路线。本发明能够将不同形状大小的动物毛皮图像切割开,并给出相应的切割线。

Description

一种基于半径增量约束的大面积动物毛皮轮廓图像的切割 方法
技术领域
本发明涉及对大面积动物毛皮轮廓图像的切割技术领域,特别涉及一种基于半径增量约束的大面积动物毛皮轮廓图像的切割方法。
背景技术
毛皮的切割是毛皮制革行业中的初加工工序,但由于大型原料皮味道重,工作环境较差,每次切割需要4~8刀不等,工人切割时需要不停的弯腰,长时间工作容易体力不支,因此工作强度大,缺乏新的年轻劳动力,导致企业招工困难。而现有技术自动化水平低,因此急需一种能够识别大面积动物毛皮的切割部位特征并给出切割路径的方法。
发明内容
为了克服上述现有技术的不足,本发明的目的在于提供一种基于半径增量约束的大面积动物毛皮轮廓图像的切割方法,能够将不同形状大小的动物毛皮图像切割开,并给出相应的切割线,搭配相应的水刀切割等方式能够进行自动化切割,从而满足后续毛皮自动化切割工业生产要求。
为了实现上述目的,本发明采用的技术方案是:
一种基于半径增量约束的大面积动物毛皮轮廓图像的切割方法,包括以下步骤;
步骤(1):将一张大型动物毛皮水平放置在橡胶板上,通过正上方的工业相机采集毛皮表面图像进行预处理,获取图像的轮廓图像;
步骤(2):将得到的轮廓图像建立相应的坐标系,得到此时整体轮廓的质心坐标,将质心坐标设为新的坐标系原点,建立新的坐标系;
步骤(3):以坐标原点为中心,沿着X轴正方向顺时针作射线,将该轮廓分为角度相同的n等份,将每一条射线与边缘轮廓点的交点用点进行标记,记为初始点,共有n个初始点;
步骤(4):将每一个初始点与质心的欧式距离定义为轮廓半径长度,定义当前初始点与上一个初始点的轮廓半径长度的比值为当前初始点的轮廓半径增长率,依次对轮廓初始点进行检测,设置半径增长率的阈值约束,将不符合阈值约束的点,将这些点进行剔除;
步骤(5):经过阈值约束调整后的轮廓点为满足阈值约束条件的点,将这些点进行保留,并连接这些点形成最终的切割路线。
所述步骤(1)预处理的步骤包括图像去噪、二值化、形态学修补和图像轮廓提取,具体步骤如下:
1)图像去噪处理:使用双边滤波对采集得到的图像进行去噪处理,去除图像采集过程中产生的各类图像噪声;
2)图像二值化处理:使用基于OTSU(最大类间方差法)的阈值分割方法,将图像处理成前景毛皮为白色、背景橡胶板为黑色的二值化图像;
3)图像形态学缺陷修补:使用图像闭操作处理二值化后的图像:即先对二值化图像腐蚀操作,进一步消除细小噪声点;再膨胀操作,填补前景毛皮中识别为背景的黑色空洞区域;
4)图像轮廓提取:使用图像轮廓跟踪技术,基于相邻像素的黑白关系,确定毛皮轮廓的外边界、孔边界及对应的层次关系。保留外边界,舍弃内部孔边界,即得到最终的毛皮轮廓图像。
所述步骤2)具体为:
根据轮廓图像的大小,在图像的左上角顶点建立二维平面直角坐标系,由公式(1)求得质心C坐标(xc,yc),以质心坐标为原点坐标,建立新的坐标系,图中质心坐标为C(393,461);
Figure BDA0003460362380000031
式中,X为轮廓质心的横坐标,Y为轮廓质心的纵坐标,Xi为轮廓点i的横坐标,Yi为轮廓点i的纵坐标,N为轮廓点的总个数,新的坐标系以轮廓质心为坐标原点,此时能直观的反应边缘上的轮廓点距离轮廓质心的距离变化情况。
所述步骤2)建立新的坐标系具体为:
以坐标原点为起点,沿着X轴正方向顺时针作一条射线l与接触到的第一个轮廓线相交于一点,该点与轮廓质心点的欧式距离定义为轮廓半径长度,记为r,该射线与X轴正方向的夹角记为θ,沿着顺时针方向作第二条射线与接触到的第一个轮廓线相交于一点,这两条射线的夹角记为Δθ,初始角度θ0与角度增量Δθ可以根据实验效果进行修改,令循环次数i=0,设置空的一维列表P与R。
所述步骤3)具体为:
以质心为起点作射线l,由公式(3)约束l与X轴的夹角,检测射线l与毛皮边缘的第一个交点pi,并由公式(2)计算交点pi与质心C的欧式距离ri
Figure BDA0003460362380000041
式中,ri为轮廓点i的轮廓半径长度,根据公式(4)约束每一条射线与X轴的夹角θ,即:
θ=θ0+i·Δθ (3)
式中,θ为当前射线与X轴正方向的夹角,θ0为初始角度,Δθ为相邻两条射线的角度增量,顺时针遍历整个空间0°~360°,本文选取θ0=0°,即第一条射线方向为X轴正方向,设置角度增量Δθ=5°,发射射线与接触到的第一个轮廓线相交于一点,将这些点标记,此时,射线将该轮廓分为72等份,每一等份的角度为5°,此时所有标记点为初始点,记所有初始点坐标为pi,i为当前初始点编号,i=1,2,3......72。
所述步骤(4)中半径增长率的阈值最大为110%,最小为90%,即轮廓点的半径增长率大于110%或者小于90%时,则被判定为不符合阈值约束的点;
当增长率过快,即增长率超过110%的初始点,在当前角度上重新确定一个新的轮廓点进行替换,通过变化矩阵将新轮廓点的半径增长率变化为110%,从而确定新轮廓点的位置,原不符合要求的初始点被剔除,当增长率过慢,即增长率低于90%的初始点,对当前轮廓点的前一个角度上的轮廓点进行重新替换,通过变化矩阵将当前初始点的半径增长率变化为90%,从而把上一个初始点进行剔除,确定了新轮廓点的位置,再次对上一个轮廓点进行检测其增长率是否满足最大增长率阈值和最小增长率阈值的要求,满足要求则顺时针进行下一个轮廓点的判定,不满足要求则重复上述操作,直至所有点满足阈值约束为止。
所述阈值约束规则具体为:
需要切割部位的轮廓半径长度随着角度的变化而急剧变化,根据轮廓半径长度,定义当前初始点与上一个初始点的轮廓半径长度的比值为当前初始点的轮廓半径增长率。最大轮廓半径增长率阈值ηmax与最小轮廓半径增长率阈值ηmin可根据毛皮种类和特征自定义修改,本文选取ηmax=110%,ηmin=90%;
式中,η为当前点的轮廓半径增长率,ri为当前初始点的轮廓半径长度,ri-1为上一个初始点的轮廓半径长度,因为需要切割部位的轮廓半径增长率变化相对比较剧烈,因此根据此类特征可以设置相应的阈值进行筛选,让阈值范围内的初始点保留下来,将阈值范围外的初始点进行剔除,以便进行后续的图像处理;
若此时列表P的长度len(P)为0,则进行步骤8);否则,由公式(4)计算轮廓半径增长率,进行步骤6)。
Figure BDA0003460362380000061
所述最大阈值约束;若η≥ηmax,则调整交点pi的坐标为pi',pi'由公式(5)计算,重新计算交点pi与质心C的欧式距离,记为r',并将之放入列表R中,将交点pi放入列表P中,由公式(6)得出pi'的轮廓半径增长率,执行步骤8);若η<ηmax,则执行步骤7);
Figure BDA0003460362380000062
式中pi'为新的标记点(该点替换掉了当前不符合阈值要求的初始点)的坐标,
Figure BDA0003460362380000063
为顺时针旋转θ角度的变换矩阵,C为质心坐标,r'为待求选择点的轮廓半径,ri-1为前一个新标记点(或满足要求保留的初始点)的轮廓半径,ηmax为设置的最大阈值。由此公式能将当前的初始点替换成一个新的标记点,并令其满足阈值条件;
Figure BDA0003460362380000064
最小阈值约束;若η≤ηmin,则令j=1,由公式(7)重新计算交点pi-j的坐标,重新计算交点pi-j与质心C的欧式距离,记为ri-j,当j=1时,将计算结果放入列表R和P中,当j>1时,将列表R和P中原来的结果替换;令j=j+1,由公式(8)计算pi-j的轮廓半径增长率,若η≤ηmin,则重复步骤7)去判断pi-j的前一个初始点,否则,执行步骤8);
Figure BDA0003460362380000071
式中,pi-j为当前初始点的前j个初始点的坐标,j是初始值为1的循环递增变量,ri-j-1为初始点i前j+1个初始点的半径长度;
Figure BDA0003460362380000072
由以上公式能将当前初始点的前一个初始点替换成一个新的标记点,并令其满足阈值条件。
所述步骤(5)具体为:
空间遍历判定条件;判定是否θ≤θmax,若是,则令i=i+1,并执行步骤(3);否则执行步骤(5);
目标切割线连接;通过轮廓半径增量阈值约束规则,对超越阈值的交点进行处理使之满足阈值条件,满足阈值条件的最终所有交点即为最终的切割点,将所有满足要求的初始点和标记点记为最终点,并按照顺时针连线得出切割路径,此切割路径为最终的目标切割线,依次连接列表P中的坐标点,画出切割线。
本发明的有益效果:
本发明方法能够去寻找并识别大面积动物毛皮的废弃区域特征,从而规划出切割路径将废弃部分切除,对于不同大小形状的毛皮都能自适应的分配合理阈值来提取切割区域,同时对毛皮轮廓具有较好的区分度,可以准确的定位目标区域,将所有需要切割的位置都能成功的提取出来,具有较强的容错率。通过该技术能有效将毛皮的头和蹄,尾部等废料部位进行切除,为自动化切割毛皮提供了新方案,能够解决传统工业中人力切割毛皮存在的人力不足、招工困难等问题。
附图说明
图1为本发明方法流程示意图。
图2为本发明简要技术流程图。
图3为本发明算法步骤流程图。
图4预处理流程图。
图5坐标系建立及转换流程图。
图6空间划分结果图。
图7初始点标记结果图。
图8阈值约束调整后的轮廓点平面图。
图9基于最终点的轮廓切割线示意图。
图10不同形状大小的轮廓图像的最终提取结果。
具体实施方式
下面结合附图对本发明作进一步详细说明。
如图1-图3所示,发明的具体步骤如下:
步骤1:图像预处理;
将一张大型动物毛皮水平放置在橡胶板上,通过正上方的工业相机采集毛皮表面图像进行预处理,得到毛皮图像的二值化轮廓图像。其预处理流程图如图4所示,具体步骤如下:
1)图像去噪处理:使用双边滤波对采集得到的图像进行去噪处理,去除图像采集过程中产生的各类图像噪声;
2)图像二值化处理:使用基于OTSU(最大类间方差法)的阈值分割方法,将图像处理成前景毛皮为白色、背景橡胶板为黑色的二值化图像;
3)图像形态学缺陷修补:使用图像闭操作处理二值化后的图像:即先对二值化图像腐蚀操作,进一步消除细小噪声点;再膨胀操作,填补前景毛皮中识别为背景的黑色空洞区域;
4)图像轮廓提取:使用图像轮廓跟踪技术,基于相邻像素的黑白关系,确定毛皮轮廓的外边界、孔边界及对应的层次关系。保留外边界,舍弃内部孔边界,即得到最终的毛皮轮廓图像。
步骤2坐标系建立及转换:
完成上述预处理步骤完成后,根据轮廓图像的大小,在图像的左上角顶点建立二维平面直角坐标系,由公式(1)求得质心C坐标(xc,yc),以质心坐标为原点坐标,建立新的坐标系,坐标系建立及转换流程图如图5所示,图中质心坐标为C(393,461);
Figure BDA0003460362380000091
式中,X为轮廓质心的横坐标,Y为轮廓质心的纵坐标,Xi为轮廓点i的横坐标,Yi为轮廓点i的纵坐标,N为轮廓点的总个数,新的坐标系以轮廓质心为坐标原点,此时能直观的反应边缘上的轮廓点距离轮廓质心的距离变化情况。
步骤3:参数初始化;以坐标原点为起点,沿着X轴正方向顺时针作一条射线l与接触到的第一个轮廓线相交于一点,该点与轮廓质心点的欧式距离定义为轮廓半径长度,记为r,该射线与X轴正方向的夹角记为θ,沿着顺时针方向作第二条射线与接触到的第一个轮廓线相交于一点,这两条射线的夹角记为Δθ,初始角度θ0与角度增量Δθ可以根据实验效果进行修改,令循环次数i=0,设置空的一维列表P与R。
步骤4:轮廓离散化提取;以质心为起点作射线l,由公式(3)约束l与X轴的夹角,检测射线l与毛皮边缘的第一个交点pi,并由公式(2)计算交点pi与质心C的欧式距离ri
Figure BDA0003460362380000101
式中,ri为轮廓点i的轮廓半径长度,根据公式(4)约束每一条射线与X轴的夹角θ,即:
θ=θ0+i·Δθ (3)
式中,θ为当前射线与X轴正方向的夹角,θ0为初始角度,Δθ为相邻两条射线的角度增量,顺时针遍历整个空间0°~360°,本文选取θ0=0°,即第一条射线方向为X轴正方向,设置角度增量Δθ=5°,发射射线与接触到的第一个轮廓线相交于一点,将这些点标记,此时,射线将该轮廓分为72等份,每一等份的角度为5°,此时所有标记点为初始点,空间划分结果如图6所示,所有初始点标记结果如图7所示,记所有初始点坐标为pi,i为当前初始点编号,i=1,2,3......72。
步骤5:阈值约束规则;需要切割部位的轮廓半径长度随着角度的变化而急剧变化,根据轮廓半径长度,定义当前初始点与上一个初始点的轮廓半径长度的比值为当前初始点的轮廓半径增长率。最大轮廓半径增长率阈值ηmax与最小轮廓半径增长率阈值ηmin可根据毛皮种类和特征自定义修改,本文选取ηmax=110%,ηmin=90%;
式中,η为当前点的轮廓半径增长率,ri为当前初始点的轮廓半径长度,ri-1为上一个初始点的轮廓半径长度,因为需要切割部位的轮廓半径增长率变化相对比较剧烈,因此根据此类特征可以设置相应的阈值进行筛选,让阈值范围内的初始点保留下来,将阈值范围外的初始点进行剔除,以便进行后续的图像处理;
若此时列表P的长度len(P)为0,则进行步骤8);否则,由公式(4)计算轮廓半径增长率,进行步骤6)。
Figure BDA0003460362380000111
步骤6:最大阈值约束;若η≥ηmax,则调整交点pi的坐标为pi',pi'由公式(5)计算,重新计算交点pi与质心C的欧式距离,记为r',并将之放入列表R中,将交点pi放入列表P中,由公式(6)得出pi'的轮廓半径增长率,执行步骤8);若η<ηmax,则执行步骤7)。
Figure BDA0003460362380000112
式中pi'为新的标记点(该点替换掉了当前不符合阈值要求的初始点)的坐标,
Figure BDA0003460362380000121
为顺时针旋转θ角度的变换矩阵,C为质心坐标,r'为待求选择点的轮廓半径,ri-1为前一个新标记点(或满足要求保留的初始点)的轮廓半径,ηmax为设置的最大阈值。由此公式能将当前的初始点替换成一个新的标记点,并令其满足阈值条件;
Figure BDA0003460362380000122
步骤7:最小阈值约束;若η≤ηmin,则令j=1,由公式(7)重新计算交点pi-j的坐标,重新计算交点pi-j与质心C的欧式距离,记为ri-j,当j=1时,将计算结果放入列表R和P中,当j>1时,将列表R和P中原来的结果替换;令j=j+1,由公式(8)计算pi-j的轮廓半径增长率,若η≤ηmin,则重复步骤7)去判断pi-j的前一个初始点,否则,执行步骤8);
Figure BDA0003460362380000123
式中,pi-j为当前初始点的前j个初始点的坐标,j是初始值为1的循环递增变量,ri-j-1为初始点i前j+1个初始点的半径长度。
Figure BDA0003460362380000124
由以上公式能将当前初始点的前一个初始点替换成一个新的标记点,并令其满足阈值条件。图8所示为经过阈值约束调整后的轮廓点平面图。
步骤8:空间遍历判定条件;判定是否θ≤θmax,若是,则令i=i+1,并执行步骤4);否则执行步骤9);
步骤9:目标切割线连接;通过轮廓半径增量阈值约束规则,对超越阈值的交点进行处理使之满足阈值条件,满足阈值条件的最终所有交点即为最终的切割点,将所有满足要求的初始点和标记点记为最终点,并按照顺时针连线得出切割路径,此切割路径为最终的目标切割线。依次连接列表P中的坐标点,画出切割线。图9为基于最终点的轮廓切割线示意图。
以上算法的核心是通过以毛皮轮廓质心为起点按照相同的间隔角度作射线,射线与轮廓点的交点的距离即为轮廓半径长度,以相邻交点的半径的比值计算半径增长率,通过设置增长率的最大与最小阈值,对超越阈值的交点进行处理使之满足阈值条件,最终所有保留的交点的连线为切割路径。不同形状大小的轮廓图像的最终提取结果如图10所示,大量的实验结果表明,本发明所提切割方法具备新颖性与有效性,能实现毛皮的图像切割并给出切割路径,从而满足后续毛皮自动化切割工业生产要求。

Claims (9)

1.一种基于半径增量约束的大面积动物毛皮轮廓图像的切割方法,其特征在于,包括以下步骤;
步骤(1):将一张大型动物毛皮水平放置在橡胶板上,通过正上方的工业相机采集毛皮表面图像进行预处理,获取图像的轮廓图像;
步骤(2):将得到的轮廓图像建立相应的坐标系,得到此时整体轮廓的质心坐标,将质心坐标设为新的坐标系原点,建立新的坐标系;
步骤(3):以坐标原点为中心,沿着X轴正方向顺时针作射线,将该轮廓分为角度相同的n等份,将每一条射线与边缘轮廓点的交点用点进行标记,记为初始点,共有n个初始点;
步骤(4):将每一个初始点与质心的欧式距离定义为轮廓半径长度,定义当前初始点与上一个初始点的轮廓半径长度的比值为当前初始点的轮廓半径增长率,依次对轮廓初始点进行检测,设置半径增长率的阈值约束,将不符合阈值约束的点,将这些点进行剔除;
步骤(5):经过阈值约束调整后的轮廓点为满足阈值约束条件的点,将这些点进行保留,并连接这些点形成最终的切割路线。
2.根据权利要求1所述的一种基于半径增量约束的大面积动物毛皮轮廓图像的切割方法,其特征在于,所述步骤(1)预处理的步骤包括图像去噪、二值化、形态学修补和图像轮廓提取,具体步骤如下:
1)图像去噪处理:使用双边滤波对采集得到的图像进行去噪处理,去除图像采集过程中产生的各类图像噪声;
2)图像二值化处理:使用基于OTSU(最大类间方差法)的阈值分割方法,将图像处理成前景毛皮为白色、背景橡胶板为黑色的二值化图像;
3)图像形态学缺陷修补:使用图像闭操作处理二值化后的图像:即先对二值化图像腐蚀操作,进一步消除细小噪声点;再膨胀操作,填补前景毛皮中识别为背景的黑色空洞区域;
4)图像轮廓提取:使用图像轮廓跟踪技术,基于相邻像素的黑白关系,确定毛皮轮廓的外边界、孔边界及对应的层次关系,保留外边界,舍弃内部孔边界,即得到最终的毛皮轮廓图像。
3.根据权利要求1所述的一种基于半径增量约束的大面积动物毛皮轮廓图像的切割方法,其特征在于,所述步骤2)具体为:
根据轮廓图像的大小,在图像的左上角顶点建立二维平面直角坐标系,由公式(1)求得质心C坐标(xc,yc),以质心坐标为原点坐标,建立新的坐标系,图中质心坐标为C(393,461);
Figure FDA0003460362370000021
式中,X为轮廓质心的横坐标,Y为轮廓质心的纵坐标,Xi为轮廓点i的横坐标,Yi为轮廓点i的纵坐标,N为轮廓点的总个数,新的坐标系以轮廓质心为坐标原点,此时能直观的反应边缘上的轮廓点距离轮廓质心的距离变化情况。
4.根据权利要求3所述的一种基于半径增量约束的大面积动物毛皮轮廓图像的切割方法,其特征在于,所述步骤2)建立新的坐标系具体为:
以坐标原点为起点,沿着X轴正方向顺时针作一条射线l与接触到的第一个轮廓线相交于一点,该点与轮廓质心点的欧式距离定义为轮廓半径长度,记为r,该射线与X轴正方向的夹角记为θ,沿着顺时针方向作第二条射线与接触到的第一个轮廓线相交于一点,这两条射线的夹角记为Δθ,初始角度θ0与角度增量Δθ可以根据实验效果进行修改,令循环次数i=0,设置空的一维列表P与R。
5.根据权利要求1所述的一种基于半径增量约束的大面积动物毛皮轮廓图像的切割方法,其特征在于,所述步骤3)具体为:
以质心为起点作射线l,由公式(3)约束l与X轴的夹角,检测射线l与毛皮边缘的第一个交点pi,并由公式(2)计算交点pi与质心C的欧式距离ri
Figure FDA0003460362370000031
式中,ri为轮廓点i的轮廓半径长度,根据公式(4)约束每一条射线与X轴的夹角θ,即:
θ=θ0+i·Δθ (3)
式中,θ为当前射线与X轴正方向的夹角,θ0为初始角度,Δθ为相邻两条射线的角度增量,顺时针遍历整个空间0°~360°,本文选取θ0=0°,即第一条射线方向为X轴正方向,设置角度增量Δθ=5°,发射射线与接触到的第一个轮廓线相交于一点,将这些点标记,此时,射线将该轮廓分为72等份,每一等份的角度为5°,此时所有标记点为初始点,记所有初始点坐标为pi,i为当前初始点编号,i=1,2,3......72。
6.根据权利要求1所述的一种基于半径增量约束的大面积动物毛皮轮廓图像的切割方法,其特征在于,所述步骤(4)中半径增长率的阈值最大为110%,最小为90%,即轮廓点的半径增长率大于110%或者小于90%时,则被判定为不符合阈值约束的点;
当增长率过快,即增长率超过110%的初始点,在当前角度上重新确定一个新的轮廓点进行替换,通过变化矩阵将新轮廓点的半径增长率变化为110%,从而确定新轮廓点的位置,原不符合要求的初始点被剔除,当增长率过慢,即增长率低于90%的初始点,对当前轮廓点的前一个角度上的轮廓点进行重新替换,通过变化矩阵将当前初始点的半径增长率变化为90%,从而把上一个初始点进行剔除,确定了新轮廓点的位置,再次对上一个轮廓点进行检测其增长率是否满足最大增长率阈值和最小增长率阈值的要求,满足要求则顺时针进行下一个轮廓点的判定,不满足要求则重复上述操作,直至所有点满足阈值约束为止。
7.根据权利要求6所述的一种基于半径增量约束的大面积动物毛皮轮廓图像的切割方法,其特征在于,所述阈值约束规则具体为:
需要切割部位的轮廓半径长度随着角度的变化而急剧变化,根据轮廓半径长度,定义当前初始点与上一个初始点的轮廓半径长度的比值为当前初始点的轮廓半径增长率,最大轮廓半径增长率阈值ηmax与最小轮廓半径增长率阈值ηmin可根据毛皮种类和特征自定义修改,本文选取ηmax=110%,ηmin=90%;
式中,η为当前点的轮廓半径增长率,ri为当前初始点的轮廓半径长度,ri-1为上一个初始点的轮廓半径长度,因为需要切割部位的轮廓半径增长率变化相对比较剧烈,因此根据此类特征可以设置相应的阈值进行筛选,让阈值范围内的初始点保留下来,将阈值范围外的初始点进行剔除,以便进行后续的图像处理;
若此时列表P的长度len(P)为0,则进行步骤8);否则,由公式(4)计算轮廓半径增长率,进行步骤6);
Figure FDA0003460362370000051
8.根据权利要求6所述的一种基于半径增量约束的大面积动物毛皮轮廓图像的切割方法,其特征在于,所述最大阈值约束;若η≥ηmax,则调整交点pi的坐标为pi',pi'由公式(5)计算,重新计算交点pi与质心C的欧式距离,记为r',并将之放入列表R中,将交点pi放入列表P中,由公式(6)得出pi'的轮廓半径增长率,执行步骤8);若η<ηmax,则执行步骤7);
Figure FDA0003460362370000052
式中pi'为新的标记点(该点替换掉了当前不符合阈值要求的初始点)的坐标,
Figure FDA0003460362370000061
为顺时针旋转θ角度的变换矩阵,C为质心坐标,r'为待求选择点的轮廓半径,ri-1为前一个新标记点(或满足要求保留的初始点)的轮廓半径,ηmax为设置的最大阈值。由此公式能将当前的初始点替换成一个新的标记点,并令其满足阈值条件;
Figure FDA0003460362370000062
最小阈值约束;若η≤ηmin,则令j=1,由公式(7)重新计算交点pi-j的坐标,重新计算交点pi-j与质心C的欧式距离,记为ri-j,当j=1时,将计算结果放入列表R和P中,当j>1时,将列表R和P中原来的结果替换;令j=j+1,由公式(8)计算pi-j的轮廓半径增长率,若η≤ηmin,则重复步骤7)去判断pi-j的前一个初始点,否则,执行步骤8);
Figure FDA0003460362370000063
式中,pi-j为当前初始点的前j个初始点的坐标,j是初始值为1的循环递增变量,ri-j-1为初始点i前j+1个初始点的半径长度;
Figure FDA0003460362370000064
由以上公式能将当前初始点的前一个初始点替换成一个新的标记点,并令其满足阈值条件。
9.根据权利要求1所述的一种基于半径增量约束的大面积动物毛皮轮廓图像的切割方法,其特征在于,所述步骤(5)具体为:
空间遍历判定条件;判定是否θ≤θmax,若是,则令i=i+1,并执行步骤(3);否则执行步骤(5);
目标切割线连接;通过轮廓半径增量阈值约束规则,对超越阈值的交点进行处理使之满足阈值条件,满足阈值条件的最终所有交点即为最终的切割点,将所有满足要求的初始点和标记点记为最终点,并按照顺时针连线得出切割路径,此切割路径为最终的目标切割线,依次连接列表P中的坐标点,画出切割线。
CN202210017401.2A 2022-01-07 2022-01-07 一种基于半径增量约束的大面积动物毛皮轮廓图像的切割方法 Withdrawn CN114418975A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210017401.2A CN114418975A (zh) 2022-01-07 2022-01-07 一种基于半径增量约束的大面积动物毛皮轮廓图像的切割方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210017401.2A CN114418975A (zh) 2022-01-07 2022-01-07 一种基于半径增量约束的大面积动物毛皮轮廓图像的切割方法

Publications (1)

Publication Number Publication Date
CN114418975A true CN114418975A (zh) 2022-04-29

Family

ID=81271074

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210017401.2A Withdrawn CN114418975A (zh) 2022-01-07 2022-01-07 一种基于半径增量约束的大面积动物毛皮轮廓图像的切割方法

Country Status (1)

Country Link
CN (1) CN114418975A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115147770A (zh) * 2022-08-30 2022-10-04 山东千颐科技有限公司 基于图像处理的皮带异物视觉识别系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115147770A (zh) * 2022-08-30 2022-10-04 山东千颐科技有限公司 基于图像处理的皮带异物视觉识别系统
CN115147770B (zh) * 2022-08-30 2022-12-02 山东千颐科技有限公司 基于图像处理的皮带异物视觉识别系统

Similar Documents

Publication Publication Date Title
CN109118500B (zh) 一种基于图像的三维激光扫描点云数据的分割方法
CN108596930B (zh) 基于天牛须算法和数学形态学的射线图像焊缝提取方法
CN113034399A (zh) 基于双目视觉自主式水下机器人回收导引伪光源去除方法
CN112132153B (zh) 基于聚类和形态学处理的番茄果实识别方法及系统
CN114821114A (zh) 一种基于视觉系统的坡口切割机器人图像处理方法
CN103175844A (zh) 一种金属零部件表面划痕缺陷检测方法
CN111754538B (zh) Usb表面缺陷检测的阈值分割方法
CN110874825B (zh) 一种复合绝缘子表面水迹二值图像提取方法
CN108596151B (zh) 一种大场景sar图像中舰船目标切片快速提取方法
CN111524156A (zh) 一种基于距离变换和角点检测的重叠柑橘分割方法
CN114418975A (zh) 一种基于半径增量约束的大面积动物毛皮轮廓图像的切割方法
CN111783773A (zh) 一种面向角度倾斜电线杆标识牌的矫正方法
CN112529853A (zh) 一种用于水下养殖网箱的网衣破损检测方法及装置
CN110136139B (zh) 基于形状特征的面部ct图像中的牙神经分割方法
CN111310754A (zh) 一种分割车牌字符的方法
CN112381867B (zh) 用于工业分拣流水线的大面积深度图像空洞自动填充方法
CN1141665C (zh) 微观图像特征提取及识别的方法
CN112016391B (zh) 基于高分辨率卫星遥感影像的鱼塘识别方法、系统及介质
CN115619799B (zh) 一种基于迁移学习的晶粒图像分割方法及系统
CN113888456B (zh) 一种基于轮廓的角点检测方法
CN111127450B (zh) 一种基于图像的桥梁裂缝检测方法及系统
CN109934817B (zh) 一种果体外部轮廓畸形检测方法
CN116862871A (zh) 一种基于混合特征的木材计数方法
CN110956200A (zh) 一种轮胎花纹相似度检测方法
CN113763404B (zh) 基于优化标记和边缘约束分水岭算法的泡沫图像分割方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20220429