CN114417242A - Big data detection system for livestock and poultry activity information - Google Patents
Big data detection system for livestock and poultry activity information Download PDFInfo
- Publication number
- CN114417242A CN114417242A CN202111563316.8A CN202111563316A CN114417242A CN 114417242 A CN114417242 A CN 114417242A CN 202111563316 A CN202111563316 A CN 202111563316A CN 114417242 A CN114417242 A CN 114417242A
- Authority
- CN
- China
- Prior art keywords
- livestock
- poultry
- neural network
- model
- prediction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 244000144972 livestock Species 0.000 title claims abstract description 108
- 244000144977 poultry Species 0.000 title claims abstract description 101
- 238000001514 detection method Methods 0.000 title claims abstract description 72
- 230000000694 effects Effects 0.000 title claims abstract description 53
- 208000027954 Poultry disease Diseases 0.000 claims abstract description 5
- 238000012545 processing Methods 0.000 claims abstract description 4
- 238000003062 neural network model Methods 0.000 claims description 100
- 238000013528 artificial neural network Methods 0.000 claims description 34
- YHXISWVBGDMDLQ-UHFFFAOYSA-N moclobemide Chemical compound C1=CC(Cl)=CC=C1C(=O)NCCN1CCOCC1 YHXISWVBGDMDLQ-UHFFFAOYSA-N 0.000 claims description 32
- 102100024405 GPI-linked NAD(P)(+)-arginine ADP-ribosyltransferase 1 Human genes 0.000 claims description 30
- 101000981252 Homo sapiens GPI-linked NAD(P)(+)-arginine ADP-ribosyltransferase 1 Proteins 0.000 claims description 30
- KHMVXSQLPUNRCF-UHFFFAOYSA-N DL-Adalin Natural products C1CCC2CC(=O)CC1(CCCCC)N2 KHMVXSQLPUNRCF-UHFFFAOYSA-N 0.000 claims description 28
- 238000000354 decomposition reaction Methods 0.000 claims description 26
- 238000012544 monitoring process Methods 0.000 claims description 19
- 230000036760 body temperature Effects 0.000 claims description 15
- 230000037081 physical activity Effects 0.000 claims description 15
- 238000004891 communication Methods 0.000 claims description 8
- 230000001133 acceleration Effects 0.000 claims description 7
- 230000009193 crawling Effects 0.000 claims description 4
- 230000002265 prevention Effects 0.000 claims description 2
- 235000013594 poultry meat Nutrition 0.000 description 69
- 238000000034 method Methods 0.000 description 35
- 238000005259 measurement Methods 0.000 description 27
- 230000008569 process Effects 0.000 description 17
- 238000013461 design Methods 0.000 description 16
- 230000006870 function Effects 0.000 description 16
- 239000013598 vector Substances 0.000 description 11
- 238000009395 breeding Methods 0.000 description 10
- 230000001488 breeding effect Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 230000008859 change Effects 0.000 description 6
- 230000006872 improvement Effects 0.000 description 6
- 210000002569 neuron Anatomy 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 230000003044 adaptive effect Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 241001123248 Arma Species 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000012937 correction Methods 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 238000007781 pre-processing Methods 0.000 description 3
- 208000012802 recumbency Diseases 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000007405 data analysis Methods 0.000 description 2
- 238000012938 design process Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 230000007787 long-term memory Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000001537 neural effect Effects 0.000 description 2
- 230000006403 short-term memory Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 206010011409 Cross infection Diseases 0.000 description 1
- 206010029803 Nosocomial infection Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000013523 data management Methods 0.000 description 1
- 238000013501 data transformation Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000013277 forecasting method Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 235000013613 poultry product Nutrition 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000010845 search algorithm Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 238000000528 statistical test Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000000714 time series forecasting Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/14—Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/04—Programme control other than numerical control, i.e. in sequence controllers or logic controllers
- G05B19/042—Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
- G05B19/0423—Input/output
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/12—Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q9/00—Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q2209/00—Arrangements in telecontrol or telemetry systems
- H04Q2209/20—Arrangements in telecontrol or telemetry systems using a distributed architecture
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q2209/00—Arrangements in telecontrol or telemetry systems
- H04Q2209/80—Arrangements in the sub-station, i.e. sensing device
- H04Q2209/84—Measuring functions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/70—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in livestock or poultry
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Computing Systems (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Mathematical Optimization (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Analysis (AREA)
- Computational Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Computer Networks & Wireless Communication (AREA)
- Computational Linguistics (AREA)
- Evolutionary Computation (AREA)
- Databases & Information Systems (AREA)
- Algebra (AREA)
- Automation & Control Theory (AREA)
- Medical Informatics (AREA)
- Signal Processing (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域technical field
本发明涉及畜禽活动信息参数检测技术领域,具体涉及畜禽活动信息的大数据检测系统。The invention relates to the technical field of livestock and poultry activity information parameter detection, in particular to a big data detection system for livestock and poultry activity information.
背景技术Background technique
畜禽养殖业作为我国国民经济产业中的重要组成部分,如何满足人们对畜禽产品日趋多样的需求,对整个畜禽养殖业的养殖过程、养殖标准提出了新的要求。在传统的畜禽养殖过程中,采用简单、粗糙、低效的高频率人工干预的养殖方法,往往在耗费了大量的人工、时间成本后依旧无法及时地对养殖个体活动信息进行获取,较高的人工参与度还在一定程度上对养殖个体的生理活动造成了一定的影响,增加了人与动物交叉感染疾病的概率,针对诸如此类种种弊端,越来越迫切地需要现代化的养殖技术推动养殖业进一步向前发展,从而使畜禽养殖业能够承受住当代社会的新考验。本发明研发了一种畜禽微型穿戴式活动量体征感知设备,基于无线网络技术搭建了数据传输网络,开发了监测数据分析处理的平台软件,实现了畜禽活动量数据的实时显示,为预防畜禽疾病提供数据与预警。As an important part of my country's national economic industry, livestock and poultry breeding industry, how to meet people's increasingly diverse needs for livestock and poultry products, has put forward new requirements for the breeding process and breeding standards of the entire livestock and poultry breeding industry. In the traditional livestock and poultry breeding process, simple, rough, and inefficient high-frequency manual intervention breeding methods are often used, and it is often impossible to obtain information on the activities of breeding individuals in a timely manner after spending a lot of labor and time costs. The artificial participation of the farm has also caused a certain impact on the physiological activities of the breeding individuals to a certain extent, increasing the probability of cross-infection between humans and animals. In view of such drawbacks, it is more and more urgent to need modern breeding technology to promote the breeding industry. Further development, so that the livestock and poultry industry can withstand the new test of contemporary society. The invention develops a livestock and poultry miniature wearable activity sign sensing device, builds a data transmission network based on wireless network technology, develops platform software for monitoring data analysis and processing, and realizes the real-time display of livestock and poultry activity data. Livestock and poultry diseases provide data and early warning.
发明内容SUMMARY OF THE INVENTION
本本发明目的是提供一种畜禽活动信息的大数据检测系统,该系统实时监测畜禽体温和活动信息,从而为预防畜禽疾病提供数据与预警。The purpose of the present invention is to provide a big data detection system for livestock and poultry activity information, which can monitor the body temperature and activity information of livestock and poultry in real time, thereby providing data and early warning for the prevention of livestock and poultry diseases.
本发明通过以下技术方案实现:The present invention is achieved through the following technical solutions:
一种畜禽活动信息的大数据检测系统,实现对畜禽体温和活动信息参数进行检测和畜禽姿态智能预测,所述大数据检测系统包括基于云平台的畜禽体征参数采集与智能预测平台和畜禽活动大数据预测子系统。A big data detection system for livestock and poultry activity information, which realizes the detection of livestock and poultry body temperature and activity information parameters and the intelligent prediction of livestock and poultry posture, the big data detection system includes a cloud platform-based livestock and poultry sign parameter collection and intelligent prediction platform and Livestock Activity Big Data Prediction Subsystem.
本发明进一步技术改进方案是:The further technical improvement scheme of the present invention is:
基于云平台的畜禽体征参数采集与智能预测平台由检测节点、网关节点、现场监控端、云平台和手机APP组成,检测节点采集畜禽的体温和活动信息参数经网关节点上传到云平台,在云平台端存储数据和发布信息,手机APP通过云平台提供的畜禽体温和活动信息可实时监测畜禽体征和运动参数,检测节点负责采集畜禽的体温和活动信息参数,通过网关节点实现检测节点、现场监控端、云平台和手机APP的双向通信,实现畜禽的体温和活动信息参数采集和预测;基于云平台的畜禽体征参数采集与智能预测平台结构图见图1所示。The cloud platform-based livestock and poultry sign parameter collection and intelligent prediction platform is composed of detection nodes, gateway nodes, on-site monitoring terminals, cloud platforms and mobile APPs. The detection nodes collect the body temperature and activity information parameters of livestock and poultry and upload them to the cloud platform through the gateway nodes. Store data and publish information on the cloud platform. The mobile phone APP can monitor the signs and motion parameters of livestock and poultry in real time through the body temperature and activity information provided by the cloud platform. The detection node is responsible for collecting the body temperature and activity information parameters of livestock and poultry, which is realized through the gateway node The two-way communication between the detection node, on-site monitoring terminal, cloud platform and mobile APP realizes the collection and prediction of livestock and poultry body temperature and activity information parameters; the structure diagram of the livestock and poultry physical parameter collection and intelligent prediction platform based on the cloud platform is shown in Figure 1.
本发明进一步技术改进方案是:The further technical improvement scheme of the present invention is:
畜禽活动大数据预测子系统由3个参数检测模块、BAM神经网络模型、2个按拍延迟线TDL、2个ARIMA预测模型和ART2神经网络模型部分组成,三轴加速度传感器ADXL362感知被检测畜禽的X、Y和Z轴方向的加速度分别作为对应的参数检测模块的输入,3个参数检测模块输出的3个联系数作为BAM神经网络模型的输入,BAM神经网络模型输出的二元联系数作为ART2神经网络模型对应的输入,ART2神经网络模型输出的确定值和波动值作为2个按拍延迟线TDL的输入和ART2神经网络模型的对应输入,2个按拍延迟线TDL输出分别作为对应的2个ARIMA预测模型输入,2个ARIMA预测模型输出作为ART2神经网络模型的对应输入,ART2神经网络模型输出的确定值c和波动值d构成二元联系数为c+di,ART2神经网络模型输出的二元联系数分别对应畜禽处于卧爬、行走、站立、平卧和侧卧共5种不同状态;畜禽活动大数据预测子系统结构图见图2所示。The livestock and poultry activity big data prediction subsystem is composed of 3 parameter detection modules, BAM neural network model, 2 beat delay line TDL, 2 ARIMA prediction models and ART2 neural network model parts. The three-axis acceleration sensor ADXL362 senses the detected livestock. The accelerations of the bird's X, Y and Z axes are respectively used as the input of the corresponding parameter detection module, the 3 connection numbers output by the 3 parameter detection modules are used as the input of the BAM neural network model, and the binary connection number output by the BAM neural network model. As the input corresponding to the ART2 neural network model, the determined value and the fluctuation value output by the ART2 neural network model are used as the input of the two beat delay lines TDL and the corresponding input of the ART2 neural network model, and the two beat delay line TDL outputs are respectively used as the corresponding input The input of the two ARIMA prediction models, the outputs of the two ARIMA prediction models are used as the corresponding inputs of the ART2 neural network model. The definite value c and the fluctuation value d output by the ART2 neural network model constitute a binary connection number c+di, and the ART2 neural network model The output binary connection number corresponds to 5 different states of the livestock and poultry being crawling, walking, standing, lying down and lying on the side respectively; the structure diagram of the big data prediction subsystem of livestock and poultry activity is shown in Figure 2.
本发明进一步技术改进方案是:The further technical improvement scheme of the present invention is:
参数检测模块由带时滞单元的Adaline神经网络模型、EMD经验模态分解模型、GM(1,1)灰色预测模型、多个NARX神经网络预测模型、2个按拍延迟线TDL、2个ARIMA预测模型和二元联系数的小波神经网络模型组成;参数检测传感器输出作为带时滞单元的Adaline神经网络模型的输入,带时滞单元的Adaline神经网络模型输出作为EMD经验模态分解模型的输入,EMD经验模态分解模型输出的被测量参数低频趋势值作为GM(1,1)灰色预测模型的输入,EMD经验模态分解模型输出的被测量参数多个不同高频波动值分别作为对应的多个NARX神经网络预测模型的输入,GM(1,1)灰色预测模型输出和多个NARX神经网络预测模型输出分别作为二元联系数的小波神经网络模型的对应输入,二元联系数的小波神经网络模型输出被测量参数的确定值a和波动值b构成被测量参数大小的二元联系数a+bi,被测量参数的确定值a和波动值b分别作为对应的按拍延迟线TDL的输入和二元联系数的小波神经网络模型的2个对应输入,2个按拍延迟线TDL输出分别作为对应的ARIMA预测模型的输入,2个ARIMA预测模型输出分别作为二元联系数的小波神经网络模型的对应输入,二元联系数的小波神经网络模型输出的二元联系数作为被测量参数预测值。参数检测模块结构图见图3所示。The parameter detection module is composed of Adaline neural network model with time delay unit, EMD empirical mode decomposition model, GM (1, 1) gray prediction model, multiple NARX neural network prediction models, 2 beat delay lines TDL, 2 ARIMA The prediction model and the wavelet neural network model of the binary connection number are composed; the output of the parameter detection sensor is used as the input of the Adaline neural network model with time delay unit, and the output of the Adaline neural network model with time delay unit is used as the input of the EMD empirical mode decomposition model. , the low-frequency trend value of the measured parameter output by the EMD empirical modal decomposition model is used as the input of the GM(1,1) gray prediction model, and the different high-frequency fluctuation values of the measured parameter output by the EMD empirical modal decomposition model are used as the corresponding The input of multiple NARX neural network prediction models, the output of GM(1, 1) gray prediction model and the output of multiple NARX neural network prediction models are respectively used as the corresponding input of the wavelet neural network model of the binary connection number, and the wavelet of the binary connection number The neural network model outputs the definite value a and the fluctuation value b of the measured parameter to form the binary connection coefficient a+bi of the measured parameter size, and the definite value a and the fluctuation value b of the measured parameter are used as the The input and the two corresponding inputs of the wavelet neural network model of the binary connection number, the two TDL outputs of the beat delay line are respectively used as the input of the corresponding ARIMA prediction model, and the outputs of the two ARIMA prediction models are respectively used as the wavelet neural network of the binary connection number. The corresponding input of the network model, the binary connection number output by the wavelet neural network model of the binary connection number is used as the predicted value of the measured parameter. The structure diagram of the parameter detection module is shown in Figure 3.
本发明与现有技术相比,具有以下明显优点:Compared with the prior art, the present invention has the following obvious advantages:
一、本发明通过EMD经验模态分解模型将原始带时滞单元的Adaline神经网络模型输出的畜禽活动信息序列分解为不同频段的分量,每一个分量都显示出隐含在原序列中的不同特征信息。以降低序列的非平稳性。畜禽活动过程的高频波动部分数据关联性不强,频率比较高,代表原始序列的波动成分,具有一定的周期性和随机性,这与畜禽活动过程的周期性变化相符合;低频成分代表畜禽活动过程原序列的变化趋势。可见EMD能够逐级分解出畜禽活动过程的波动成分、周期成分和趋势成分,分解出的每一个分量自身包含相同的变形信息,在一定程度上减少了不同特征信息之间的相互干涉,且分解出的各分量变化曲线比原始畜禽活动变形序列曲线光滑。可见EMD经验模态分解能有效分析多因素共同作用下的畜禽活动过程变形数据,分解得到的各分量有GM(1,1)灰色预测模型输出和多个NARX神经网络预测模型的建立和更好地预测。最后将各分量预测结果叠加得到最终融合预测结果。实例研究表明,所提的融合预测结果具有较高的预测精度。1. The present invention decomposes the livestock and poultry activity information sequence output by the original Adaline neural network model with time-delay unit into components of different frequency bands through the EMD empirical mode decomposition model, and each component shows different features hidden in the original sequence. information. to reduce the non-stationarity of the series. The data of the high-frequency fluctuation part of the livestock and poultry activity process are not closely related, and the frequency is relatively high, which represents the fluctuation component of the original sequence, and has a certain periodicity and randomness, which is consistent with the periodic change of the livestock and poultry activity process; the low-frequency component It represents the change trend of the original sequence of livestock and poultry activity process. It can be seen that EMD can decompose the fluctuation components, periodic components and trend components of the livestock and poultry activity process step by step, and each decomposed component contains the same deformation information, which reduces the mutual interference between different feature information to a certain extent, and The variation curve of each component decomposed is smoother than the original livestock and poultry activity deformation sequence curve. It can be seen that the EMD empirical mode decomposition can effectively analyze the deformation data of livestock and poultry activity process under the action of multiple factors. The components obtained by the decomposition include the output of the GM (1, 1) gray prediction model and the establishment of multiple NARX neural network prediction models. forecast. Finally, the prediction results of each component are superimposed to obtain the final fusion prediction result. Case studies show that the proposed fusion prediction results have high prediction accuracy.
二、本发明采用GM(1,1)灰色预测模型预测物畜禽活动过程中参数测量低频趋势的时间跨度长。用GM(1,1)灰色预测模型模型可以根据参数测量低频趋势值预测未来时刻参数测量低频趋势值,用上述方法预测出的参数测量低频趋势后,把参数测量低频趋势值再加分别加入参数测量低频趋势的原始数列中,相应地去掉数列开头的一个数据建模,再进行预测参数测量低频趋势的预测。依此类推,预测出参数测量低频趋势值。这种方法称为等维灰数递补模型,它可实现较长时间的预测。司机可以更加准确地掌握参数测量低频趋势的变化趋势,为有效避免参数测量低频趋势波动做好准备。2. The present invention adopts the GM(1,1) grey prediction model to predict the low-frequency trend of parameter measurement in the process of animal, livestock and poultry activity with a long time span. The GM(1,1) grey prediction model model can predict the low-frequency trend value of the parameter measurement in the future according to the low-frequency trend value of the parameter measurement. In the original sequence for measuring the low-frequency trend, correspondingly remove a data modeling at the beginning of the sequence, and then carry out the prediction of the low-frequency trend of the prediction parameter measurement. And so on, predict the low frequency trend value of parameter measurement. This method is called an equal-dimensional gray-number complement model, and it enables long-term forecasting. The driver can more accurately grasp the change trend of the low-frequency trend of parameter measurement, and prepare for effectively avoiding the fluctuation of the low-frequency trend of parameter measurement.
三、本发明采用ARIMA预测模型基于参数测量的确定值和波动值的原始数据服从时间序列分布,利用参数测量的确定值和波动值变化均具有一定惯性趋势的原理,整合了趋势因素、周期因素和随机误差等因素的参数测量的确定值和波动值的原始时间序列变量,通过差分数据转换等方法将非平稳序列转变为零均值的平稳随机序列,通过反复识别和模型诊断比较并选择理想的模型进行参数测量的确定值和波动值数值拟合和预测。该方法结合了自回归和移动平均方法的长处,具有不受数据类型束缚和适用性强的特点,是一种短期预测参数测量的确定值和波动值的模型。3. The present invention adopts the ARIMA prediction model based on the original data of the determined value and the fluctuation value of the parameter measurement to obey the time series distribution, and uses the principle that the change of the determined value and the fluctuation value of the parameter measurement has a certain inertia trend, and integrates trend factors and periodic factors. The original time series variables of the deterministic and fluctuating values of the parameters measured by factors such as random errors and other factors, the non-stationary sequence is transformed into a stationary random sequence with zero mean by methods such as differential data transformation, and the ideal one is selected through repeated identification and model diagnosis. The model performs numerical fitting and prediction of deterministic and fluctuating values of parameter measurements. This method combines the advantages of autoregressive and moving average methods, and has the characteristics of not being bound by data types and having strong applicability.
四、本发明二元联系数的BAM神经网络是一种双层反馈神经网络,用它可实现异联想记忆功能;其当向其中一层加入输入信号时,另一层得到输出。由于初始模式可以作用于网络的任一层,信息也可以双向传播,所以没有明确的输入层或输出层。BAM神经网络模型学习速度快,而BP学习时收敛速度慢,最终收敛达到的还有可能是局部最小点而非全局最小点,而BAM达到的一定是能量最小点;BAM神经网络模型是有反馈网络,当输入出现错误时,BAM神经网络模型不但可以输出准确的故障原因,还可纠正原始输入的错误。故该BAM神经网络模型适于要求对错误输入征兆进行纠正系统。BAM神经网络模型利用BAM神经网络双向联想存储的特性,提高推理过程中物料参数传感器预测值的不确定信息处理能力。4. The BAM neural network of the binary connection number of the present invention is a two-layer feedback neural network, which can realize the function of heteroassociative memory; when an input signal is added to one layer, the other layer gets the output. Since the initial mode can act on any layer of the network and information can be propagated in both directions, there is no explicit input or output layer. The learning speed of the BAM neural network model is fast, while the convergence speed of BP learning is slow. The final convergence may be the local minimum point instead of the global minimum point, and the BAM neural network model must reach the energy minimum point; the BAM neural network model has feedback When there is an error in the input, the BAM neural network model can not only output the accurate cause of the failure, but also correct the error of the original input. Therefore, the BAM neural network model is suitable for systems that require correction of erroneous input symptoms. The BAM neural network model utilizes the bidirectional associative storage characteristics of the BAM neural network to improve the processing ability of uncertain information of the predicted value of the material parameter sensor in the inference process.
五、本发明畜禽活动状态等级分类的科学性和可靠性,本专利的二元联系数的ART2神经网络分类器,根据畜禽活动状态的工程实践经验,通过二元联系数的ART2神经网络输出5个不同预测值的大小对畜禽活动状态的动态程度量化为畜禽处于卧爬、行走、站立、平卧和侧卧共5种不同状态,实现对畜禽活动状态的分类的动态性能和科学分类。5. The scientificity and reliability of the classification of livestock and poultry activity state grades of the present invention, the ART2 neural network classifier of the binary connection number of this patent, according to the engineering practice experience of livestock and poultry activity state, through the ART2 neural network of binary connection number The magnitude of the output of 5 different predicted values quantifies the dynamic degree of the activity state of livestock and poultry, and the livestock and poultry are in 5 different states of crawling, walking, standing, lying on the back and lying on the side, so as to realize the dynamic performance of the classification of the activity state of livestock and poultry. and scientific classification.
六、本发明针对参数测量过程中,传感器精度误差、干扰和测量值异常等问题存在的不确定性和随机性,本发明专利将参数传感器测量的参数值通过参数检测模块转化为二元联系数形式表示,有效地处理了参数传感器测量参数的模糊性、动态性和不确定性,提高了参数传感器值检测参数的客观性和可信度。6. The present invention is aimed at the uncertainty and randomness of the problems such as sensor accuracy error, interference and abnormal measurement value in the process of parameter measurement. The patent of the present invention converts the parameter value measured by the parameter sensor into the binary connection coefficient through the parameter detection module. It can effectively deal with the ambiguity, dynamics and uncertainty of the parameters measured by the parameter sensor, and improve the objectivity and reliability of the parameters detected by the parameter sensor value.
七、本发明针对参数测量过程中,传感器精度误差、干扰和测量值异常等问题存在的不确定性和随机性,本发明专利将参数传感器测量的参数值通过参数检测模块转化为二元联系数形式表示,有效地处理了参数传感器测量参数的模糊性、动态性和不确定性,提高了参数传感器值检测参数的客观性和可信度。7. The present invention aims at the uncertainty and randomness of the problems such as sensor accuracy error, interference and abnormal measurement value in the process of parameter measurement. The patent of the present invention converts the parameter value measured by the parameter sensor into the binary connection coefficient through the parameter detection module. It can effectively deal with the ambiguity, dynamics and uncertainty of the parameters measured by the parameter sensor, and improve the objectivity and reliability of the parameters detected by the parameter sensor value.
附图说明Description of drawings
图1为本发明基于云平台的畜禽体征参数采集与智能预测平台;Fig. 1 is the livestock and poultry sign parameter collection and intelligent prediction platform based on cloud platform of the present invention;
图2为本发明畜禽活动大数据预测子系统;Fig. 2 is the livestock and poultry activity big data prediction subsystem of the present invention;
图3为本发明参数检测模块结构图Fig. 3 is the structure diagram of the parameter detection module of the present invention
图4为本发明检测节点功能图;4 is a functional diagram of a detection node of the present invention;
图5为本发明网关节点功能图;5 is a functional diagram of a gateway node of the present invention;
图6为本发明现场监控端软件功能图。FIG. 6 is a software function diagram of the on-site monitoring terminal of the present invention.
具体实施方式Detailed ways
结合附图1-6,对本发明技术方案作进一步描述:In conjunction with accompanying drawing 1-6, the technical scheme of the present invention is further described:
一、系统总体功能的设计1. Design of the overall function of the system
本发明检测系统实现对畜禽体温和活动信息参数进行检测和畜禽姿态进行预测,该系统由基于云平台的畜禽体征参数采集与智能预测平台和畜禽活动大数据预测子系统两部分组成。基于云平台的畜禽体征参数采集与智能预测平台包括畜禽体征参数的检测节点、网关节点、现场监控端、云平台和手机App组成,通过ZiGBee技术实现检测节点之间以及检测节点和网关节点之间的通信;检测节点将检测畜禽体温和活动参数通过网关节点发送给现场监控端和云平台,网关节点、云平台、现场监控端和手机App之间实现畜禽体温和活动信息参数的双向传输。基于云平台的畜禽体征参数采集与智能预测平台见图1所示。The detection system of the invention realizes the detection of the body temperature and activity information parameters of livestock and poultry and the prediction of the posture of the livestock and poultry. . The cloud platform-based livestock and poultry physical parameter collection and intelligent prediction platform consists of livestock and poultry physical parameters detection node, gateway node, on-site monitoring terminal, cloud platform and mobile app, and realizes between detection nodes and between detection nodes and gateway nodes through ZiGBee technology The detection node sends the detected body temperature and activity parameters of the livestock and poultry to the on-site monitoring terminal and the cloud platform through the gateway node, and the gateway node, the cloud platform, the on-site monitoring terminal and the mobile app realize the exchange of livestock and poultry body temperature and activity information parameters. Two-way transmission. The cloud platform-based livestock and poultry sign parameter collection and intelligent prediction platform is shown in Figure 1.
二、检测节点的设计Second, the design of the detection node
采用大量基于CC2530的自组织通信网络的检测节点作为畜禽的温度和活动信息参数参数感知终端,检测节点通过自组织通信网络实现与网关节点之间的信息相互交互。检测节点包括采集畜禽的温度和活动信息参数的传感器和对应的信号调理电路、STM32单片机和CC2530模块;检测节点的软件主要实现自组织网络通信和畜禽的温度和活动信息参数参数的采集与预处理。软件采用C语言程序设计,兼容程度高,大大提高了软件设计开发的工作效率,增强了程序代码的可靠性、可读性和可移植性,检测节点结构见图4。A large number of detection nodes based on the CC2530 self-organizing communication network are used as the temperature and activity information parameter sensing terminals of livestock and poultry, and the detection nodes realize information interaction with the gateway nodes through the self-organizing communication network. The detection node includes sensors for collecting the temperature and activity information parameters of livestock and poultry and the corresponding signal conditioning circuit, STM32 single chip microcomputer and CC2530 module; the software of the detection node mainly realizes self-organizing network communication and the collection and operation of temperature and activity information parameters of livestock and poultry. preprocessing. The software adopts C language programming, which has a high degree of compatibility, which greatly improves the work efficiency of software design and development, and enhances the reliability, readability and portability of the program code. The structure of the detection node is shown in Figure 4.
三、网关节点设计3. Gateway Node Design
网关节点包括CC2530模块、NB-IoT模块、STM32单片机和RS232接口,网关节点通过CC2530模块实现与检测节点之间通信,NB-IoT模块实现网关与云平台之间的数据双向交互,RS232接口连接现场监控端,实现网关与现场监控端之间的信息交互。网关节点结构见图5。The gateway node includes CC2530 module, NB-IoT module, STM32 microcontroller and RS232 interface. The gateway node communicates with the detection node through the CC2530 module. The NB-IoT module realizes the two-way data interaction between the gateway and the cloud platform, and the RS232 interface connects the scene. The monitoring terminal realizes the information exchange between the gateway and the on-site monitoring terminal. The structure of the gateway node is shown in Figure 5.
四、现场监控端的软件设计4. Software design of on-site monitoring terminal
现场监控端是一台工业控制计算机,现场监控端主要实现对畜禽体温和活动信息参数进行采集与畜禽姿态进行预测,通过网关节点实现与检测节点的信息交互,现场监控端主要功能为通信参数设置、数据分析与数据管理和通过畜禽活动大数据预测子系统对畜禽姿态进行智能预测,该管理软件选择了Microsoft Visual++6.0作为开发工具,调用系统的Mscomm通信控件来设计通讯程序,现场监控端软件功能见图6。畜禽活动大数据预测子系统结构如图2所示。畜禽活动大数据预测子系统由3个参数检测模块、BAM神经网络模型、2个按拍延迟线TDL、2个ARIMA预测模型和ART2神经网络模型部分组成,畜禽活动大数据预测子系统功能图见图2,设计过程如下:The on-site monitoring terminal is an industrial control computer. The on-site monitoring terminal mainly realizes the collection of livestock and poultry body temperature and activity information parameters and the prediction of livestock and poultry posture, and realizes the information interaction with the detection node through the gateway node. The main function of the on-site monitoring terminal is communication. Parameter setting, data analysis and data management, and intelligent prediction of livestock and poultry posture through the livestock and poultry activity big data prediction subsystem, the management software selects Microsoft Visual++6.0 as the development tool, and calls the system's Mscomm communication control to design the communication program , the software functions of the on-site monitoring terminal are shown in Figure 6. The structure of the big data prediction subsystem of livestock and poultry activities is shown in Figure 2. The livestock and poultry activity big data prediction subsystem consists of 3 parameter detection modules, BAM neural network model, 2 beat delay line TDL, 2 ARIMA prediction models and ART2 neural network model parts. The function of the livestock and poultry activity big data prediction subsystem is Figure 2 shows the design process as follows:
1、参数检测模块的设计1. Design of parameter detection module
三轴加速度传感器ADXL362感知被检测畜禽的X、Y和Z轴方向的加速度分别作为对应的参数检测模块的输入,3个参数检测模块输出的3个联系数作为BAM神经网络模型的输入,BAM神经网络模型的输出作为ART2神经网络模型对应的输入;参数检测模块由带时滞单元的Adaline神经网络模型、EMD经验模态分解模型、GM(1,1)灰色预测模型、多个NARX神经网络预测模型、2个按拍延迟线TDL、2个ARIMA预测模型和二元联系数的小波神经网络模型组成;参数检测模块功能图见图3;The three-axis acceleration sensor ADXL362 senses the acceleration of the detected livestock and poultry in the X, Y and Z axis directions as the input of the corresponding parameter detection module, and the three contact numbers output by the three parameter detection modules are used as the input of the BAM neural network model. The output of the neural network model is used as the input corresponding to the ART2 neural network model; the parameter detection module consists of the Adaline neural network model with time delay unit, the EMD empirical mode decomposition model, the GM (1, 1) gray prediction model, and multiple NARX neural networks. The prediction model, 2 beat-by-beat delay lines TDL, 2 ARIMA prediction models and the wavelet neural network model of the binary connection coefficient are composed; the function diagram of the parameter detection module is shown in Figure 3;
(1)、带时滞单元的Adaline神经网络模型设计(1), Adaline neural network model design with delay unit
参数传感器输出作为带时滞单元的Adaline神经网络模型的输入,带时滞单元的Adaline神经网络模型输出作为EMD经验模态分解模型的输入;带时滞单元的Adaline神经网络模型由2个按拍延迟线TDL和Adaline神经网络组成,参数传感器输出作为对应的按拍延迟线TDL的输入,该按拍延迟线TDL的输出作为Adaline神经网络的输入,Adaline神经网络的输出作为对应的按拍延迟线TDL的输入,该按拍延迟线TDL的输出为带时滞单元的Adaline神经网络模型的输出;Adaline神经网络模型的自适应线性单元(Adaptive LinearElement)是早期的神经网络模型之一,该模型的输入信号可写成向量的形式:X(K)=[x0(K),x1(K),…xn(K)]T,每一组输入信号对应有一组权值向量相对应表示为:W(K)=[k0(K),k1(K),…k(K)],x0(K)等于负1时是Adaline神经网络模型的偏置值决定神经元的兴奋或抑制状态,可根据Adaline神经网络模型的输入向量和权值向量定义网络输出为:The output of the parameter sensor is used as the input of the Adaline neural network model with time delay unit, and the output of the Adaline neural network model with time delay unit is used as the input of the EMD empirical mode decomposition model; the Adaline neural network model with time delay unit is composed of 2 The delay line TDL is composed of an Adaline neural network. The output of the parameter sensor is used as the input of the corresponding beat delay line TDL. The output of the beat delay line TDL is used as the input of the Adaline neural network, and the output of the Adaline neural network is used as the corresponding beat delay line. The input of the TDL, the output of the beat delay line TDL is the output of the Adaline neural network model with a delay unit; the Adaptive Linear Element of the Adaline neural network model is one of the early neural network models. The input signal can be written in the form of a vector: X(K)=[x 0 (K),x 1 (K),...x n (K)] T , each set of input signals corresponds to a set of weight vectors correspondingly expressed as :W(K)=[k 0 (K),k 1 (K),…k(K)], when x 0 (K) is equal to negative 1, the bias value of the Adaline neural network model determines the excitation of neurons or Inhibition state, the network output can be defined according to the input vector and weight vector of the Adaline neural network model as:
在Adaline神经网络模型中,有一特殊输入即理想响应输出d(K),把它送入Adaline神经网络模型中,然后通过网络的输出y(K)进行比较,将差值送到学习算法机制中,以调整权向量直到获得最佳权向量,y(K)与d(K)趋向一致,权向量的调整过程即为网络的学习过程,学习算法是学习过程的核心部分,Adaline神经网络模型的权值优化搜索算法采用LMS算法最小二乘法。In the Adaline neural network model, there is a special input, the ideal response output d(K), which is sent to the Adaline neural network model, and then compared through the network output y(K), and the difference is sent to the learning algorithm mechanism. , to adjust the weight vector until the best weight vector is obtained, y(K) and d(K) tend to be consistent, the adjustment process of the weight vector is the learning process of the network, and the learning algorithm is the core part of the learning process. The weight optimization search algorithm adopts the least square method of LMS algorithm.
(2)、EMD经验模态分解模型设计(2), EMD empirical mode decomposition model design
参数传感器输出作为带时滞单元的Adaline神经网络模型的输入,带时滞单元的Adaline神经网络模型输出作为EMD经验模态分解模型的输入,EMD经验模态分解模型输出的参数测量低频趋势值作为GM(1,1)灰色预测模型的输入,EMD经验模态分解模型输出的多个参数测量高频波动值分别作为对应的多个NARX神经网络预测模型的输入,EMD经验模态分解是一种自适应信号筛选方法,具有计算简单、直观、基于经验和自适应的特点。它能将存在于参数测量信号中不同特征的趋势逐级筛选出来,得到多个高频波动部分(IMF)和低频趋势部分。EMD经验模态分解出来的IMF分量包含了参数测量信号从高到低不同频率段的成分,每个频率段包含的频率分辨率都随信号本身变化,具有自适应多分辨分析特性。使用EMD经验模态分解的目的就是为了更准确地提取参数测量信息。IMF分量必须同时满足两个条件:①在待分解参数测量信号中,极值点的数目与过零点的数目相等,或最多相差一个;②在任一时间上,由局部极大值和局部极小值定义的包络均值为零。EMD经验模态分解方法针对带时滞单元的Adaline神经网络模型输出值信号的“筛分”过程步骤如下:The parameter sensor output is used as the input of the Adaline neural network model with time-delay unit, the output of the Adaline neural network model with time-delay unit is used as the input of the EMD empirical mode decomposition model, and the parameter measurement low-frequency trend value output by the EMD empirical mode decomposition model is used as The input of the GM (1, 1) gray prediction model, and the high-frequency fluctuation values of multiple parameters output by the EMD empirical mode decomposition model are respectively used as the input of the corresponding multiple NARX neural network prediction models. The EMD empirical mode decomposition is a kind of The adaptive signal screening method has the characteristics of simple calculation, intuitive, experience-based and self-adaptive. It can screen out the trends of different features in the parameter measurement signal step by step, and obtain multiple high frequency fluctuation parts (IMF) and low frequency trend parts. The IMF components decomposed by the EMD empirical mode contain the components of different frequency segments of the parameter measurement signal from high to low. The frequency resolution contained in each frequency segment varies with the signal itself, and has the characteristics of adaptive multi-resolution analysis. The purpose of using EMD empirical mode decomposition is to extract parameter measurement information more accurately. The IMF component must satisfy two conditions at the same time: (1) In the parameter measurement signal to be decomposed, the number of extreme points is equal to the number of zero-crossing points, or differs by at most one; (2) At any time, the local maximum and the local minimum The value defines the envelope mean of zero. The steps of the "sieving" process of the EMD empirical mode decomposition method for the output value signal of the Adaline neural network model with time-delay units are as follows:
(a)带时滞单元的Adaline神经网络模型输出值信号所有的局部极值点,然后用三次样条线将左右的局部极大值点连接起来形成上包络线。(a) The Adaline neural network model with time-delay unit outputs all the local extremum points of the value signal, and then uses a cubic spline to connect the left and right local maxima points to form an upper envelope.
(b)在用三次样条线将带时滞单元的Adaline神经网络模型输出值的局部极小值点连接起来形成下包络线,上、下包络线应该包络所有的数据点。(b) The lower envelope is formed by connecting the local minimum points of the output value of the Adaline neural network model with time-delay units with a cubic spline, and the upper and lower envelopes should envelop all the data points.
(c)上、下包络线的平均值记为m1(t),求出:(c) The average value of the upper and lower envelopes is denoted as m 1 (t), and we can obtain:
x(t)-m1(t)=h1(t) (2)x(t)-m 1 (t)=h 1 (t) (2)
x(t)为带时滞单元的Adaline神经网络模型输出值原始信号,如果h1(t)是一个IMF,那么h1(t)就是x(t)的第一个IMF分量。记c1(t)=h1k(t),则c1(t)为信号x(t)的第一个满足IMF条件的分量。x(t) is the original signal of the output value of the Adaline neural network model with delay unit. If h 1 (t) is an IMF, then h 1 (t) is the first IMF component of x(t). Denote c 1 (t)=h 1k (t), then c 1 (t) is the first component of the signal x(t) that satisfies the IMF condition.
(d)将c1(t)从x(t)中分离出来,得到:(d) Separating c 1 (t) from x(t) yields:
r1(t)=x(t)-c1(t) (3)r 1 (t)=x(t)-c 1 (t) (3)
将r1(t)作为原始数据重复步骤(a)-步骤(c),得到x(t)的第2个满足IMF条件的分量c2。重复循环n次,得到信号x(t)的n个满足IMF条件的分量。这样通过EMD经验模态分解模型把带时滞单元的Adaline神经网络模型输出分解为低频趋势部分和多个高频波动部分,EMD经验分解模型如图2所示。Repeat steps (a) to (c) with r 1 (t) as the original data to obtain the second component c 2 of x(t) that satisfies the IMF condition. Repeat the cycle n times to obtain n components of the signal x(t) that satisfy the IMF condition. In this way, the output of the Adaline neural network model with time-delay unit is decomposed into low-frequency trend parts and multiple high-frequency fluctuation parts through the EMD empirical mode decomposition model. The EMD empirical decomposition model is shown in Figure 2.
(3)、GM(1,1)灰色预测模型设计(3), GM (1, 1) grey prediction model design
EMD经验模态分解模型输出的参数测量低频趋势值作为GM(1,1)灰色预测模型的输入,EMD经验模态分解模型输出的多个参数测量高频波动值分别作为对应的多个NARX神经网络预测模型的输入,GM(1,1)灰色预测模型输出和多个NARX神经网络预测模型输出分别作为二元联系数的小波神经网络模型的对应输入;GM(1,1)灰色预测方法较传统的统计预测方法有着较多的优点,它不需要确定预测变量是否服从正态分布,不需要大的样本统计量,不需要根据参数测量低频趋势值输入变量的变化而随时改变预测模型,通过累加生成技术,建立统一的微分方程模型,累加参数测量低频趋势原始值还原后得出预测结果,微分方程模型具有更高的预测精度。建立GM(1,1)灰色预测模型的实质是对低频趋势值原始数据作一次累加生成,使生成数列呈现一定规律,通过建立微分方程模型,求得拟合曲线,用以对参数测量低频趋势值进行预测。The measured low-frequency trend value of the parameters output by the EMD empirical mode decomposition model is used as the input of the GM(1,1) gray prediction model, and the measured high-frequency fluctuation values of multiple parameters output by the EMD empirical mode decomposition model are respectively used as the corresponding multiple NARX neural The input of the network prediction model, the output of the GM(1,1) gray prediction model and the outputs of multiple NARX neural network prediction models are respectively used as the corresponding input of the wavelet neural network model of the binary connection coefficient; the GM(1,1) gray prediction method is relatively The traditional statistical prediction method has many advantages. It does not need to determine whether the predictor variable obeys the normal distribution, does not require large sample statistics, and does not need to change the prediction model at any time according to the change of the input variable of the low-frequency trend value measured by the parameter. The cumulative generation technology establishes a unified differential equation model, and the cumulative parameter measurement low-frequency trend original value is restored to obtain the prediction result, and the differential equation model has higher prediction accuracy. The essence of establishing the GM(1,1) grey prediction model is to accumulate and generate the original data of the low-frequency trend value once, so that the generated sequence shows a certain law. By establishing the differential equation model, the fitting curve is obtained to measure the low-frequency trend of the parameters. value to predict.
(4)、NARX神经网络预测模型设计(4), NARX neural network prediction model design
EMD经验模态分解模型输出的参数测量低频趋势值作为GM(1,1)灰色预测模型的输入,EMD经验模态分解模型输出的多个参数测量高频波动值分别作为对应的多个NARX神经网络预测模型的输入,GM(1,1)灰色预测模型输出和多个NARX神经网络预测模型输出分别作为二元联系数的小波神经网络模型的对应输入;NARX神经网络预测模型是一种带输出反馈连接的动态递归神经网络,在拓扑连接关系上可等效为有输入时延的BP神经网络加上输出到输入的时延反馈连接,其结构由输入层、时延层、隐层和输出层构成,其中输入层节点用于信号输入,时延层节点用于输入信号和输出反馈信号的时间延迟,隐层节点利用激活函数对时延后的信号做非线性运算,输出层节点则用于将隐层输出做线性加权获得最终网络输出。NARX神经网络预测模型第i个隐层节点的输出hi为:The measured low-frequency trend value of the parameters output by the EMD empirical mode decomposition model is used as the input of the GM(1,1) gray prediction model, and the measured high-frequency fluctuation values of multiple parameters output by the EMD empirical mode decomposition model are respectively used as the corresponding multiple NARX neural The input of the network prediction model, the output of the GM (1, 1) gray prediction model and the outputs of multiple NARX neural network prediction models are respectively used as the corresponding input of the wavelet neural network model of the binary connection coefficient; the NARX neural network prediction model is a kind of with output The dynamic recurrent neural network with feedback connection can be equivalent to a BP neural network with input delay plus a delay feedback connection from output to input in terms of topological connection relationship. Its structure consists of input layer, delay layer, hidden layer and output. Layer composition, in which the input layer node is used for signal input, the delay layer node is used for the time delay of the input signal and the output feedback signal, the hidden layer node uses the activation function to perform nonlinear operations on the delayed signal, and the output layer node uses The final network output is obtained by linearly weighting the output of the hidden layer. The output h i of the ith hidden layer node of the NARX neural network prediction model is:
NARX神经网络第j个输出层节点输出oj为:The output o j of the jth output layer node of the NARX neural network is:
本发明专利的NARX神经网络的输入层、时延层、隐层和输出层分别为2-19-10-1个节点。The input layer, the delay layer, the hidden layer and the output layer of the NARX neural network of the patent of the present invention are respectively 2-19-10-1 nodes.
(5)、ARIMA预测模型设计(5), ARIMA prediction model design
二元联系数的小波神经网络输出的参数测量确定值a和波动值b分别作为对应的按拍延迟线TDL的输入,2个按拍延迟线TDL输出分别作为对应的ARIMA预测模型的输入,2个ARIMA预测模型输出分别作为二元联系数的小波神经网络模型的对应输入,ARIMA(Autoregressive Integrated Moving Average)预测模型是自回归积分滑动平均模型,它将自回归模型(Autoregressive,AR)和滑动平均模型(Moving Average,MA)有机地组合起来,使之成为一种综合的预测方法。作为有效的现代数据处理方法之一,它被誉为时间序列预测方法中最复杂最高级的模型,在实际应用中,由于输入原始数据序列往往表现出一定的趋势或循环特征,不满足ARMA模型对时间序列的平稳性要求,而取差分是消除数据趋势性的一种方便和有效的方法。基于差分后的数据序列建立的模型称为ARIMA模型,记为{Xt}-ARIMA(p,d,q),其中p、q称为模型的阶,d表示差分的次数。显然,当d为0时,ARIMA模型为ARMA模型,其定义为:The parameter measurement determination value a and the fluctuation value b output by the wavelet neural network of the binary connection number are used as the input of the corresponding beat delay line TDL, respectively, and the two beat delay line TDL outputs are used as the input of the corresponding ARIMA prediction model, 2 The outputs of each ARIMA prediction model are respectively used as the corresponding input of the wavelet neural network model of the binary connection coefficient. The model (Moving Average, MA) is organically combined to make it a comprehensive forecasting method. As one of the effective modern data processing methods, it is known as the most complex and advanced model in time series forecasting methods. In practical applications, because the input original data series often show a certain trend or cycle characteristics, it does not satisfy the ARMA model. The stationarity of time series is required, and taking the difference is a convenient and effective method to eliminate the trend of the data. The model established based on the differenced data sequence is called the ARIMA model, denoted as {Xt}-ARIMA(p, d, q), where p and q are called the order of the model, and d represents the number of differences. Obviously, when d is 0, the ARIMA model is an ARMA model, which is defined as:
xt=b1xt-1+…+bpxt-p+εt+a1εt-1+…+aqεt-q (6)x t = b 1 x t-1 +…+b p x tp +ε t +a 1 ε t-1 +…+a q ε tq (6)
{xt}为要预测的二元联系数的小波神经网络输出的参数测量确定值a和波动值b的数据序列,{εt}~WN(0,σ2)。ARIMA模型建立主要包括模型的识别、参数估计和模型诊断。模型识别主要包括时间序列的预处理和模型参数的初步定阶;模型定阶完成之后需要通过时间序列观察值并结合p,d,q值来对模型中的未知参数进行估计;模型的诊断主要是针对整个模型的显著性检验和模型中参数的显著性检验。通常模型的建立是个不断优化的过程,模型优化常用的为AIC和BIC准则,即最小信息量准则其值越小,模型越合适,BIC准则是针对AIC准则对大样本序列的不足所做的改进。可以用ARIMA(p,d,q)模型对时间序列进行拟合了.ARIMA(p,d,q)建模步骤如下:{x t } is the data sequence of the parameter measurement determination value a and the fluctuation value b output by the wavelet neural network of the binary connection coefficient to be predicted, {ε t }~WN(0,σ 2 ). ARIMA model establishment mainly includes model identification, parameter estimation and model diagnosis. Model identification mainly includes time series preprocessing and initial order determination of model parameters; after the model order determination is completed, it is necessary to estimate the unknown parameters in the model through time series observations combined with p, d, and q values; model diagnosis is mainly is the significance test for the entire model and the significance test for the parameters in the model. Usually the establishment of the model is a process of continuous optimization. The commonly used model optimization is the AIC and BIC criteria, that is, the smaller the value of the minimum information criterion, the more suitable the model is. The BIC criterion is an improvement for the deficiency of the AIC criterion for large sample sequences. . The ARIMA(p,d,q) model can be used to fit the time series. The ARIMA(p,d,q) modeling steps are as follows:
A、获得二元联系数的小波神经网络输出的参数测量确定值a和波动值b序列。A. Obtain the parameter measurement determination value a and the fluctuation value b sequence output by the wavelet neural network of the binary connection coefficient.
B、判断序列的平稳性,如果序列非平稳,需要对数据进行数据预处理及差分运算使序列能够平稳,并确定差分阶数d的值。B. Judging the stationarity of the sequence, if the sequence is not stationary, it is necessary to perform data preprocessing and difference operation on the data to make the sequence stationary, and determine the value of the difference order d.
C、当差分后序列为平稳非白噪声序列,我们就可以选择阶数适当的ARMA(p,q)模型对该序列建模。C. When the sequence after difference is a stationary non-white noise sequence, we can choose an ARMA(p,q) model with appropriate order to model the sequence.
D、根据识别的模型及其阶数,对模型中的未知参数进行估计。D. Estimate the unknown parameters in the model according to the identified model and its order.
E、对残差序列进行检验,用统计检验的方法检验此初步模型是否有效。E. Test the residual sequence, and use the method of statistical test to test whether the preliminary model is valid.
F、利用所得拟合模型对平稳化的时间序列预测将来的发展趋势。F. Use the obtained fitting model to predict the future development trend of the stationary time series.
(6)、二元联系数的小波神经网络模型设计(6) The wavelet neural network model design of binary connection number
二元联系数的小波神经网络模型输出参数测量值的确定值a和波动值b构成参数测量值的二元联系数为a+bi,参数测量值的确定值a和波动值b分别作为对应的按拍延迟线TDL的输入和二元联系数的小波神经网络模型的2个对应输入,2个按拍延迟线TDL输出分别作为对应的ARIMA预测模型的输入,2个ARIMA预测模型输出分别作为二元联系数的小波神经网络模型的对应输入,二元联系数的小波神经网络模型输出作为参数检测模块输出的被参数的二元联系数值;参数检测模块的结构见图2所示。小波神经网络模型WNN(WaveletNeural Networks)是在小波理论基础上,结合人工神经网络而提出的一种前馈型网络。它是以小波函数为神经元的激励函数,小波的伸缩、平移因子以及连接权重,在对误差能量函数的优化过程中被自适应调整。设小波神经网络模型的输入信号可以表示为输入的一维向量xi(i=1,2,…,n),输出信号表示为yk(k=1,2,…,m),小波神经网络模型输出层输出值的计算公式为:The wavelet neural network model of the binary connection number outputs the determined value a and the fluctuation value b of the parameter measurement value. The binary connection number of the parameter measurement value is a+bi, and the determined value a and the fluctuation value b of the parameter measurement value are taken as the corresponding The input of the beat delay line TDL and the two corresponding inputs of the wavelet neural network model of the binary connection number, the two beat delay line TDL outputs are respectively used as the input of the corresponding ARIMA prediction model, and the outputs of the two ARIMA prediction models are respectively used as two The corresponding input of the wavelet neural network model of the element connection number, the output of the wavelet neural network model of the binary connection number is the binary connection value of the parameter output by the parameter detection module; the structure of the parameter detection module is shown in Figure 2. The wavelet neural network model WNN (Wavelet Neural Networks) is a feedforward network proposed by combining artificial neural network on the basis of wavelet theory. It uses the wavelet function as the excitation function of the neuron, and the wavelet scaling, translation factor and connection weight are adaptively adjusted in the process of optimizing the error energy function. Assuming that the input signal of the wavelet neural network model can be represented as an input one-dimensional vector x i (i=1,2,…,n), and the output signal is represented as yk (k=1,2,…,m), the wavelet neural network The calculation formula of the output value of the output layer of the network model is:
公式中ωij输入层i节点和隐含层j节点间的连接权值,为小波基函数,bj为小波基函数的平移因子,aj小波基函数的伸缩因子,ωjk为隐含层j节点和输出层k节点间的连接权值。本专利中的小波神经网络模型的权值和阈值的修正算法采用梯度修正法来更新网络权值和小波基函数参数,从而使小波神经网络输出不断逼近期望输出。小波神经网络模型的输出为代表一段时间参数测量传感器值大小的动态二元联系数,动态二元联系数为a+bi,a+bi构成在一段时间参数测量传感器输出的被测量参数的动态二元联系数值。In the formula, ω ij is the connection weight between the input layer i node and the hidden layer j node, is the wavelet basis function, b j is the translation factor of the wavelet basis function, a j is the scaling factor of the wavelet basis function, ω jk is the connection weight between the hidden layer j node and the output layer k node. The correction algorithm for the weights and thresholds of the wavelet neural network model in this patent uses the gradient correction method to update the network weights and wavelet basis function parameters, so that the output of the wavelet neural network is constantly approaching the desired output. The output of the wavelet neural network model is a dynamic binary connection number representing the magnitude of the sensor value of the parameter measurement sensor for a period of time. Meta contact value.
2、BAM神经网络模型设计2. BAM neural network model design
3个参数检测模块输出的3个联系数作为BAM神经网络模型的输入,BAM神经网络模型输出的二元联系数作为ART2神经网络模型对应的输入;BAM神经网络模型拓扑结构中,网络输入端的初始模式为x(t),通过权值矩阵W1加权后到达输出端y端,经过输出节点的转移特性fy的非线性变换和W2矩阵加权后返回到输入端x,再经过x端输出节点转移特性fx的非线性变换,变为输入端x的输出,反复这一运行过程,BAM神经网络模型状态转移方程见式(8)。The three connection numbers output by the three parameter detection modules are used as the input of the BAM neural network model, and the binary connection number output by the BAM neural network model is used as the input corresponding to the ART2 neural network model; in the topology of the BAM neural network model, the initial value of the network input The mode is x(t), which is weighted by the weight matrix W 1 to reach the output terminal y, and then returned to the input terminal x after the nonlinear transformation of the transfer characteristic f y of the output node and W 2 matrix weighting, and then output through the x terminal The nonlinear transformation of the node transfer characteristic f x becomes the output of the input terminal x, and this operation process is repeated. The state transition equation of the BAM neural network model is shown in equation (8).
BAM神经网络模型的输出为代表一段时间代表畜禽活动状态的动态二元联系数,动态二元联系数为a+bi,a+bi构成在一段时间畜禽活动状态的二元联系数值。The output of the BAM neural network model is the dynamic binary connection number representing the activity state of livestock and poultry for a period of time.
3、ARIMA预测模型的设计3. Design of ARIMA prediction model
ART2神经网络模型输出的确定值和波动值作为2个按拍延迟线TDL的输入和ART2神经网络模型的对应输入,2个按拍延迟线TDL输出分别作为对应的2个ARIMA预测模型输入,2个ARIMA预测模型输出作为ART2神经网络模型的对应输入;ARIMA预测模型的设计方法参照参数检测模块的ARIMA预测模型的设计过程和方法。The determined value and the fluctuation value output by the ART2 neural network model are used as the input of the two beat delay line TDLs and the corresponding input of the ART2 neural network model, and the two beat delay line TDL outputs are respectively used as the corresponding two ARIMA prediction model inputs, 2 The output of each ARIMA prediction model is used as the corresponding input of the ART2 neural network model; the design method of the ARIMA prediction model refers to the design process and method of the ARIMA prediction model of the parameter detection module.
4、ART2神经网络模型的设计4. Design of ART2 neural network model
BAM神经网络模型输出的二元联系数作为ART2神经网络模型对应的输入,ART2神经网络模型输出的确定值和波动值作为2个按拍延迟线TDL的输入和ART2神经网络模型的对应输入,2个按拍延迟线TDL输出分别作为对应的2个ARIMA预测模型输入,2个ARIMA预测模型输出作为ART2神经网络模型的对应输入,ART2神经网络模型输出的确定值和波动值构成二元联系数,5个不同二元联系数分别对应畜禽处于卧爬、行走、站立、平卧和侧卧共5种不同状态;ART2神经网络模型结构包括F1注意子系统和F2取向子系统,F1层分为上、The binary connection number output by the BAM neural network model is used as the input corresponding to the ART2 neural network model, the definite value and the fluctuation value output by the ART2 neural network model are used as the input of the two beat-by-beat delay lines TDL and the corresponding input of the ART2 neural network model, 2 The TDL outputs of each beat delay line are respectively used as the input of the corresponding two ARIMA prediction models, and the outputs of the two ARIMA prediction models are used as the corresponding inputs of the ART2 neural network model. The 5 different binary connection numbers correspond to 5 different states of the livestock and poultry in recumbency, walking, standing, supine and side recumbency; the ART2 neural network model structure includes the F1 attention subsystem and the F2 orientation subsystem, and the F1 layer is divided into superior,
中、下三层,其中下层和中层、中层和上层分别形成两个封闭的正反馈回路,实现特征增强和噪声抑制的功能;它由长期和短期记忆构成F1和F2共有M个神经元,构成M维状态向量代表网络的短期记忆STM;F1和F2的内外星连接权向量构成了网络的自适应长期记忆LTM;网络中包含两种功能神经元,分别用空心和实心表示,其中空心神经元表示输入激励叠加,实心神经元表示输入向量的模。ART2神经网络模型输出的确定值c和波动值d,它们构成二元联系数为c+di,5个不同二元联系数分别对应畜禽处于卧爬、行走、站立、平卧和侧卧共5种不同状态。ART2神经网络模型输出的二元联系数与畜禽状态的对应关系如见表1。The middle and lower layers, of which the lower layer and the middle layer, the middle layer and the upper layer respectively form two closed positive feedback loops to realize the functions of feature enhancement and noise suppression; it is composed of long-term and short-term memory. There are M neurons in F1 and F2, which constitute The M-dimensional state vector represents the short-term memory STM of the network; the internal and external connection weight vectors of F1 and F2 constitute the adaptive long-term memory LTM of the network; the network contains two kinds of functional neurons, which are represented by hollow and solid, among which hollow neurons represents the input excitation superposition, and the solid neurons represent the norm of the input vector. The definite value c and the fluctuation value d output by the ART2 neural network model, they constitute a binary connection number c+di, and the five different binary connection numbers correspond to the animals and poultry in recumbent crawling, walking, standing, supine and side recumbency. 5 different states. The corresponding relationship between the binary connection number output by the ART2 neural network model and the state of livestock and poultry is shown in Table 1.
表1 5个不同二元联系数与畜禽状态的对应关系表Table 1 Correspondence table of five different binary connection numbers and livestock and poultry status
5、基于云平台的畜禽体征参数采集与智能预测平台设计5. Cloud-based platform design of livestock and poultry sign parameter collection and intelligent prediction platform
畜禽体征参数的检测节点、网关节点、现场监控端、云平台和手机App组成,通过ZiGBee技术实现检测节点之间以及检测节点和网关节点之间的通信;检测节点将检测畜禽体温和活动参数通过网关节点发送给现场监控端和云平台,网关节点、云平台、现场监控端和手机App之间实现畜禽体温和活动信息参数的双向传输;根据畜禽参数的分布状况,采用穿戴方式检测节点穿戴在畜禽体表,网关节点和现场监控端安放在畜禽养殖场,其中检测节点实现对畜禽温度和活动参数信息的检测,通过该系统实现对畜禽活动信息进行监测和畜禽姿态的智能化预测。It consists of detection node, gateway node, on-site monitoring terminal, cloud platform and mobile app for the physical parameters of livestock and poultry. The communication between detection nodes and between detection nodes and gateway nodes is realized through ZiGBee technology; the detection node will detect the body temperature and activity of livestock and poultry. The parameters are sent to the on-site monitoring terminal and the cloud platform through the gateway node, and the two-way transmission of livestock and poultry body temperature and activity information parameters between the gateway node, cloud platform, on-site monitoring terminal and mobile app is realized; according to the distribution of livestock and poultry parameters, the wearing method is adopted. The detection node is worn on the body surface of the livestock and poultry, and the gateway node and the on-site monitoring terminal are placed in the livestock and poultry farm. The detection node realizes the detection of the temperature and activity parameter information of the livestock and poultry. Intelligent prediction of bird posture.
本发明方案所公开的技术手段不仅限于上述实施方式所公开的技术手段,还包括由以上技术特征任意组合所组成的技术方案。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰这些改进和润饰也视为本发明的保护范围。The technical means disclosed in the solution of the present invention are not limited to the technical means disclosed in the above embodiments, but also include technical solutions composed of any combination of the above technical features. It should be pointed out that for those skilled in the art, without departing from the principle of the present invention, several improvements and modifications can also be made. These improvements and modifications are also regarded as the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111563316.8A CN114417242B (en) | 2021-12-20 | 2021-12-20 | Big data detection system for livestock and poultry activity information |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111563316.8A CN114417242B (en) | 2021-12-20 | 2021-12-20 | Big data detection system for livestock and poultry activity information |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114417242A true CN114417242A (en) | 2022-04-29 |
CN114417242B CN114417242B (en) | 2023-03-24 |
Family
ID=81266564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111563316.8A Active CN114417242B (en) | 2021-12-20 | 2021-12-20 | Big data detection system for livestock and poultry activity information |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114417242B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115862894A (en) * | 2022-12-15 | 2023-03-28 | 中国科学院数学与系统科学研究院 | Coronary heart disease research method and system based on least square estimation and privacy protection |
CN118197635A (en) * | 2024-05-16 | 2024-06-14 | 尽开科技(大连)有限公司 | Beef cattle health detection data processing method |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH078128A (en) * | 1993-06-25 | 1995-01-13 | Natl Fedelation Of Agricult Coop Assoc | Breeding control system for livestock and poultry |
CN101894220A (en) * | 2010-07-28 | 2010-11-24 | 江南大学 | A Livestock and Poultry Health Data Acquisition System |
CN201947452U (en) * | 2010-10-22 | 2011-08-24 | 广州中大百迅信息技术有限公司 | Poultry house environment monitoring system based on wireless sensor network |
CN102647475A (en) * | 2012-04-18 | 2012-08-22 | 浙江大学 | A kind of livestock and poultry farm intelligent internet of things system and internet of things method |
US20120326862A1 (en) * | 2011-06-22 | 2012-12-27 | Hana Micron America Inc. | Early Alert System and Method for Livestock Disease Detection |
CN109145032A (en) * | 2018-08-27 | 2019-01-04 | 北京奥金达农业科技发展有限公司 | A kind of bee raising intelligent monitoring method and system |
CN210746677U (en) * | 2019-06-05 | 2020-06-16 | 中国农业大学 | A health monitoring system for livestock animals |
CN112862256A (en) * | 2021-01-13 | 2021-05-28 | 淮阴工学院 | Big data detection system of beasts and birds house environment |
-
2021
- 2021-12-20 CN CN202111563316.8A patent/CN114417242B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH078128A (en) * | 1993-06-25 | 1995-01-13 | Natl Fedelation Of Agricult Coop Assoc | Breeding control system for livestock and poultry |
CN101894220A (en) * | 2010-07-28 | 2010-11-24 | 江南大学 | A Livestock and Poultry Health Data Acquisition System |
CN201947452U (en) * | 2010-10-22 | 2011-08-24 | 广州中大百迅信息技术有限公司 | Poultry house environment monitoring system based on wireless sensor network |
US20120326862A1 (en) * | 2011-06-22 | 2012-12-27 | Hana Micron America Inc. | Early Alert System and Method for Livestock Disease Detection |
CN102647475A (en) * | 2012-04-18 | 2012-08-22 | 浙江大学 | A kind of livestock and poultry farm intelligent internet of things system and internet of things method |
CN109145032A (en) * | 2018-08-27 | 2019-01-04 | 北京奥金达农业科技发展有限公司 | A kind of bee raising intelligent monitoring method and system |
CN210746677U (en) * | 2019-06-05 | 2020-06-16 | 中国农业大学 | A health monitoring system for livestock animals |
CN112862256A (en) * | 2021-01-13 | 2021-05-28 | 淮阴工学院 | Big data detection system of beasts and birds house environment |
Non-Patent Citations (2)
Title |
---|
CEDRICOKINDA: "A review on computer vision systems in monitoring of poultry: A welfare perspective", 《ARTIFICIAL INTELLIGENCE IN AGRICULTURE》 * |
李奇峰 等: "畜禽养殖疾病诊断智能传感技术研究进展", 《中国农业科学》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115862894A (en) * | 2022-12-15 | 2023-03-28 | 中国科学院数学与系统科学研究院 | Coronary heart disease research method and system based on least square estimation and privacy protection |
CN118197635A (en) * | 2024-05-16 | 2024-06-14 | 尽开科技(大连)有限公司 | Beef cattle health detection data processing method |
CN118197635B (en) * | 2024-05-16 | 2024-07-09 | 尽开科技(大连)有限公司 | Beef cattle health detection data processing method |
Also Published As
Publication number | Publication date |
---|---|
CN114417242B (en) | 2023-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111476278B (en) | An intelligent detection system for gas concentration | |
CN114418183B (en) | Livestock and poultry health signs big data IoT detection system | |
CN110580021B (en) | An intelligent monitoring system for granary environment safety based on field bus | |
CN113031555B (en) | Intelligent purification system for harmful gas in environment of livestock and poultry house | |
CN111461187B (en) | An intelligent detection system for building settlement | |
CN114397043B (en) | Multi-point temperature intelligent detection system | |
CN115016276B (en) | Intelligent water content adjustment and environment parameter Internet of things big data system | |
CN114417242B (en) | Big data detection system for livestock and poultry activity information | |
CN113301127B (en) | Livestock feed detection system | |
CN114839881B (en) | Intelligent garbage cleaning and environmental parameter big data Internet of things system | |
CN111426344A (en) | An intelligent detection system for building energy consumption | |
CN115128978A (en) | IoT environment big data detection and intelligent monitoring system | |
CN114911185A (en) | Security big data Internet of things intelligent system based on cloud platform and mobile terminal App | |
CN115905938A (en) | Storage tank safety monitoring method and system based on Internet of things | |
CN115687995A (en) | Big data environmental pollution monitoring method and system | |
CN112911533B (en) | A temperature detection system based on mobile app | |
CN114386672B (en) | Environment big data Internet of things intelligent detection system | |
CN114358244B (en) | Big data intelligent detection system of pressure based on thing networking | |
CN114390376B (en) | Fire big data remote detection and early warning system | |
CN114399024B (en) | Oil gas concentration big data intelligent detection system | |
CN117306608A (en) | Foundation pit big data acquisition and intelligent monitoring method and Internet of things system thereof | |
CN115016275B (en) | Intelligent feeding and livestock house big data Internet of things system | |
CN115052018A (en) | Big data system of thing networking smog and environmental parameter | |
CN117221352A (en) | Internet of things data acquisition and intelligent big data processing method and cloud platform system | |
CN115659201A (en) | Internet of things gas concentration detection method and monitoring system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20230831 Address after: 230000 b-1018, Woye Garden commercial office building, 81 Ganquan Road, Shushan District, Hefei City, Anhui Province Patentee after: HEFEI WISDOM DRAGON MACHINERY DESIGN Co.,Ltd. Address before: 230000 floor 1, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province Patentee before: Dragon totem Technology (Hefei) Co.,Ltd. Effective date of registration: 20230831 Address after: 230000 floor 1, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province Patentee after: Dragon totem Technology (Hefei) Co.,Ltd. Address before: 223005 Jiangsu Huaian economic and Technological Development Zone, 1 East Road. Patentee before: HUAIYIN INSTITUTE OF TECHNOLOGY |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240430 Address after: 242000 Liu Jia Ta, Sanxi Community, Sanxi Town, Jingde County, Xuancheng City, Anhui Province Patentee after: Anhui Shenqin Agricultural Technology Co.,Ltd. Country or region after: China Address before: 230000 b-1018, Woye Garden commercial office building, 81 Ganquan Road, Shushan District, Hefei City, Anhui Province Patentee before: HEFEI WISDOM DRAGON MACHINERY DESIGN Co.,Ltd. Country or region before: China |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240506 Address after: No. 32 Shangshu Village, Xinqiao Community, Jingyang Town, Jingde County, Xuancheng City, Anhui Province, 242000 Patentee after: Anhui Bofeng Food Group Co.,Ltd. Country or region after: China Address before: 242000 Liu Jia Ta, Sanxi Community, Sanxi Town, Jingde County, Xuancheng City, Anhui Province Patentee before: Anhui Shenqin Agricultural Technology Co.,Ltd. Country or region before: China |
|
TR01 | Transfer of patent right |