CN114415336B - 光学镜头、摄像模组及电子设备 - Google Patents
光学镜头、摄像模组及电子设备 Download PDFInfo
- Publication number
- CN114415336B CN114415336B CN202210092661.6A CN202210092661A CN114415336B CN 114415336 B CN114415336 B CN 114415336B CN 202210092661 A CN202210092661 A CN 202210092661A CN 114415336 B CN114415336 B CN 114415336B
- Authority
- CN
- China
- Prior art keywords
- lens
- lens element
- optical
- image
- optical lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 370
- 238000003384 imaging method Methods 0.000 claims abstract description 90
- 230000004075 alteration Effects 0.000 description 41
- 238000010586 diagram Methods 0.000 description 31
- 238000013461 design Methods 0.000 description 21
- 230000009286 beneficial effect Effects 0.000 description 13
- 201000009310 astigmatism Diseases 0.000 description 12
- 230000035945 sensitivity Effects 0.000 description 11
- 239000000463 material Substances 0.000 description 8
- 230000015556 catabolic process Effects 0.000 description 6
- 238000006731 degradation reaction Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000005452 bending Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 230000004304 visual acuity Effects 0.000 description 4
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000012937 correction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000005304 optical glass Substances 0.000 description 1
- 238000012634 optical imaging Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B30/00—Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
本发明公开了一种光学镜头、摄像模组及电子设备,该光学镜头沿光轴由物侧至像侧依次包括:具有正屈折力的第一透镜,其物侧面于近光轴处为凸面;具有负屈折力的第二透镜,其物侧面、像侧面于近光轴处分别为凸面和凹面;具有负屈折力的第三透镜;具有屈折力的第四透镜,其物侧面、像侧面于近光轴处分别为凹面和凸面;具有屈折力的第五透镜,其像侧面于近光轴处为凹面,且第一透镜至第五透镜至少包括一个非球面透镜;光学镜头满足以下关系式:2.1<TTL/ImgH<2.4。本发明提供的光学镜头、摄像模组及电子设备,能够在实现长焦特性的同时,还具有大像面、高成像质量的特点,并兼顾小型化的设计。
Description
技术领域
本发明涉及光学成像技术领域,尤其涉及一种光学镜头、摄像模组及电子设备。
背景技术
随着社会的进步和发展,市场对电子设备的摄像能力要求越来越高,同时电子设备呈现出了小型、轻薄化的发展趋势,这要求光学镜头必须在满足高成像质量的同时,兼顾小型轻量化的设计,从而为其他部件节约空间。
长焦镜头作为具有远距离拍摄的电子设备的配置优选项,具有视角小、景深短的优点,但其同时也存在着成像面小的明显缺点。因此,如何配置光学镜头的镜片数量、面型等参数,能够使得光学镜头在确保长焦特性的同时,具有大像面、高成像质量的特点,并兼顾小型化的设计,成为了亟需解决的问题。
发明内容
本发明实施例公开了一种光学镜头、摄像模组及电子设备,能够使光学镜头在实现长焦特性的同时,还能够具有大像面、高成像质量的特点,并兼顾小型化的设计。
为了实现上述目的,一方面,本发明公开了一种光学镜头,所述光学镜头沿光轴由物侧至像侧依次包括:
第一透镜,具有正屈折力,所述第一透镜的物侧面于近光轴处为凸面;
第二透镜,具有负屈折力,所述第二透镜的物侧面于近光轴处为凸面,所述第二透镜的像侧面于近光轴处为凹面;
第三透镜,具有负屈折力;
第四透镜,具有屈折力,所述第四透镜的物侧面于近光轴处为凹面,所述第四透镜的像侧面于近光轴处为凸面;
第五透镜,具有屈折力,所述第五透镜的像侧面于近光轴处为凹面,且所述第一透镜至所述第五透镜至少包括一个非球面透镜;
所述光学镜头满足以下关系式:
2.1<TTL/ImgH<2.4;
其中,TTL为所述第一透镜的物侧面至所述光学镜头的成像面于所述光轴上的距离,ImgH为所述光学镜头的最大有效成像圆的半径。
通过限定所述第一透镜为所述光学镜头提供正屈折力,且由于所述第一透镜的物侧面于近光轴处为凸面的设置使所述光学镜头具有足够的汇聚光线的能力和相对照度,以提高所述光学镜头的成像质量;配合具有负屈折力的所述第二透镜及其物侧面于近光轴处为凸面、像侧面于近光轴处为凹面的面型设计,有利于形成望远结构,以实现所述光学镜头的长焦特性,同时还能够使得经过所述第一透镜的光线产生的像差得到改善,降低所述光学镜头的公差敏感度,提高所述光学镜头的成像质量;当光线经过具有负屈折力的所述第三透镜,能够使得入射光线的过渡更加平缓,提高所述光学镜头的相对照度,从而提高所述光学镜头的成像质量;所述第四透镜的物侧面于近光轴处为凹面、像侧面于近光轴处为凸面的面型设计,有利于减小所述光学镜头的望远比(即光学镜头的焦距与其实际达到的焦距之比),从而有利于达成所述光学镜头的长焦摄远性能,同时,还能够缩短所述光学镜头的总长,以实现所述光学镜头的小型化;当光线射入到所述第五透镜时,所述第五透镜的像侧面于近光轴处为凹面的面型设置,可以在确保所述光学镜头的成像范围的同时避免所述第五透镜的镜片外径过大,从而实现所述光学镜头的小型化;配合所述第五透镜可正可负的屈折力配置,可以平衡前透镜组(即所述第一透镜至所述第四透镜)产生的难以矫正的像差,促进所述光学镜头的像差平衡,进而提高所述光学镜头的解像力以及成像质量。
此外,所述光学镜头满足2.1<TTL/ImgH<2.4,能够合理配置所述光学镜头的总长和成像面尺寸,有利于缩短所述光学镜头的总长,并增大成像面的尺寸,以提高所述光学镜头的成像质量,从而,使得所述光学镜头能够在实现大像面、高成像质量的同时,兼顾小型化的设计。当上述关系式比值高于上限时,所述光学镜头的总长过长,不利于所述光学镜头的小型化设计;当上述关系式比值低于下限时,所述光学镜头的总长过小,易导致所述光学镜头的焦距过小,难以满足所述光学镜头对焦距的需求。
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:
Yc52/SD52<0.5;
其中,Yc52为所述第五透镜的像侧面最凸出的临界点与所述光轴的垂直距离,SD52为所述第五透镜的像侧面的最大有效半口径。
由于所述第五透镜作为最靠近成像面的透镜,其像侧面的最大有效半口径大小决定最终到达成像面的光线束,因此,通过限定上述关系式,能够使所述第五透镜的像侧面的最大有效半口径与感光面的尺寸合理配合,以确保在成像面上具有足够的光线束,从而增大所述光学镜头的成像面尺寸,进而有利于匹配更大尺寸的感光元件。当其比值高于上限时,最大视场对应的主光线入射角过大,易导致所述光学镜头出现暗角,从而造成所述光学镜头的成像质量下降。
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:
|f5/SAG52|>14;
其中,f5为所述第五透镜的焦距,SAG52为所述第五透镜的像侧面的最大有效口径处至所述第五透镜的像侧面与所述光轴的交点于所述光轴上的距离(即所述第五透镜的像侧面于最大口径处的矢高)。
通过对所述第五透镜的焦距与所述第五透镜的像侧面于最大口径处的矢高的比值进行约束,能够合理配置所述第五透镜的屈折力和面型,有利于消除所述光学镜头的色差与球差,从而提高所述光学镜头的成像质量;此外,还能够有利于压缩所述光学镜头的总长,从而满足所述光学镜头的小型化设计。当其比值低于下限时,所述第五透镜的屈折力和面型配置受限,所述光学镜头的色差和球差较大,造成所述光学镜头的成像质量下降。
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:
1<(|SAG51|+|SAG52|)/CT5<5;
其中,SAG51为所述第五透镜的物侧面的最大有效口径处至所述第五透镜的物侧面与所述光轴的交点于所述光轴方向上的距离(即所述第五透镜的物侧面于最大口径处的矢高),SAG52为所述第五透镜的像侧面的最大有效口径处至所述第五透镜的像侧面与所述光轴的交点于所述光轴上的距离(即所述第五透镜的像侧面于最大口径处的矢高),CT5为所述第五透镜于所述光轴上的厚度(即所述第五透镜的中心厚度)。
通过合理配置所述第五透镜的物侧面、像侧面于最大口径处的矢高和所述第五透镜的中心厚度进行控制,能够减小进入成像面的光线的入射角,从而降低所述光学镜头的敏感性,同时,通过在所述第五透镜上设置有多个反曲点,能够使所述光学镜头的屈折力分布更均匀,有利于修正前透镜组(即所述第一透镜至所述第四透镜)产生的畸变与场曲,提高所述光学镜头的成像质量。当其比值高于上限时,所述第五透镜于最大口径处的矢高过大,所述第五透镜的面型复杂度高、加工难度大。当其比值低于下限时,所述第五透镜的厚度过大,不利于所述光学镜头的小型化。
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:
|SAG22/SAG52|<1.5;
其中,SAG22为所述第二透镜的像侧面的最大有效口径处至所述第二透镜的像侧面与所述光轴的交点于所述光轴上的距离(即所述第二透镜的像侧面于最大口径处的矢高),SAG52为所述第五透镜的像侧面的最大有效口径处至所述第五透镜的像侧面与所述光轴的交点于所述光轴上的距离(即所述第五透镜的像侧面于最大口径处的矢高)。
通过控制所述第二透镜与所述第五透镜的像侧面于最大口径处的矢高之比,能够控制所述第二透镜、所述第五透镜的弯曲程度,从而平衡所述光学镜头产生的较大球差,同时结合合理的所述第二透镜至所述第五透镜的屈折力分布,有利于校正边缘像差,从而提升所述光学镜头的解像能力,提高所述光学镜头的成像质量;此外,通过控制所述第二透镜、所述第五透镜于最大口径处的矢高,能够压缩所述光学镜头的尺寸,有利于所述光学镜头的小型化设计。当其比值高于上限时,所述第二透镜于最大口径处的矢高过大,所述第二透镜的加工难度大,且不利于所述光学镜头的小型化设计。
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:
(|T12|+|T23|)/T34<0.8;
其中,T12为所述第一透镜的像侧面至所述第二透镜的物侧面于所述光轴上的距离,即,所述第一透镜与所述第二透镜于所述光轴上的空气间隙,T23为所述第二透镜的像侧面至所述第三透镜的物侧面于所述光轴上的距离,即,所述第二透镜与所述第三透镜于所述光轴上的空气间隙,T34为所述第三透镜的像侧面至所述第四透镜的物侧面于所述光轴上的距离,即,所述第三透镜与所述第四透镜于所述光轴上的空气间隙。
通过合理控制该比值,能够使得光线保持较小的入射角度和出射角度,有利于减小入射光线在所述光学镜头中的偏折角度,从而减少像散的产生,同时,通过控制各透镜之间的空气间隙,不仅有利于降低公差敏感性,提升所述光学镜头生产时的品质和稳定性,还能够提高所述光学镜头结构的紧凑性,从而实现所述光学镜头的小型化。当其比值高于上限时,各透镜之间的间隙过大,不利于所述光学镜头的小型化。
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:
f123>0mm;
其中,f123为所述第一透镜、所述第二透镜和所述第三透镜的组合焦距。
通过合理配置所述第一透镜、所述第二透镜和所述第三透镜的组合焦距,能够使得前透镜组(即所述第一透镜、所述第二透镜和所述第三透镜的组合透镜组)的屈折力在空间上合理分布,减少前透镜组产生的球差,从而提高所述光学镜头的整体解像能力,同时,前透镜组的组合屈折力为正,能够强化所述光学镜头对入射光线的汇聚能力,提高所述光学镜头的相对亮度,进而提高所述光学镜头的成像质量。当其比值低于下限时,所述光学镜头的解像能力变弱,导致所述光学镜头的成像质量下降。
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:
|f/f2+f/f4|<1.5;
其中,f为所述光学镜头的焦距,f2为所述第二透镜的焦距,f4为所述第四透镜的焦距。
通过合理配置所述第二透镜、所述第四透镜的焦距,能够平衡前透镜组(即所述第一透镜、所述第二透镜和所述第三透镜的组合透镜组)产生的较大球差,使得所述光学镜头拥有较高的像差矫正能力,促进所述光学镜头的像差平衡,进而提高所述光学镜头的解像力,从而提高所述光学镜头的成像质量;同时,能够有利于压缩所述光学镜头的尺寸,从而使得所述光学镜头满足小型化的设计。当其比值高于上限时,所述光学镜头的整体焦距过大,不利于所述光学镜头的小型化。
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:
|(R51-R52)/(R51+R52)|<1.1;和/或,|(R41-R42)/(R41+R42)|<0.6;
其中,R51为所述第五透镜的物侧面于所述光轴处的曲率半径,R52为所述第五透镜的像侧面于所述光轴处的曲率半径,R41为所述第四透镜的物侧面于所述光轴处的曲率半径,R42为所述第四透镜的像侧面于所述光轴处的曲率半径。
通过对所述第四透镜、所述第五透镜的物侧面和像侧面的曲率半径的合理配置,能够有效控制所述第四透镜、所述第五透镜的弯曲程度,使所述第四透镜、所述第五透镜的镜片形状平滑均匀,从而可降低所述光学镜头的组装敏感度,同时成像面中心到边缘的整体成像画质清晰均匀,可以有效降低鬼像产生的风险,提升所述光学镜头的解像能力,从而提高所述光学镜头的成像质量。当其比值高于上限时,所述第四透镜、所述第五透镜的弯曲程度较大,所述光学镜头的敏感度大,易导致所述光学镜头的成像质量下降。
第二方面,本发明公开了一种摄像模组,所述摄像模组包括图像传感器以及如上述第一方面所述的光学镜头,所述图像传感器设置于所述光学镜头的像侧。具有该光学镜头的摄像模组在实现长焦特性的同时,还能够具有大像面、高成像质量的特点,并兼顾小型化的设计。
第三方面,本发明公开了一种电子设备,所述电子设备包括壳体以及如上述第二方面所述的摄像模组,所述摄像模组设于所述壳体。具有该摄像模组的电子设备在实现长焦特性的同时,还能够具有大像面、高成像质量的特点,并兼顾小型化的设计。
与现有技术相比,本发明的有益效果在于:
本发明实施例提供的一种光学镜头、摄像模组及电子设备,该光学镜头的第一透镜为光学镜头提供正屈折力,且由于第一透镜的物侧面于近光轴处为凸面的设置使所述光学镜头具有足够的汇聚光线的能力和相对照度,以提高所述光学镜头的成像质量;配合具有负屈折力的第二透镜及其物侧面于近光轴处为凸面、像侧面于近光轴处为凹面的面型设计,有利于形成望远结构,以实现光学镜头的长焦特性,同时还能够使得经过第一透镜的光线产生的像差得到改善,降低光学镜头的公差敏感度,提高光学镜头的成像质量;当光线经过具有负屈折力的第三透镜,能够使得入射光线的过渡更加平缓,提高光学镜头的相对照度,从而提高光学镜头的成像质量;第四透镜的物侧面于近光轴处为凹面、像侧面于近光轴处为凸面的面型设计,有利于减小光学镜头的望远比(即光学镜头的焦距与其实际达到的焦距之比),从而有利于达成光学镜头的长焦摄远性能,同时,还能够缩短光学镜头的总长,以实现光学镜头的小型化;当光线射入到第五透镜时,第五透镜的像侧面于近光轴处为凹面的面型设置,可以在确保光学镜头的成像范围的同时避免第五透镜的镜片外径过大,从而实现光学镜头的小型化;配合第五透镜可正可负的屈折力配置,可以平衡前透镜组(即第一透镜至第四透镜)产生的难以矫正的像差,促进光学镜头的像差平衡,进而提高光学镜头的解像力以及成像质量。
此外,光学镜头满足2.1<TTL/ImgH<2.4,能够合理配置光学镜头的总长和成像面尺寸,有利于缩短光学镜头的总长,并增大成像面的尺寸,以提高光学镜头的成像质量,从而,使得光学镜头能够在实现大像面、高成像质量的同时,兼顾小型化的设计。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请第一实施例公开的光学镜头的结构示意图;
图2是本申请第一实施例公开的光学镜头的纵向球差图(mm)、像散曲线图(mm)及畸变曲线图(%);
图3是本申请第二实施例公开的光学镜头的结构示意图;
图4是本申请第二实施例公开的光学镜头的纵向球差图(mm)、像散曲线图(mm)及畸变曲线图(%);
图5是本申请第三实施例公开的光学镜头的结构示意图;
图6是本申请第三实施例公开的光学镜头的纵向球差图(mm)、像散曲线图(mm)及畸变曲线图(%);
图7是本申请第四实施例公开的光学镜头的结构示意图;
图8是本申请第四实施例公开的光学镜头的纵向球差图(mm)、像散曲线图(mm)及畸变曲线图(%);
图9是本申请第五实施例公开的光学镜头的结构示意图;
图10是本申请第五实施例公开的光学镜头的纵向球差图(mm)、像散曲线图(mm)及畸变曲线图(%);
图11是本申请公开的摄像模组的结构示意图;
图12是本申请公开的电子设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明中,术语“上”、“下”、“左”、“右”、“前”、“后”、“顶”、“底”、“内”、“外”、“中”、“竖直”、“水平”、“横向”、“纵向”等指示的方位或位置关系为基于附图所示的方位或位置关系。这些术语主要是为了更好地描述本发明及其实施例,并非用于限定所指示的装置、元件或组成部分必须具有特定方位,或以特定方位进行构造和操作。
并且,上述部分术语除了可以用于表示方位或位置关系以外,还可能用于表示其他含义,例如术语“上”在某些情况下也可能用于表示某种依附关系或连接关系。对于本领域普通技术人员而言,可以根据具体情况理解这些术语在本发明中的具体含义。
此外,术语“安装”、“设置”、“设有”、“连接”、“相连”应做广义理解。例如,可以是固定连接,可拆卸连接,或整体式构造;可以是机械连接,或电连接;可以是直接相连,或者是通过中间媒介间接相连,又或者是两个装置、元件或组成部分之间内部的连通。对于本领域普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
此外,术语“第一”、“第二”等主要是用于区分不同的装置、元件或组成部分(具体的种类和构造可能相同也可能不同),并非用于表明或暗示所指示装置、元件或组成部分的相对重要性和数量。除非另有说明,“多个”的含义为两个或两个以上。
下面将结合实施例和附图对本发明的技术方案作进一步的说明。
请参阅图1,根据本申请的第一方面,本申请公开了一种光学镜头100,光学镜头100包括沿光轴O从物侧至像侧依次设置的第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4和第五透镜L5。成像时,光线从第一透镜L1的物侧依次进入第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4和第五透镜L5,并最终成像于光学镜头100的像面101上。其中,第一透镜L1具有正屈折力,第二透镜L2具有负屈折力,第三透镜L3具有负屈折力,第四透镜L4具有正屈折力或负屈折力,第五透镜L5具有正屈折力或负屈折力。
进一步地,第一透镜L1的物侧面11于近光轴O处为凸面,第一透镜L1的像侧面12于近光轴O处为凸面或凹面;第二透镜L2的物侧面21于近光轴O处为凸面,第二透镜L2的像侧面22于近光轴O处为凹面;第三透镜L3的物侧面31于近光轴O处为凸面或凹面,第三透镜L3的像侧面32于近光轴O处为凸面或凹面;第四透镜L4的物侧面41于近光轴O处为凹面,第四透镜L4的像侧面42于近光轴O处为凸面;第五透镜L5的物侧面51于近光轴O处为凸面或凹面,第五透镜L5的像侧面52于近光轴O处为凹面。
第一透镜L1的物侧面11于圆周处为凹面或凸面,第一透镜L1的像侧面12于圆周处为凹面或凸面;第二透镜L2的物侧面21于圆周处为凸面或凹面,第二透镜L2的像侧面22于圆周处为凸面或凹面;第三透镜L3的物侧面31于圆周处为凸面或凹面,第三透镜L3的像侧面32于圆周处为凸面或凹面;第四透镜L4的物侧面41于圆周处为凸面或凹面,第四透镜L4的像侧面42于圆周处为凸面或凹面;第五透镜L5的物侧面51于圆周处为凸面或凹面,第五透镜L5的像侧面52于圆周处为凸面或凹面。
通过合理配置第一透镜L1至第五透镜L5之间的各透镜的面型和屈折力,能够使光学镜头100在实现长焦特性的同时,还能够具有大像面、高成像质量的特点,并兼顾小型化的设计。
进一步地,在一些实施例中,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4及第五透镜L5的材质均为塑料,此时,光学镜头100能够减少重量并降低成本。在其他实施例中,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4及第五透镜L5的材质也可为玻璃,此时,能够使得光学镜头100具有良好的光学效果,同时还可以降低光学镜头100的温度敏感性。
在一些实施例中,为了便于加工成型,上述第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4及第五透镜L5可均为非球面透镜。可以理解地,在其他实施例中,上述第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4及第五透镜L5也可采用球面透镜。
一些实施例中,光学镜头100还包括光阑STO,光阑STO可为孔径光阑和/或视场光阑,其可设置在第一透镜L1的物侧。通过在第一透镜L1的物侧设置光阑STO,能够使出射光瞳远离成像面101,在不降低光学镜头100的远心性的情况下还能减小光学镜头100的有效直径,从而实现小型化。可以理解的是,在其他实施例中,该光阑STO也可设置在其他透镜之间,根据实际情况调整设置,本实施例对此不作具体限定。
一些实施例中,光学镜头100还包括红外滤光片60,红外滤光片60设置于第五透镜L5与光学镜头100的成像面101之间。选用红外滤光片60,能够滤除红外光,使得成像更符合人眼的视觉体验,从而提升成像质量。可以理解的是,红外滤光片60可以是光学玻璃镀膜制成的,也可以是有色玻璃制成的,或者其他材质的红外滤光片60,可根据实际需要进行选择,在本实施例不作具体限定。
一些实施例中,光学镜头100满足以下关系式:
2.1<TTL/ImgH<2.4;
其中,TTL为第一透镜L1的物侧面11至光学镜头100的成像面101于光轴O上的距离,ImgH为光学镜头100的最大有效成像圆的半径。
通过上述关系式的限定,能够合理配置光学镜头100的总长和成像面尺寸,有利于缩短光学镜头100的总长,并增大成像面101的尺寸,以提高光学镜头100的成像质量,从而,使得光学镜头100能够在实现大像面、高成像质量的同时,兼顾小型化的设计。当上述关系式比值高于上限时,光学镜头100的总长过长,不利于光学镜头100的小型化设计;当所述关系式比值低于下限时,光学镜头100的总长过小,易导致光学镜头100的焦距过小,难以满足光学镜头100对焦距的需求。
一些实施例中,光学镜头100满足以下关系式:
Yc52/SD52<0.5;
其中,Yc52为第五透镜L5的像侧面52最凸出的临界点与所述光轴的垂直距离,SD52为第五透镜L5的像侧面52的最大有效半口径。
由于第五透镜L5作为最靠近成像面101的透镜,其通光口径大小决定最终到达成像面101的光线束,通过限制该比值满足上述关系式,能够使第五透镜L5的像侧面52的通光半口径与感光面的尺寸合理配合,以确保在成像面101上具有足够的光线束,从而增大光学镜头100的成像面尺寸,进而有利于匹配更大尺寸的感光元件,以提升光学镜头100的成像质量。当其比值高于上限时,最大视场对应的主光线入射角过大,易导致光学镜头100出现暗角,从而造成光学镜头100的成像质量下降。
一些实施例中,光学镜头100满足以下关系式:
|f5/SAG52|>14;
其中,f5为第五透镜L5的焦距,SAG52为第五透镜L5的像侧面52的最大有效口径处至第五透镜L5的像侧面52与光轴O的交点于光轴O上的距离(即第五透镜L5的像侧面52于最大口径处的矢高)。
通过对第五透镜L5的焦距与第五透镜L5的像侧面52于最大口径处的矢高的比值进行约束,能够合理配置第五透镜L5的屈折力和面型,有利于消除光学镜头100的色差与球差,从而提高光学镜头100的成像质量;此外,还能够有利于压缩光学镜头100的总长,从而满足光学镜头100的小型化设计。当其比值低于下限时,第五透镜L5的屈折力和面型配置受限,光学镜头100的色差和球差较大,造成光学镜头100的成像质量下降。
一些实施例中,光学镜头100满足以下关系式:
1<(|SAG51|+|SAG52|)/CT5<5;
其中,SAG51为第五透镜L5的物侧面51的最大有效口径处至第五透镜L5的物侧面51与光轴O的交点于光轴O方向上的距离(即第五透镜L5的物侧面51于最大口径处的矢高),SAG52为第五透镜L5的像侧面52的最大有效口径处至第五透镜L5的像侧面52与光轴O的交点于光轴O上的距离(即第五透镜L5的像侧面52于最大口径处的矢高),CT5为第五透镜L5于光轴O上的厚度(即第五透镜L5的中心厚度)。
通过合理配置第五透镜L5的物侧面51、像侧面52于最大口径处矢高和第五透镜L5的中心厚度进行控制,能够减小进入成像面101的光线的入射角,从而降低光学镜头100的敏感性,同时,通过在第五透镜L5上设置有多个反曲点,能够使光学镜头100的屈折力分布更均匀,有利于修正前透镜组(即第一透镜L1至第四透镜L4)产生的畸变与场曲,提高光学镜头100的成像质量。当其比值高于上限时,第五透镜L5于最大口径处的矢高过大,第五透镜L5的面型复杂度高、加工难度大,易导致第五透镜L5的成型质量不稳定,从而影响光学镜头100的成像质量。当其比值低于下限时,第五透镜L5的厚度过大,不利于光学镜头100的小型化。
一些实施例中,光学镜头100满足以下关系式:
|SAG22/SAG52|<1.5;
其中,SAG22为第二透镜L2的像侧面22的最大有效口径处至第二透镜L2的像侧面22与光轴O的交点于光轴O上的距离(即第二透镜L2的像侧面22于最大口径处的矢高),SAG52为第五透镜L5的像侧面52的最大有效口径处至第五透镜L5的像侧面52与光轴O的交点于光轴O上的距离(即第五透镜L5的像侧面52于最大口径处的矢高)。
通过控制第二透镜L2与第五透镜L5的像侧面于最大口径处的矢高之比,能够控制第二透镜L2、第五透镜L5的弯曲程度,从而平衡光学镜头100产生的较大球差,同时结合合理的第二透镜L2至第五透镜L5的屈折力分布,有利于校正边缘像差,从而提升光学镜头100的解像能力,提高光学镜头100的成像质量;此外,通过控制第二透镜L2、第五透镜L5于最大口径处的矢高,能够压缩光学镜头100的尺寸,有利于光学镜头100的小型化设计。当其比值高于上限时,第二透镜L2于最大口径处的矢高过大,第二透镜L2的加工难度大,易导致光学镜头100的成像质量下降。
一些实施例中,光学镜头100满足以下关系式:
(|T12|+|T23|)/T34<0.8;
其中,T12为第一透镜L1的像侧面12至第二透镜L2的物侧面21于光轴O上的距离,即,第一透镜L1与第二透镜L2于光轴O上的空气间隙,T23为第二透镜L2的像侧面22至第三透镜L3的物侧面31于光轴O上的距离,即,第二透镜L2与第三透镜L3于光轴O上的空气间隙,T34为第三透镜L3的像侧面32至第四透镜L4的物侧面41于光轴O上的距离,即,第三透镜L3与第四透镜L4于光轴O上的空气间隙。
通过合理控制该比值,能够使得光线保持较小的入射角度和出射角度,有利于减小入射光线在光学镜头100中的偏折角度,从而减少像散的产生,同时,通过控制各透镜之间的空气间隙,不仅有利于降低公差敏感性,提升光学镜头100生产时的品质和稳定性,还能够提高光学镜头100结构的紧凑性,从而实现光学镜头100的小型化。当其比值高于上限时,各透镜之间的间隙过大,不利于光学镜头100的小型化。
一些实施例中,光学镜头100满足以下关系式:
f123>0mm;
其中,f123为第一透镜L1、第二透镜L2和第三透镜L3的组合焦距。
通过合理配置第一透镜L1、第二透镜L2和第三透镜L3的组合焦距,能够使得前透镜组(即第一透镜L1、第二透镜L2和第三透镜L3的组合透镜组)的屈折力在空间上合理分布,减少前透镜组产生的球差,从而提高光学镜头100的整体解像能力,同时,前透镜组的组合屈折力为正,能够强化光学镜头100对入射光线的汇聚能力,提高光学镜头100的相对亮度,进而提高光学镜头100的成像质量。当其比值低于下限时,光学镜头100的解像能力变弱,导致光学镜头100的成像质量下降。
一些实施例中,光学镜头100满足以下关系式:
|f/f2+f/f4|<1.5;
其中,f为光学镜头100的焦距,f2为第二透镜L2的焦距,f4为第四透镜L4的焦距。
通过合理配置第二透镜L2、第四透镜L4的焦距,能够平衡前透镜组(即第一透镜L1、第二透镜L2和第三透镜L3的组合透镜组)产生的较大球差,使得光学镜头100拥有较高的像差矫正能力,促进光学镜头100的像差平衡,进而提高光学镜头100的解像力,从而提高光学镜头100的成像质量;同时,能够有利于压缩光学镜头100的尺寸,从而使得光学镜头100满足小型化的设计。当其比值高于上限时,光学镜头100的整体焦距过大,不利于光学镜头100的小型化。
一些实施例中,光学镜头100满足以下关系式:
|(R51-R52)/(R51+R52)|<1.1;和/或,|(R41-R42)/(R41+R42)|<0.6;
其中,R51为第五透镜L5的物侧面51于光轴O处的曲率半径,R52为第五透镜L5的像侧面52于光轴O处的曲率半径,R41为第四透镜L4的物侧面41于光轴O处的曲率半径,R42为第四透镜L4的像侧面42于光轴O处的曲率半径。
通过对第四透镜L4、第五透镜L5的物侧面和像侧面的曲率半径的合理配置,能够有效控制第四透镜L4、第五透镜L5的弯曲程度,使第四透镜L4、第五透镜L5的镜片形状平滑均匀,从而可降低光学镜头100的组装敏感度,同时成像面101中心到边缘的整体成像画质清晰均匀,可以有效降低鬼像产生的风险,提升光学镜头100的解像能力,从而提高光学镜头100的成像质量。当其比值高于上限时,第四透镜L4、第五透镜L5的弯曲程度较大,光学镜头100的敏感度大,易导致光学镜头100的成像质量下降。
另外,第一透镜L1至第五透镜L5的任意一个透镜的物侧面和像侧面均为非球面,各非球面透镜的面型可利用但不限于以下非球面公式进行限定:
其中,Z是非球面上相应点到与表面顶点相切的平面的距离,r是非球面上任一点到光轴的距离,c是非球面顶点的曲率,k是圆锥常数,Ai为非球面面型公式中与第i项高次项相对应的系数。
以下将结合具体参数对本实施例的光学镜头100进行详细说明。
第一实施例
本申请的第一实施例公开的光学镜头100的结构示意图如图1所示,光学镜头100包括沿光轴O从物侧向像侧依次设置的光阑STO、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、红外滤光片60。其中,关于第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的材料可参见上述具体实施方式所述,此处不再赘述。
进一步地,第一透镜L1具有正屈折力,第二透镜L2具有负屈折力,第三透镜L3具有负屈折力,第四透镜L4具有负屈折力,第五透镜L5具有正屈折力。
进一步地,第一透镜L1的物侧面11、像侧面12于近光轴O处均为凸面,第二透镜L2的物侧面21、像侧面22于近光轴O处分别为凸面和凹面,第三透镜L3的物侧面31、像侧面32于近光轴O处分别为凸面和凹面,第四透镜L4的物侧面41、像侧面42于近光轴O处分别为凹面和凸面,第五透镜L5的物侧面51、像侧面52于近光轴O处分别为凸面和凹面。
第一透镜L1的物侧面11、像侧面12于圆周处均为凸面,第二透镜L2的物侧面21、像侧面22于圆周处分别为凸面和凹面,第三透镜L3的物侧面31、像侧面32于圆周处分别为凸面和凹面,第四透镜L4的物侧面41、像侧面42于圆周处分别为凹面和凸面,第五透镜L5的物侧面51、像侧面52于圆周处分别为凹面和凸面。
具体地,以光学镜头100的有效焦距f=11.4mm,光学镜头100的视场角FOV=47.9°,光学镜头100的总长TTL=11.43mm为例,光学镜头100的其他参数由下表1给出。其中,沿光学镜头100的光轴O由物侧向像侧的各元件依次按照表1从上至下的各元件的顺序排列。在同一透镜中,面序号较小的表面为该透镜的物侧面,面序号较大的表面为该透镜的像侧面,如面序号2和3分别对应第一透镜L1的物侧面和像侧面。表1中的Y半径为相应面序号的物侧面或像侧面于光轴O处的曲率半径。透镜的“厚度”参数列中的第一个数值为该透镜于光轴O上的厚度,第二个数值为该透镜的像侧面至后一表面于光轴O上的距离。光阑STO于“厚度”参数列中的数值为光阑STO至后一表面顶点(顶点指表面与光轴O的交点)于光轴O上的距离,默认第一透镜L1物侧面到最后一枚镜片像侧面的方向为光轴O的正方向,当该值为负时,表明光阑STO设置于后一表面顶点的像侧,若光阑STO厚度为正值时,光阑STO在后一表面顶点的物侧。可以理解的是,表1中的Y半径、厚度、焦距的单位均为mm,且表1中的折射率、阿贝数在参考波长587.6nm下得到,而焦距则在参考波长555nm下得到。
表2中的k为圆锥常数,表2给出了可用于第一实施例中各非球面镜面的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表1
表2
请参阅图2中的(A),图2中的(A)示出了第一实施例中的光学镜头100在波长为650.0nm、610.0nm、555.0nm、510.0nm、以及470.0nm下的纵向球差曲线图。图2中的(A)中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示归一化视场。由图2中的(A)可以看出,第一实施例中的光学镜头100的球差数值较佳,说明本实施例中的光学镜头100的成像质量较好。
请参阅图2中的(B),图2中的(B)为第一实施例中的光学镜头100在波长为555.0nm下的光线像散图。其中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示像高,单位为mm。像散曲线表示子午成像面弯曲T和弧矢成像面弯曲S,由图2中的(B)可以看出,在该波长下,光学镜头100的像散得到了较好的补偿。
请参阅图2中的(C),图2中的(C)为第一实施例中的光学镜头100在波长为555.0nm下的畸变曲线图。其中,沿X轴方向的横坐标表示畸变,沿Y轴方向的纵坐标表示像高,单位为mm。由图2中的(C)可以看出,在该波长下,该光学镜头100的畸变得到了很好的矫正。
第二实施例
本申请的第二实施例公开的光学镜头100的结构示意图如图3所示,光学镜头100包括沿光轴O从物侧向像侧依次设置的光阑STO、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、红外滤光片60。其中,关于第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的材料可参见上述具体实施方式所述,此处不再赘述。
进一步地,第一透镜L1具有正屈折力,第二透镜L2具有负屈折力,第三透镜L3具有负屈折力,第四透镜L4具有正屈折力,第五透镜L5具有负屈折力。
进一步地,第一透镜L1的物侧面11、像侧面12于近光轴O处分别为凸面和凹面,第二透镜L2的物侧面21、像侧面22于近光轴O处分别为凸面和凹面,第三透镜L3的物侧面31、像侧面32于近光轴O处分别为凹面和凸面,第四透镜L4的物侧面41、像侧面42于近光轴O处分别为凹面和凸面,第五透镜L5的物侧面51、像侧面52于近光轴O处分别为凸面和凹面。
第一透镜L1的物侧面11、像侧面12于圆周处均为凸面,第二透镜L2的物侧面21、像侧面22于圆周处分别为凸面和凹面,第三透镜L3的物侧面31、像侧面32于圆周处均为凹面,第四透镜L4的物侧面41、像侧面42于圆周处分别为凹面和凸面,第五透镜L5的物侧面51、像侧面52于圆周处分别为凹面和凸面。
具体地,以光学镜头100的有效焦距f=11.4mm,光学镜头100的视场角FOV=47.8°,光学镜头100的总长TTL=11.55mm为例。
该第二实施例中的其他各项参数由下表3给出,且其中各参数的定义可由前述实施例的说明中得出,此处不加以赘述。可以理解的是,表3中的Y半径、厚度、焦距的单位均为mm,且表3中折射率、阿贝数在参考波长587.6nm下得到,而焦距则在参考波长555nm下得到。
表4中的k为圆锥常数,表4给出了可用于第二实施例中各非球面镜面的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表3
表4
请参阅图4,由图4中的(A)光线球差曲线图,(B)光线像散图以及(C)畸变曲线图可知,光学镜头100的纵向球差、像散和畸变均得到良好的控制,从而该实施例的光学镜头100拥有良好的成像品质。此外,关于图4中的(A)、图4中的(B)以及图4中的(C)中各曲线对应的波长可参考第一实施例中关于图2中的(A)、图2中的(B)、图2中的(C)所描述的内容,此处不再赘述。
第三实施例
本申请的第三实施例公开的光学镜头100的结构示意图如图5所示,光学镜头100包括沿光轴O从物侧向像侧依次设置的光阑STO、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、红外滤光片60。其中,关于第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的材料可参见上述具体实施方式所述,此处不再赘述。
进一步地,第一透镜L1具有正屈折力,第二透镜L2具有负屈折力,第三透镜L3具有负屈折力,第四透镜L4具有正屈折力,第五透镜L5具有负屈折力。
进一步地,第一透镜L1的物侧面11、像侧面12于近光轴O处均为凸面,第二透镜L2的物侧面21、像侧面22于近光轴O处分别为凸面和凹面,第三透镜L3的物侧面31、像侧面32于近光轴O处分别为凸面和凹面,第四透镜L4的物侧面41、像侧面42于近光轴O处分别为凹面和凸面,第五透镜L5的物侧面51、像侧面52于近光轴O处分别为凸面和凹面。
第一透镜L1的物侧面11、像侧面12于圆周处均为凸面,第二透镜L2的物侧面21、像侧面22于圆周处分别为凸面和凹面,第三透镜L3的物侧面31、像侧面32于圆周处分别为凸面和凹面,第四透镜L4的物侧面41、像侧面42于圆周处分别为凹面和凸面,第五透镜L5的物侧面51、像侧面52于圆周处分别为凹面和凸面。
具体地,以光学镜头100的有效焦距f=11.0mm,光学镜头100的视场角FOV=49°,光学镜头100的总长TTL=11.5mm为例。
该第三实施例中的其他各项参数由下表5给出,且其中各参数的定义可由前述实施例的说明中得出,此处不加以赘述。可以理解的是,表5中的Y半径、厚度、焦距的单位均为mm,且表5中折射率、阿贝数在参考波长587.6nm下得到,而焦距则在参考波长555nm下得到。
表6中的k为圆锥常数,表6给出了可用于第三实施例中各非球面镜面的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表5
表6
请参阅图6,由图6中的(A)光线球差曲线图,(B)光线像散图以及(C)畸变曲线图可知,光学镜头100的纵向球差、像散和畸变均得到良好的控制,从而该实施例的光学镜头100拥有良好的成像品质。此外,关于图6中的(A)、图6中的(B)以及图6中的(C)中各曲线对应的波长可参考第一实施例中关于图2中的(A)、图2中的(B)、图2中的(C)所描述的内容,此处不再赘述。
第四实施例
本申请的第四实施例公开的光学镜头100的结构示意图如图7所示,光学镜头100包括沿光轴O从物侧向像侧依次设置的光阑STO、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、红外滤光片60。其中,关于第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的材料可参见上述具体实施方式所述,此处不再赘述。
进一步地,第一透镜L1具有正屈折力,第二透镜L2具有负屈折力,第三透镜L3具有负屈折力,第四透镜L4具有正屈折力,第五透镜L5具有负屈折力。
进一步地,第一透镜L1的物侧面11、像侧面12于近光轴O处均为凸面,第二透镜L2的物侧面21、像侧面22于近光轴O处分别为凸面和凹面,第三透镜L3的物侧面31、像侧面32于近光轴O处分别为凸面和凹面,第四透镜L4的物侧面41、像侧面42于近光轴O处分别为凹面和凸面,第五透镜L5的物侧面51、像侧面52于近光轴O处分别为凸面和凹面。
第一透镜L1的物侧面11、像侧面12于圆周处均为凸面,第二透镜L2的物侧面21、像侧面22于圆周处分别为凸面和凹面,第三透镜L3的物侧面31、像侧面32于圆周处分别为凸面和凹面,第四透镜L4的物侧面41、像侧面42于圆周处分别为凹面和凸面,第五透镜L5的物侧面51、像侧面52于圆周处分别为凹面和凸面。
具体地,以光学镜头100的有效焦距f=12.1mm,光学镜头100的视场角FOV=45.6°,光学镜头100的总长TTL=11.5mm为例。
该第四实施例中的其他各项参数由下表7给出,且其中各参数的定义可由前述实施例的说明中得出,此处不加以赘述。可以理解的是,表7中的Y半径、厚度、焦距的单位均为mm,且表7中折射率、阿贝数在参考波长587.6nm下得到,而焦距则在参考波长555nm下得到。
表8中的k为圆锥常数,表8给出了可用于第四实施例中各非球面镜面的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表7
表8
请参阅图8,由图8中的(A)光线球差曲线图,(B)光线像散图以及(C)畸变曲线图可知,光学镜头100的纵向球差、像散和畸变均得到良好的控制,从而该实施例的光学镜头100拥有良好的成像品质。此外,关于图8中的(A)、图8中的(B)以及图8中的(C)中各曲线对应的波长可参考第一实施例中关于图2中的(A)、图2中的(B)、图2中的(C)所描述的内容,此处不再赘述。
第五实施例
本申请的第五实施例公开的光学镜头100的结构示意图如图9所示,光学镜头100包括沿光轴O从物侧向像侧依次设置的光阑STO、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、红外滤光片60。其中,关于第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的材料可参见上述具体实施方式所述,此处不再赘述。
进一步地,第一透镜L1具有正屈折力,第二透镜L2具有负屈折力,第三透镜L3具有负屈折力,第四透镜L4具有正屈折力,第五透镜L5具有负屈折力。
进一步地,第一透镜L1的物侧面11、像侧面12于近光轴O处均为凸面,第二透镜L2的物侧面21、像侧面22于近光轴O处分别为凸面和凹面,第三透镜L3的物侧面31、像侧面32于近光轴O处均为凹面,第四透镜L4的物侧面41、像侧面42于近光轴O处分别为凹面和凸面,第五透镜L5的物侧面51、像侧面52于近光轴O处均为凹面。
第一透镜L1的物侧面11、像侧面12于圆周处均为凸面,第二透镜L2的物侧面21、像侧面22于圆周处分别为凸面和凹面,第三透镜L3的物侧面31、像侧面32于圆周处分别为凸面和凹面,第四透镜L4的物侧面41、像侧面42于圆周处分别为凹面和凸面,第五透镜L5的物侧面51、像侧面52于圆周处分别为凹面和凸面。
具体地,以光学镜头100的有效焦距f=11.7mm,光学镜头100的视场角FOV=46.8°,光学镜头100的总长TTL=11.25mm为例。
该第五实施例中的其他各项参数由下表9给出,且其中各参数的定义可由前述实施例的说明中得出,此处不加以赘述。可以理解的是,表9中的Y半径、厚度、焦距的单位均为mm,且表9中折射率、阿贝数在参考波长587.6nm下得到,而焦距则在参考波长555nm下得到。
表10中的k为圆锥常数,表10给出了可用于第五实施例中各非球面镜面的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表9
表10
请参阅图10,由图10中的(A)光线球差曲线图,(B)光线像散图以及(C)畸变曲线图可知,光学镜头100的纵向球差、像散和畸变均得到良好的控制,从而该实施例的光学镜头100拥有良好的成像品质。此外,关于图10中的(A)、图10中的(B)以及图10中的(C)中各曲线对应的波长可参考第一实施例中关于图2中的(A)、图2中的(B)、图2中的(C)所描述的内容,此处不再赘述。
请参阅表11,表11为本申请第一实施例至第五实施例中各关系式的比值汇总。
表11
关系式/实施例 | 第一实施例 | 第二实施例 | 第三实施例 | 第四实施例 | 第五实施例 |
2.1<TTL/ImgH<2.4 | 2.215 | 2.238 | 2.228 | 2.228 | 2.180 |
Yc52/SD52<0.5 | 0.455 | 0.405 | 0.428 | 0.408 | 0.428 |
|f5/SAG52|>14 | 52.369 | 47.295 | 75.761 | 14.367 | 14.215 |
1<(|SAG51|+|SAG52|)/CT5<5 | 1.530 | 1.434 | 1.372 | 3.907 | 3.219 |
|SAG22/SAG52|<1.5 | 0.789 | 0.688 | 1.240 | 0.527 | 0.400 |
|T12|+|T23|/T34<0.8 | 0.358 | 0.563 | 0.497 | 0.284 | 0.295 |
f123>0mm | 12.035 | 12.469 | 17.779 | 13.079 | 12.264 |
|f/f2+f/f4|<1.5 | 1.414 | 0.581 | 0.194 | 0.333 | 0.226 |
|(R51-R52)/(R51+R52)|<1.1 | 0.082 | 0.201 | 0.481 | 0.895 | 1.001 |
|(R41-R42)/(R41+R42)|<0.6 | 0.066 | 0.041 | 0.513 | 0.410 | 0.456 |
请参阅图11,本申请还公开了一种摄像模组200,该摄像模组包括图像传感器201以及如上述第一实施例至第五实施例中任一实施例所述的光学镜头100,该图像传感器201设于光学镜头100的像侧。该光学镜头100用于接收被摄物的光信号并投射到图像传感器201,图像传感器201用于将对应于被摄物的光信号转换为图像信号,这里不做赘述。可以理解,具有上述光学镜头100的摄像模组200在满足小型轻量化设计的同时,还能够实现大光圈的拍摄效果。由于上述技术效果已在光学镜头100的实施例中做了详细介绍,此处就不再赘述。
请参阅图12,本申请还公开了一种电子设备300,该电子设备300包括壳体301和上述的摄像模组200,摄像模组200设于壳体301。其中,该电子设备300可以但不限于手机、平板电脑、笔记本电脑、智能手表、监控器、行车记录仪、倒车影像等。可以理解,具有上述摄像模组200的电子设备300,也具有上述光学镜头100的全部技术效果。即,满足小型化设计的同时,还能够实现大光圈的拍摄效果。由于上述技术效果已在光学镜头100的实施例中做了详细介绍,此处就不再赘述。
以上对本发明实施例公开的光学镜头、摄像模组及电子设备进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的光学镜头、摄像模组及电子设备及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本发明的限制。
Claims (10)
1.一种光学镜头,其特征在于,所述光学镜头沿光轴由物侧至像侧依次包括:
第一透镜,具有正屈折力,所述第一透镜的物侧面于近光轴处为凸面;
第二透镜,具有负屈折力,所述第二透镜的物侧面于近光轴处为凸面,所述第二透镜的像侧面于近光轴处为凹面;
第三透镜,具有负屈折力;
第四透镜,具有屈折力,所述第四透镜的物侧面于近光轴处为凹面,所述第四透镜的像侧面于近光轴处为凸面;
第五透镜,具有屈折力,所述第五透镜的像侧面于近光轴处为凹面,且所述第一透镜至所述第五透镜至少包括一个非球面透镜;
所述光学镜头具有屈折力的透镜为上述五片透镜;
所述光学镜头满足以下关系式:
2.1<TTL/ImgH<2.4,以及14.215≤|f5/SAG52|≤75.761;
其中,TTL为所述第一透镜的物侧面至所述光学镜头的成像面于所述光轴上的距离,ImgH为所述光学镜头的最大有效成像圆的半径,f5为所述第五透镜的焦距,SAG52为所述第五透镜的像侧面的最大有效口径处至所述第五透镜的像侧面与所述光轴的交点于所述光轴上的距离。
2.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足关系式:
Yc52/SD52<0.5;
其中,Yc52为所述第五透镜的像侧面最凸出的临界点与所述光轴的垂直距离,SD52为所述第五透镜的像侧面的最大有效半口径。
3.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足关系式:
1<(|SAG51|+|SAG52|)/CT5<5;
其中,SAG51为所述第五透镜的物侧面的最大有效口径处至所述第五透镜的物侧面与所述光轴的交点于所述光轴方向上的距离,SAG52为所述第五透镜的像侧面的最大有效口径处至所述第五透镜的像侧面与所述光轴的交点于所述光轴上的距离,CT5为所述第五透镜于所述光轴上的厚度。
4.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足关系式:
|SAG22/SAG52|<1.5;
其中,SAG22为所述第二透镜的像侧面的最大有效口径处至所述第二透镜的像侧面与所述光轴的交点于所述光轴上的距离,SAG52为所述第五透镜的像侧面的最大有效口径处至所述第五透镜的像侧面与所述光轴的交点于所述光轴上的距离。
5.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足关系式:
(|T12|+|T23|)/T34<0.8;
其中,T12为所述第一透镜的像侧面至所述第二透镜的物侧面于所述光轴上的距离,T23为所述第二透镜的像侧面至所述第三透镜的物侧面于所述光轴上的距离,T34为所述第三透镜的像侧面至所述第四透镜的物侧面于所述光轴上的距离。
6.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足关系式:
f123>0mm;
其中,f123为所述第一透镜、所述第二透镜和所述第三透镜的组合焦距。
7.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足关系式:
|f/f2+f/f4|<1.5;
其中,f为所述光学镜头的焦距,f2为所述第二透镜的焦距,f4为所述第四透镜的焦距。
8.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足关系式:
|(R51-R52)/(R51+R52)|<1.1;和/或,|(R41-R42)/(R41+R42)|<0.6;
其中,R51为所述第五透镜的物侧面于所述光轴处的曲率半径,R52为所述第五透镜的像侧面于所述光轴处的曲率半径,R41为所述第四透镜的物侧面于所述光轴处的曲率半径,R42为所述第四透镜的像侧面于所述光轴处的曲率半径。
9.一种摄像模组,其特征在于:所述摄像模组包括图像传感器以及如权利要求1-8任一项所述的光学镜头,所述图像传感器设置于所述光学镜头的像侧。
10.一种电子设备,其特征在于:所述电子设备包括壳体以及如权利要求9所述的摄像模组,所述摄像模组设于所述壳体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210092661.6A CN114415336B (zh) | 2022-01-26 | 2022-01-26 | 光学镜头、摄像模组及电子设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210092661.6A CN114415336B (zh) | 2022-01-26 | 2022-01-26 | 光学镜头、摄像模组及电子设备 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114415336A CN114415336A (zh) | 2022-04-29 |
CN114415336B true CN114415336B (zh) | 2023-07-04 |
Family
ID=81276958
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210092661.6A Active CN114415336B (zh) | 2022-01-26 | 2022-01-26 | 光学镜头、摄像模组及电子设备 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114415336B (zh) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5654384B2 (ja) * | 2011-02-28 | 2015-01-14 | カンタツ株式会社 | 撮像レンズ |
TWI429981B (zh) * | 2011-07-19 | 2014-03-11 | Largan Precision Co | 光學影像擷取系統 |
CN105988184B (zh) * | 2015-02-02 | 2018-09-25 | 大立光电股份有限公司 | 摄影镜头组、取像装置及电子装置 |
CN105974563B (zh) * | 2016-03-25 | 2018-07-13 | 玉晶光电(厦门)有限公司 | 光学成像镜头及应用此镜头之电子装置 |
CN111338062A (zh) * | 2020-03-06 | 2020-06-26 | 南昌欧菲精密光学制品有限公司 | 一种光学镜组、摄像头模组及终端 |
-
2022
- 2022-01-26 CN CN202210092661.6A patent/CN114415336B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN114415336A (zh) | 2022-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113484982B (zh) | 光学镜头、摄像模组及电子设备 | |
CN113946038B (zh) | 光学镜头、摄像模组及电子设备 | |
CN113219628B (zh) | 光学系统、取像模组及电子设备 | |
CN113484984A (zh) | 光学镜头、摄像模组及电子设备 | |
CN111812806A (zh) | 光学系统、摄像模组及电子设备 | |
CN114660783B (zh) | 光学镜头、摄像模组及电子设备 | |
CN114326026B (zh) | 光学镜头、摄像模组及电子设备 | |
CN114706197B (zh) | 光学镜头、摄像模组及电子设备 | |
CN114296213B (zh) | 光学镜头、摄像模组及电子设备 | |
CN114167583B (zh) | 光学镜头、摄像模组及电子设备 | |
CN115480371A (zh) | 光学镜头、摄像模组及电子设备 | |
CN114815181A (zh) | 光学系统、镜头模组及电子设备 | |
CN116027527B (zh) | 光学镜头、摄像模组及电子设备 | |
CN114488478B (zh) | 光学镜头、摄像模组及电子设备 | |
CN115166938B (zh) | 光学镜头、摄像模组及终端 | |
CN114755803B (zh) | 光学镜头、摄像模组及电子设备 | |
CN114326059B (zh) | 光学镜头、摄像模组及电子设备 | |
CN114578515B (zh) | 光学镜头、摄像模组及电子设备 | |
CN114002822B (zh) | 光学镜头、摄像模组及电子设备 | |
CN113484985B (zh) | 光学镜头、摄像模组及电子设备 | |
CN115586621A (zh) | 光学镜头、摄像模组及电子设备 | |
CN113625425B (zh) | 光学镜头、摄像模组及电子设备 | |
CN114326052A (zh) | 光学系统、取像模组及电子设备 | |
CN114415336B (zh) | 光学镜头、摄像模组及电子设备 | |
CN114257713A (zh) | 光学镜头、摄像模组及电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |