CN114413958A - 无人物流车的单目视觉测距测速方法 - Google Patents

无人物流车的单目视觉测距测速方法 Download PDF

Info

Publication number
CN114413958A
CN114413958A CN202111622948.7A CN202111622948A CN114413958A CN 114413958 A CN114413958 A CN 114413958A CN 202111622948 A CN202111622948 A CN 202111622948A CN 114413958 A CN114413958 A CN 114413958A
Authority
CN
China
Prior art keywords
coordinate system
target object
image
pixel
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111622948.7A
Other languages
English (en)
Inventor
俞小莉
盛军辉
黄瑞
陈俊玄
陈诺
陈杰
陈沛禹
杨爱喜
陈珍颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202111622948.7A priority Critical patent/CN114413958A/zh
Publication of CN114413958A publication Critical patent/CN114413958A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformation in the plane of the image
    • G06T3/60Rotation of a whole image or part thereof
    • G06T3/604Rotation of a whole image or part thereof using a CORDIC [COordinate Rotation Digital Compute] device

Abstract

本发明公开了一种无人物流车的单目视觉测距测速方法,包括如下步骤:S1、将世界坐标系依次按序转换成相机坐标系、图像坐标系与像素坐标系,获得世界坐标系与像素坐标系的转换矩阵;S2、基于目标检测算法获取目标物体在图像坐标系中的检测框坐标值,以检测框底边中点作为测距像素点,代入转换矩阵中求解出目标物体在世界坐标系中的横向和纵向距离;S3、基于多目标跟踪算法获取目标物体在图像连续帧中的匹配关系,根据预设间隔时间值对间隔时间前后两帧中匹配上的目标物体的位置进行计算得到目标物体速度。本发明可以通过单视觉进行测距测速,具有距离和速度测量准确的优点。

Description

无人物流车的单目视觉测距测速方法
技术领域
本发明设涉及一种无人物流车的单目视觉测距测速方法,属于无人汽车领域。
背景技术
随着自动驾驶技术的不断发展,越来越多的行业正受到其影响,并且实现产业化落地。无人配送物流车是自动驾驶技术在限定场景下的成功应用之一。无人配送物流车能够自动将货物投递到收货人手中,节约人工成本,并且能够全天候工作,提高配送效率。如果在无人配送过程中能够实时规划配送路径,则一方面可以提高配送效率,另一方面可以使得配送服务更加灵活;如果收发货交接过程中能够实现人车交互,则会大大提高用户体验,使得配送服务更加便利、更加人性化。在进行无人出的路径规划时,无人车的所需要配备测距测试的功能。但现有的测距测试大部分采用的是毫米波雷达的方式,这种测距测试成本昂贵,而且横向距离探测准确性相对较差。
发明内容
本发明的目的在于,提供一种无人物流车的单目视觉测距测速方法。本发明可以通过单视觉进行测距测速,具有距离和速度测量准确的优点。
本发明的技术方案:无人物流车的单目视觉测距测速方法,包括如下步骤:
S1、将世界坐标系依次按序转换成相机坐标系、图像坐标系与像素坐标系,获得世界坐标系与像素坐标系的转换矩阵;
S2、基于目标检测算法获取目标物体在图像坐标系中的检测框坐标值,以检测框底边中点作为测距像素点,代入转换矩阵中求解出目标物体在世界坐标系中的横向和纵向距离;
S3、基于多目标跟踪算法获取目标物体在图像连续帧中的匹配关系,根据预设间隔时间值对间隔时间前后两帧中匹配上的目标物体的位置进行计算得到目标物体速度。
上述的无人物流车的单目视觉测距测速方法,步骤S1中,所述世界坐标系与像素坐标系的转换矩阵如下:
Figure BDA0003438785350000021
其中:Zc为对应物体深度信息;[u,v]表示图像像素坐标;dx,dy分别表示一个像素在图像坐标系x、y两个坐标轴方向的物理尺寸;(u0,v0)表示相机光心在图像坐标系中的位置;f表示相机的焦距;[X,Y,Z]为世界坐标;(u,v)表示以像素为单位的像素坐标系的坐标;R矩阵是大小为3行3列的旋转矩阵,T矩阵为3行1列的平移矩阵。
前述的无人物流车的单目视觉测距测速方法,步骤S1中,世界坐标系和相机坐标系的转换矩阵如下:
Figure BDA0003438785350000031
式中(X,Y,Z)表示世界坐标系,(Xc,Yc,Zc)表示相机坐标系,R矩阵是大小为3行3列的旋转矩阵,T矩阵为3行1列的平移矩阵。
前述的无人物流车的单目视觉测距测速方法,步骤S1中,相机坐标系和图像坐标系的转换是将三维场景O-XcYcZc映射成一个二维平面O1-xy,其中点M为相机坐标系中的的点,其坐标为(Xc,Yc,Zc),映射之后对应的点为m,其坐标为(x,y),相机坐标系和图像坐标系之间转换通过透视投影实现,其中相机坐标系和图像坐标系的转换矩阵如下:
Figure BDA0003438785350000032
式中:
Figure BDA0003438785350000033
即为Zcx=fXc,Zcy=fYc,f为相机的焦距。
前述的无人物流车的单目视觉测距测速方法,步骤S1中,相机坐标系和图像坐标系的转换是以(u,v)表示以像素为单位的像素坐标系的坐标,(x,y)表示以mm为单位的图像坐标系的坐标;
假设每一个像素在x轴与y轴方向上的物理尺寸为dx和dy,则图像任意一个像素在两个坐标系下的坐标有如下所示关系式:
Figure BDA0003438785350000041
其中,(u0,v0)=xy(0,0);
根据图像任意一个像素在两个坐标系下的坐标的关系式得到相机坐标系和图像坐标系的转换矩阵:
Figure BDA0003438785350000042
前述的无人物流车的单目视觉测距测速方法,步骤S2中,求解出目标物体在世界坐标系中的横向和纵向距离的过程具体是:
将世界坐标系与像素坐标系的转换矩阵进行合并:
Figure BDA0003438785350000043
将物体深度ZC,旋转矩阵R和平移矩阵T进行展开,分别得到:
ZC=R7X+R8Y+R9Z+t3
Figure BDA0003438785350000044
Figure BDA0003438785350000045
从而得到最后的转换矩阵方程:
Figure BDA0003438785350000051
令Z=0,则使得未知量个数只有2个,即(X,Y)),将转换矩阵方程展开:
Figure BDA0003438785350000052
Figure BDA0003438785350000053
令:
Figure BDA0003438785350000054
对公式进行替换后则有:
Figure BDA0003438785350000055
计算后可求出:
Figure BDA0003438785350000056
目标物体的横向距离X、纵向距离Y由图像坐标系中的检测框的底边中点坐标(u,v)计算得到。
前述的无人物流车的单目视觉测距测速方法,步骤S3中,所述目标物体的速度及其方向角计算公式如公式下:
Figure BDA0003438785350000061
Figure BDA0003438785350000062
式中:(x,y)为前一帧的目标物体在图像坐标系的坐标,(x',y')为后一帧的目标物体在图像坐标系的坐标。
与现有技术比较,本发明通过将世界坐标系依次按序转换成相机坐标系、图像坐标系与像素坐标系,获得世界坐标系与像素坐标系的转换矩阵;再基于目标检测算法获取目标物体在图像坐标系中的检测框坐标值,以检测框底边中点作为测距像素点,代入转换矩阵中求解出目标物体在世界坐标系中的横向和纵向距离;最后基于多目标跟踪算法获取目标物体在图像连续帧中的匹配关系,根据预设间隔时间值对间隔时间前后两帧中匹配上的目标物体的位置进行计算得到物体速度。由此,本发明有效的进行目标物体的横向距离以及纵向距离的测量,而且还能准确的测量目标物体的速度以及方向角,具有测量过程方便,测量结果准确的优点。
附图说明
图1是本发明的流程示意图;
图2是本发明世界坐标系转换成相机坐标系的示意图;
图3是本发明相机坐标系转化为图像坐标系的示意图;
图4是本发明图像坐标系转化为像素坐标系的示意图;
图5是目标物体速度及其方向角计算示意图;
图6是目标物体速度及其方向正负定义示意图;
图7是本发明所实现的测距示意图;
图8是本发明所实现的测距测速示意图。
具体实施方式
下面结合附图和实施例对本发明作进一步的说明,但并不作为对本发明限制的依据。
实施例:无人物流车的单目视觉测距测速方法,包括如下步骤:
S1、将世界坐标系依次按序转换成相机坐标系、图像坐标系与像素坐标系,获得世界坐标系与像素坐标系的转换矩阵;
如图1所示,用(X,Y,Z)表示世界坐标系,(Xc,Yc,Zc)表示相机坐标系,世界坐标系与相机坐标系转换过程是由一个旋转矩阵变换R以及一个位移矩阵变换T组成,因此世界坐标系和相机坐标系的转换矩阵如下:
Figure BDA0003438785350000071
式中(X,Y,Z)表示世界坐标系,(Xc,Yc,Zc)表示相机坐标系,R矩阵是大小为3行3列的旋转矩阵,T矩阵为3行1列的平移矩阵。
相机坐标系与图像坐标系之间的关系是通过相机成像模型来建立的,通常采用的是针孔相机模型。如图3所示:相机坐标系和图像坐标系的转换是将三维场景O-XcYcZc映射成一个二维平面O1-xy,其中点M为相机坐标系中的的点,其坐标为(Xc,Yc,Zc),映射之后对应的点为m,其坐标为(x,y),相机坐标系和图像坐标系之间转换通过透视投影实现,其中相机坐标系和图像坐标系的转换矩阵如下:
Figure BDA0003438785350000081
式中:根据三角形相似原理,
Figure BDA0003438785350000082
即为Zcx=fXc,Zcy=fYc,f为相机的焦距。
图像坐标系已经和像素坐标系重合,但是图像坐标系的原点位于相机的光心处,并且其坐标轴单位是物理单位mm,而像素坐标系坐标单位是像素。像素只能表示位于图像中的位置,即列数与行数,并没有使用物理单位表示该像素在图像中的位置,所以需要再建立以物理单位(mm)表示的像素坐标系,如图4所示。因此在途4中,相机坐标系和图像坐标系的转换是以(u,v)表示以像素为单位的像素坐标系的坐标,(x,y)表示以mm为单位的图像坐标系的坐标;
假设每一个像素在x轴与y轴方向上的物理尺寸为dx和dy,则图像任意一个像素在两个坐标系下的坐标有如下所示关系式:
Figure BDA0003438785350000091
其中,(u0,v0)=xy(0,0);
根据图像任意一个像素在两个坐标系下的坐标的关系式得到相机坐标系和图像坐标系的转换矩阵:
Figure BDA0003438785350000092
根据上述各坐标系之间的转换关系,所述世界坐标系与像素坐标系的转换矩阵如下:
Figure BDA0003438785350000093
其中:Zc为对应物体深度信息;[u,v]表示图像像素坐标;dx,dy分别表示一个像素在图像坐标系x、y两个坐标轴方向的物理尺寸;(u0,v0)表示相机光心在图像坐标系中的位置;f表示相机的焦距;[X,Y,Z]为世界坐标;(u,v)表示以像素为单位的像素坐标系的坐标;R矩阵是大小为3行3列的旋转矩阵,T矩阵为3行1列的平移矩阵。
以上转换过程中涉及到的一些参数,皆可以通过对相机进行标定获得,其内部参数包括相机的焦距、传感器每个单元的尺寸以及光心的位置;外部参数则包括相机在三个维度上的旋转角度和平移量。
S2、基于目标检测算法(例如Yolo算法,SSD算法等,上述算法属于本领域技术人员所常规的常规技术手段,为此本发明不在具体赘述)获取目标物体在图像坐标系中的检测框坐标值,以检测框底边中点作为测距像素点,代入转换矩阵中求解出目标物体在世界坐标系中的横向和纵向距离,具体过程是:
将世界坐标系与像素坐标系的转换矩阵进行合并:
Figure BDA0003438785350000101
将物体深度ZC,旋转矩阵R和平移矩阵T进行展开,分别得到:
ZC=R7X+R8Y+R9Z+t3
Figure BDA0003438785350000102
Figure BDA0003438785350000103
从而得到最后的转换矩阵方程:
Figure BDA0003438785350000104
从上式可知,在相机标定完成后,转换矩阵中未知量只有(X,Y,Z,u,v),即可以在已知物体空间坐标(X,Y,Z)的情况下推导出位于图像中的(u,v)。
但是反过来,从图像中的像素点坐标(u,v)推导空间坐标(X,Y,Z),由于存在三个未知量,而参与计算的方程只有两个,存在无穷解。则必须作出先验性假设,因为只考虑与地面接触点的空间位置,所以令Z=0,则使得未知量个数只有2个,即(X,Y)),将转换矩阵方程展开:
Figure BDA0003438785350000111
Figure BDA0003438785350000112
令:
Figure BDA0003438785350000113
对公式进行替换后则有:
Figure BDA0003438785350000114
计算后可求出:
Figure BDA0003438785350000121
由于A、B、C、D、E、F中涉及到的参数皆已通过相机标定工作获得,所以目标物体的横向距离X、纵向距离Y由图像坐标系中的检测框的底边中点坐标(u,v)计算得到。
S3、基于多目标跟踪算法(例如Deepsort算法,上述算法属于本领域技术人员所掌握的常规技术收单,为此本发明不在具体赘述)获取目标物体在图像连续帧中的匹配关系,根据预设间隔时间值对间隔时间前后两帧中匹配上的目标物体的位置进行计算得到目标物体速度。
即本发明考虑到无人物流车中自动驾驶任务需要获取各个目标物体的速度情况用于后续决策规划任务,可以结合多目标跟踪算法(例如deepsort算法),对图像流中连续帧里的各个目标物体进行匹配以实现跟踪,从而可以记录这些连续帧中目标物体的位置轨迹信息。
通过设置固定的间隔时间(例如,低速情况下可以设置为T=1s),对于其中一个目标物体来说,用当前帧得到的位置和T时刻前的帧得到的位置进行计算即可得到该时间段内的平均速度值,同时其方向角也可以确定,因此如图5所示,所述目标物体的速度及其方向角计算公式如公式下:
Figure BDA0003438785350000122
Figure BDA0003438785350000131
式中:(x,y)为前一帧的目标物体在图像坐标系的坐标,(x',y')为后一帧的目标物体在图像坐标系的坐标。
如图6所示,为了更好地表示目标物体的轨迹方向,可以将目标物体的速度及其方向的正负情况规定如下:
目标物体远离自车(无人物流车):
速度V设定为正值;
对应的速度方向θ根据向左、向右分别设定为负值、正值;
2.目标物体靠近自车(无人物流车):
速度V设定为负值;
对应的速度方向θ根据向左、向右分别设定为负值、正值。
经过实际试验,本发明实施例所实现的测距功能如图7所示,测速和测距同时进行的功能如图8所示。图7和图8中目标物体只涉及到行人,其中S表示物体的速度大小,D表示速度的方向,第二行的数字1代表该物体的ID(由目标跟踪算法输出),person表示物体的类别,0.90表示该物体为person类别的置信度,L表示物体检测框左下角、右下角的两个点所代表的横向距离范围,V表示物体检测框底边中点所代表的纵向距离。需要说明的是,检测到的物体类别种类数量可以通过目标检测算法制作数据集训练进行拓展,本发明所保护的是如何结合目标检测、跟踪算法完成对目标物体的测距、测速功能。
综上所述,本发明通过将世界坐标系依次按序转换成相机坐标系、图像坐标系与像素坐标系,获得世界坐标系与像素坐标系的转换矩阵;再基于目标检测算法获取目标物体在图像坐标系中的检测框坐标值,以检测框底边中点作为测距像素点,代入转换矩阵中求解出目标物体在世界坐标系中的横向和纵向距离;最后基于多目标跟踪算法获取目标物体在图像连续帧中的匹配关系,根据预设间隔时间值对间隔时间前后两帧中匹配上的目标物体的位置进行计算得到物体速度。由此,本发明有效的进行目标物体的横向距离以及纵向距离的测量,而且还能准确的测量目标物体的速度以及方向角,具有测量过程方便,测量结果准确的优点。

Claims (7)

1.无人物流车的单目视觉测距测速方法,其特征在于:包括如下步骤:
S1、将世界坐标系依次按序转换成相机坐标系、图像坐标系与像素坐标系,获得世界坐标系与像素坐标系的转换矩阵;
S2、基于目标检测算法获取目标物体在图像坐标系中的检测框坐标值,以检测框底边中点作为测距像素点,代入转换矩阵中求解出目标物体在世界坐标系中的横向和纵向距离;
S3、基于多目标跟踪算法获取目标物体在图像连续帧中的匹配关系,根据预设间隔时间值对间隔时间前后两帧中匹配上的目标物体的位置进行计算得到目标物体速度。
2.根据权利要求1所述的无人物流车的单目视觉测距测速方法,其特征在于:步骤S1中,所述世界坐标系与像素坐标系的转换矩阵如下:
Figure RE-RE-FDA0003526440260000011
其中:Zc为对应物体深度信息;[u,v]表示图像像素坐标;dx,dy分别表示一个像素在图像坐标系x、y两个坐标轴方向的物理尺寸;(u0,v0)表示相机光心在图像坐标系中的位置;f表示相机的焦距;[X,Y,Z]为世界坐标;(u,v)表示以像素为单位的像素坐标系的坐标;R矩阵是大小为3行3列的旋转矩阵,T矩阵为3行1列的平移矩阵。
3.根据权利要求2所述的无人物流车的单目视觉测距测速方法,其特征在于:步骤S1中,世界坐标系和相机坐标系的转换矩阵如下:
Figure RE-RE-FDA0003526440260000021
式中(X,Y,Z)表示世界坐标系,(Xc,Yc,Zc)表示相机坐标系,R矩阵是大小为3行3列的旋转矩阵,T矩阵为3行1列的平移矩阵。
4.根据权利要求3所述的无人物流车的单目视觉测距测速方法,其特征在于:步骤S1中,相机坐标系和图像坐标系的转换是将三维场景O-XcYcZc映射成一个二维平面O1-xy,其中点M为相机坐标系中的的点,其坐标为(Xc,Yc,Zc),映射之后对应的点为m,其坐标为(x,y),相机坐标系和图像坐标系之间转换通过透视投影实现,其中相机坐标系和图像坐标系的转换矩阵如下:
Figure RE-RE-FDA0003526440260000022
式中:
Figure RE-RE-FDA0003526440260000023
即为Zcx=fXc,Zcy=fYc,f为相机的焦距。
5.根据权利要求4所述的无人物流车的单目视觉测距测速方法,其特征在于:步骤S1中,相机坐标系和图像坐标系的转换是以(u,v)表示以像素为单位的像素坐标系的坐标,(x,y)表示以mm为单位的图像坐标系的坐标;
假设每一个像素在x轴与y轴方向上的物理尺寸为dx和dy,则图像任意一个像素在两个坐标系下的坐标有如下所示关系式:
Figure RE-RE-FDA0003526440260000031
其中,(u0,v0)=xy(0,0);
根据图像任意一个像素在两个坐标系下的坐标的关系式得到相机坐标系和图像坐标系的转换矩阵:
Figure RE-RE-FDA0003526440260000032
6.根据权利要求2所述的无人物流车的单目视觉测距测速方法,其特征在于:步骤S2中,求解出目标物体在世界坐标系中的横向和纵向距离的过程具体是:
将世界坐标系与像素坐标系的转换矩阵进行合并:
Figure RE-RE-FDA0003526440260000033
将物体深度ZC,旋转矩阵R和平移矩阵T进行展开,分别得到:
ZC=R7X+R8Y+R9Z+t3
Figure RE-RE-FDA0003526440260000041
Figure RE-RE-FDA0003526440260000042
从而得到最后的转换矩阵方程:
Figure RE-RE-FDA0003526440260000043
令Z=0,则使得未知量个数只有2个,即(X,Y)),将转换矩阵方程展开:
Figure RE-RE-FDA0003526440260000044
Figure RE-RE-FDA0003526440260000045
令:
Figure RE-RE-FDA0003526440260000051
对公式进行替换后则有:
Figure RE-RE-FDA0003526440260000052
计算后可求出:
Figure RE-RE-FDA0003526440260000053
目标物体的横向距离X、纵向距离Y由图像坐标系中的检测框的底边中点坐标(u,v)计算得到。
7.根据权利要求2所述的无人物流车的单目视觉测距测速方法,其特征在于:步骤S3中,所述目标物体的速度及其方向角计算公式如公式下:
Figure RE-RE-FDA0003526440260000054
Figure RE-RE-FDA0003526440260000055
式中:(x,y)为前一帧的目标物体在图像坐标系的坐标,(x',y')为后一帧的目标物体在图像坐标系的坐标;T为间隔时间。
CN202111622948.7A 2021-12-28 2021-12-28 无人物流车的单目视觉测距测速方法 Pending CN114413958A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111622948.7A CN114413958A (zh) 2021-12-28 2021-12-28 无人物流车的单目视觉测距测速方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111622948.7A CN114413958A (zh) 2021-12-28 2021-12-28 无人物流车的单目视觉测距测速方法

Publications (1)

Publication Number Publication Date
CN114413958A true CN114413958A (zh) 2022-04-29

Family

ID=81269170

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111622948.7A Pending CN114413958A (zh) 2021-12-28 2021-12-28 无人物流车的单目视觉测距测速方法

Country Status (1)

Country Link
CN (1) CN114413958A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114998849A (zh) * 2022-05-27 2022-09-02 电子科技大学 一种基于路端单目相机的交通流要素感知与定位方法及其应用
CN115564836A (zh) * 2022-11-10 2023-01-03 凌度(广东)智能科技发展有限公司 幕墙机器人的单目坐标转换方法、装置及电子设备
CN115578470A (zh) * 2022-09-22 2023-01-06 虹软科技股份有限公司 一种单目视觉定位方法、装置、存储介质和电子设备
CN114998849B (zh) * 2022-05-27 2024-04-16 电子科技大学 一种基于路端单目相机的交通流要素感知与定位方法及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017118396A (ja) * 2015-12-25 2017-06-29 Kddi株式会社 デプスカメラの内部パラメータを算出するプログラム、装置及び方法
CN110031829A (zh) * 2019-04-18 2019-07-19 北京联合大学 一种基于单目视觉的目标精准测距方法
CN110288656A (zh) * 2019-07-01 2019-09-27 太原科技大学 一种基于单目摄像头的目标定位方法
CN112818990A (zh) * 2021-01-29 2021-05-18 中国人民解放军军事科学院国防科技创新研究院 目标检测框的生成方法、图像数据自动标注方法及系统
CN113819890A (zh) * 2021-06-04 2021-12-21 腾讯科技(深圳)有限公司 测距方法、装置、电子设备及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017118396A (ja) * 2015-12-25 2017-06-29 Kddi株式会社 デプスカメラの内部パラメータを算出するプログラム、装置及び方法
CN110031829A (zh) * 2019-04-18 2019-07-19 北京联合大学 一种基于单目视觉的目标精准测距方法
CN110288656A (zh) * 2019-07-01 2019-09-27 太原科技大学 一种基于单目摄像头的目标定位方法
CN112818990A (zh) * 2021-01-29 2021-05-18 中国人民解放军军事科学院国防科技创新研究院 目标检测框的生成方法、图像数据自动标注方法及系统
CN113819890A (zh) * 2021-06-04 2021-12-21 腾讯科技(深圳)有限公司 测距方法、装置、电子设备及存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
桑振: "基于单目视觉的前方车辆测距测速方法研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *
陈慧岩,等: "《无人驾驶车辆理论与设计》", 31 March 2018, 北京理工大学出版社 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114998849A (zh) * 2022-05-27 2022-09-02 电子科技大学 一种基于路端单目相机的交通流要素感知与定位方法及其应用
CN114998849B (zh) * 2022-05-27 2024-04-16 电子科技大学 一种基于路端单目相机的交通流要素感知与定位方法及其应用
CN115578470A (zh) * 2022-09-22 2023-01-06 虹软科技股份有限公司 一种单目视觉定位方法、装置、存储介质和电子设备
WO2024061079A1 (zh) * 2022-09-22 2024-03-28 虹软科技股份有限公司 单目视觉定位方法、装置、存储介质和电子设备
CN115564836A (zh) * 2022-11-10 2023-01-03 凌度(广东)智能科技发展有限公司 幕墙机器人的单目坐标转换方法、装置及电子设备
CN115564836B (zh) * 2022-11-10 2023-03-17 凌度(广东)智能科技发展有限公司 幕墙机器人的单目坐标转换方法、装置及电子设备

Similar Documents

Publication Publication Date Title
US10859684B1 (en) Method and system for camera-lidar calibration
CN112396650B (zh) 一种基于图像和激光雷达融合的目标测距系统及方法
CN109598765B (zh) 基于球形标定物的单目相机与毫米波雷达外参联合标定方法
De Silva et al. Fusion of LiDAR and camera sensor data for environment sensing in driverless vehicles
EP1394761B1 (en) Obstacle detection device and method therefor
US10909395B2 (en) Object detection apparatus
CN103065323B (zh) 一种基于单应性变换矩阵的分段空间对准方法
CN110031829B (zh) 一种基于单目视觉的目标精准测距方法
CN108594245A (zh) 一种目标物运动监测系统及方法
CN113657224A (zh) 车路协同中用于确定对象状态的方法、装置、设备
Kümmerle et al. Unified intrinsic and extrinsic camera and LiDAR calibration under uncertainties
CN114413958A (zh) 无人物流车的单目视觉测距测速方法
Momeni-k et al. Height estimation from a single camera view
CN113096183B (zh) 一种基于激光雷达与单目相机的障碍物检测与测量方法
CN112232275A (zh) 基于双目识别的障碍物检测方法、系统、设备及存储介质
CN112017248B (zh) 一种基于点线特征的2d激光雷达相机多帧单步标定方法
Yan et al. Joint camera intrinsic and lidar-camera extrinsic calibration
KR102490521B1 (ko) 라이다 좌표계와 카메라 좌표계의 벡터 정합을 통한 자동 캘리브레이션 방법
CN115079143A (zh) 一种用于双桥转向矿卡的多雷达外参快速标定方法及装置
Kim et al. Fusing lidar data and aerial imagery with perspective correction for precise localization in urban canyons
Deng et al. Joint calibration of dual lidars and camera using a circular chessboard
CN116403186A (zh) 基于FPN Swin Transformer与Pointnet++ 的自动驾驶三维目标检测方法
CN114419259B (zh) 一种基于物理模型成像仿真的视觉定位方法及系统
Nguyen et al. Calibbd: Extrinsic calibration of the lidar and camera using a bidirectional neural network
CN115239822A (zh) 分体式飞行车辆多模块间实时视觉识别定位方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220429

RJ01 Rejection of invention patent application after publication