CN114404392A - A kind of preparation method and use of pH and heat-responsive CuAu nano-assembly - Google Patents
A kind of preparation method and use of pH and heat-responsive CuAu nano-assembly Download PDFInfo
- Publication number
- CN114404392A CN114404392A CN202210201542.XA CN202210201542A CN114404392A CN 114404392 A CN114404392 A CN 114404392A CN 202210201542 A CN202210201542 A CN 202210201542A CN 114404392 A CN114404392 A CN 114404392A
- Authority
- CN
- China
- Prior art keywords
- copper
- responsive
- heat
- preparation
- gold nanoparticles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 36
- 239000002105 nanoparticle Substances 0.000 claims abstract description 66
- QRJOYPHTNNOAOJ-UHFFFAOYSA-N copper gold Chemical compound [Cu].[Au] QRJOYPHTNNOAOJ-UHFFFAOYSA-N 0.000 claims abstract description 53
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 claims abstract description 39
- 206010052428 Wound Diseases 0.000 claims abstract description 31
- 208000027418 Wounds and injury Diseases 0.000 claims abstract description 31
- 230000000844 anti-bacterial effect Effects 0.000 claims abstract description 20
- 125000003396 thiol group Chemical group [H]S* 0.000 claims abstract description 16
- 150000003384 small molecules Chemical class 0.000 claims abstract description 11
- 238000000429 assembly Methods 0.000 claims abstract description 8
- 239000003446 ligand Substances 0.000 claims abstract description 5
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 34
- 241000894006 Bacteria Species 0.000 claims description 24
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 22
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 21
- 238000006243 chemical reaction Methods 0.000 claims description 20
- 239000010931 gold Substances 0.000 claims description 20
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 16
- 229910052737 gold Inorganic materials 0.000 claims description 16
- 239000002245 particle Substances 0.000 claims description 15
- 239000010949 copper Substances 0.000 claims description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 12
- 239000011261 inert gas Substances 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 229940126214 compound 3 Drugs 0.000 claims description 11
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical group ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 10
- 239000002904 solvent Substances 0.000 claims description 10
- 241000191967 Staphylococcus aureus Species 0.000 claims description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- 239000003814 drug Substances 0.000 claims description 8
- 241000588724 Escherichia coli Species 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 7
- 230000015572 biosynthetic process Effects 0.000 claims description 7
- 150000001875 compounds Chemical class 0.000 claims description 7
- 239000001301 oxygen Substances 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- 239000002244 precipitate Substances 0.000 claims description 7
- 230000034655 secondary growth Effects 0.000 claims description 7
- 239000006228 supernatant Substances 0.000 claims description 7
- 238000003786 synthesis reaction Methods 0.000 claims description 7
- RJQXTJLFIWVMTO-TYNCELHUSA-N Methicillin Chemical compound COC1=CC=CC(OC)=C1C(=O)N[C@@H]1C(=O)N2[C@@H](C(O)=O)C(C)(C)S[C@@H]21 RJQXTJLFIWVMTO-TYNCELHUSA-N 0.000 claims description 6
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 claims description 6
- 229940125782 compound 2 Drugs 0.000 claims description 6
- 239000003995 emulsifying agent Substances 0.000 claims description 6
- 229960003085 meticillin Drugs 0.000 claims description 6
- -1 N-tert-butoxycarbonyl-amino Chemical group 0.000 claims description 5
- OMWQUXGVXQELIX-UHFFFAOYSA-N bitoscanate Chemical compound S=C=NC1=CC=C(N=C=S)C=C1 OMWQUXGVXQELIX-UHFFFAOYSA-N 0.000 claims description 5
- ZKXWKVVCCTZOLD-UHFFFAOYSA-N copper;4-hydroxypent-3-en-2-one Chemical compound [Cu].CC(O)=CC(C)=O.CC(O)=CC(C)=O ZKXWKVVCCTZOLD-UHFFFAOYSA-N 0.000 claims description 5
- 239000002798 polar solvent Substances 0.000 claims description 5
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical group [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 claims description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 4
- 229940125904 compound 1 Drugs 0.000 claims description 4
- 239000008367 deionised water Substances 0.000 claims description 4
- 229910021641 deionized water Inorganic materials 0.000 claims description 4
- 229940079593 drug Drugs 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide Substances CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 claims description 3
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 claims description 3
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 claims description 3
- 241000589517 Pseudomonas aeruginosa Species 0.000 claims description 3
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 claims description 3
- 241000193998 Streptococcus pneumoniae Species 0.000 claims description 3
- OOTFVKOQINZBBF-UHFFFAOYSA-N cystamine Chemical compound CCSSCCN OOTFVKOQINZBBF-UHFFFAOYSA-N 0.000 claims description 3
- 229940099500 cystamine Drugs 0.000 claims description 3
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 claims description 3
- 238000003756 stirring Methods 0.000 claims description 3
- 229940031000 streptococcus pneumoniae Drugs 0.000 claims description 3
- 241000193738 Bacillus anthracis Species 0.000 claims description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims description 2
- 241000607142 Salmonella Species 0.000 claims description 2
- 230000004913 activation Effects 0.000 claims description 2
- 229940065181 bacillus anthracis Drugs 0.000 claims description 2
- 238000004945 emulsification Methods 0.000 claims description 2
- AICOOMRHRUFYCM-ZRRPKQBOSA-N oxazine, 1 Chemical compound C([C@@H]1[C@H](C(C[C@]2(C)[C@@H]([C@H](C)N(C)C)[C@H](O)C[C@]21C)=O)CC1=CC2)C[C@H]1[C@@]1(C)[C@H]2N=C(C(C)C)OC1 AICOOMRHRUFYCM-ZRRPKQBOSA-N 0.000 claims description 2
- 230000004044 response Effects 0.000 claims description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 2
- 241000186227 Corynebacterium diphtheriae Species 0.000 claims 1
- 206010034133 Pathogen resistance Diseases 0.000 claims 1
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 230000008020 evaporation Effects 0.000 claims 1
- 238000001704 evaporation Methods 0.000 claims 1
- 150000002433 hydrophilic molecules Chemical class 0.000 claims 1
- 230000029663 wound healing Effects 0.000 abstract description 15
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 abstract description 11
- 229910001431 copper ion Inorganic materials 0.000 abstract description 11
- 150000001412 amines Chemical class 0.000 abstract description 2
- 238000010438 heat treatment Methods 0.000 abstract description 2
- 230000035515 penetration Effects 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 35
- 230000001580 bacterial effect Effects 0.000 description 13
- 210000004027 cell Anatomy 0.000 description 13
- 241000699670 Mus sp. Species 0.000 description 11
- 206010012601 diabetes mellitus Diseases 0.000 description 11
- 238000011282 treatment Methods 0.000 description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- 229910052802 copper Inorganic materials 0.000 description 9
- 239000002609 medium Substances 0.000 description 9
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Substances C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 229940024606 amino acid Drugs 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 238000011534 incubation Methods 0.000 description 6
- XYYVDQWGDNRQDA-UHFFFAOYSA-K trichlorogold;trihydrate;hydrochloride Chemical compound O.O.O.Cl.Cl[Au](Cl)Cl XYYVDQWGDNRQDA-UHFFFAOYSA-K 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 239000007853 buffer solution Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000011259 mixed solution Substances 0.000 description 5
- 238000007626 photothermal therapy Methods 0.000 description 5
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- 206010041925 Staphylococcal infections Diseases 0.000 description 4
- 238000002835 absorbance Methods 0.000 description 4
- 230000012292 cell migration Effects 0.000 description 4
- 238000000502 dialysis Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 208000015688 methicillin-resistant staphylococcus aureus infectious disease Diseases 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000004083 survival effect Effects 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 3
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 3
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 3
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 3
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 3
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 3
- 235000004279 alanine Nutrition 0.000 description 3
- 235000008206 alpha-amino acids Nutrition 0.000 description 3
- 235000001014 amino acid Nutrition 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 230000003698 anagen phase Effects 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 230000001684 chronic effect Effects 0.000 description 3
- 229960000310 isoleucine Drugs 0.000 description 3
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- CCCMONHAUSKTEQ-UHFFFAOYSA-N octadecene Natural products CCCCCCCCCCCCCCCCC=C CCCMONHAUSKTEQ-UHFFFAOYSA-N 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- 238000002390 rotary evaporation Methods 0.000 description 3
- 230000001954 sterilising effect Effects 0.000 description 3
- 238000004659 sterilization and disinfection Methods 0.000 description 3
- JRMUNVKIHCOMHV-UHFFFAOYSA-M tetrabutylammonium bromide Chemical compound [Br-].CCCC[N+](CCCC)(CCCC)CCCC JRMUNVKIHCOMHV-UHFFFAOYSA-M 0.000 description 3
- 238000004627 transmission electron microscopy Methods 0.000 description 3
- 239000004474 valine Substances 0.000 description 3
- FFRBMBIXVSCUFS-UHFFFAOYSA-N 2,4-dinitro-1-naphthol Chemical compound C1=CC=C2C(O)=C([N+]([O-])=O)C=C([N+]([O-])=O)C2=C1 FFRBMBIXVSCUFS-UHFFFAOYSA-N 0.000 description 2
- VRPJIFMKZZEXLR-UHFFFAOYSA-N 2-[(2-methylpropan-2-yl)oxycarbonylamino]acetic acid Chemical compound CC(C)(C)OC(=O)NCC(O)=O VRPJIFMKZZEXLR-UHFFFAOYSA-N 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 150000001371 alpha-amino acids Chemical class 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000003833 cell viability Effects 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 238000004440 column chromatography Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002296 dynamic light scattering Methods 0.000 description 2
- 239000003480 eluent Substances 0.000 description 2
- 239000012737 fresh medium Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000035876 healing Effects 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 230000002147 killing effect Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 238000011725 BALB/c mouse Methods 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 206010042566 Superinfection Diseases 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000001370 alpha-amino acid derivatives Chemical group 0.000 description 1
- 230000033115 angiogenesis Effects 0.000 description 1
- 230000003214 anti-biofilm Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000007640 basal medium Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 238000002784 cytotoxicity assay Methods 0.000 description 1
- 231100000263 cytotoxicity test Toxicity 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000000326 densiometry Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 206010013023 diphtheria Diseases 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 125000002228 disulfide group Chemical group 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000002158 endotoxin Substances 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 231100000086 high toxicity Toxicity 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 125000002924 primary amino group Chemical class [H]N([H])* 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- XJMOSONTPMZWPB-UHFFFAOYSA-M propidium iodide Chemical group [I-].[I-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CCC[N+](C)(CC)CC)=C1C1=CC=CC=C1 XJMOSONTPMZWPB-UHFFFAOYSA-M 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000004809 thin layer chromatography Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/5123—Organic compounds, e.g. fats, sugars
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
- A61K41/0052—Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/02—Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y5/00—Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Veterinary Medicine (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Epidemiology (AREA)
- Dermatology (AREA)
- Biomedical Technology (AREA)
- Optics & Photonics (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
本发明公开了一种pH和热响应型CuAu纳米组装体的制备方法及用途,包括如下步骤:制备油胺包覆的铜金纳米颗粒;制备含巯基的pH和热响应型小分子;对油胺包覆的铜金纳米颗粒进行配体交换,得到单分散的铜金纳米颗粒;制备pH和热响应型的铜金纳米组装体。该pH和热响应型铜金组装体具备良好的光热性能,在实现光热抗生物被膜的基础上,减少由于过度加热对伤口周围正常组织的损伤;同时促进铜离子的深度渗透和释放,起到抗菌和促伤口愈合的作用。
The invention discloses a preparation method and application of a pH- and heat-responsive CuAu nanometer assembly, comprising the following steps: preparing oleylamine-coated copper-gold nanoparticles; preparing pH- and heat-responsive small molecules containing sulfhydryl groups; The amine-coated copper-gold nanoparticles were subjected to ligand exchange to obtain monodisperse copper-gold nanoparticles; pH- and thermal-responsive copper-gold nano-assemblies were prepared. The pH- and thermally responsive copper-gold assembly has good photothermal properties. On the basis of realizing photothermal resistance to biofilm, it can reduce the damage to normal tissues around the wound due to excessive heating; meanwhile, it can promote the deep penetration and release of copper ions, It acts as an antibacterial and promotes wound healing.
Description
技术领域technical field
本发明涉及生物医学工程材料制备方法及用途,特别涉及pH和热响应型CuAu纳米组装体的制备方法及用途。The invention relates to a preparation method and application of biomedical engineering materials, in particular to a preparation method and application of a pH- and heat-responsive CuAu nano-assembly.
背景技术Background technique
近年来,由糖尿病等疾病并发的慢性伤口愈合发病率不断上升,成为全球主要的医疗负担。当慢性伤口出现重叠感染时,由于生物被膜在伤口部位的存在及内毒素的释放延缓了愈合过程,治疗通常会失败。生物被膜是微生物粘附、增殖形成的具有胞外聚合物(EPS)基质的细菌群落,胞外聚合物中的胞外多糖作为物理屏障抵御先天免疫细胞攻击和抗生素渗透,从而极大增加了传统抗生素治疗的难度。In recent years, the incidence of chronic wound healing complicated by diseases such as diabetes has continued to rise and has become a major global medical burden. When superinfection occurs in chronic wounds, treatment often fails because the presence of biofilm at the wound site and the release of endotoxins delay the healing process. Biofilm is a bacterial community with an extracellular polymer (EPS) matrix formed by the adhesion and proliferation of microorganisms. Difficulty of antibiotic treatment.
与传统化疗不同,光热疗法(PTT)利用材料在650-950nm的近红外激光光源的照射下产生的热来杀死细菌和破坏生物被膜结构,不易产生耐药性。无机纳米材料如银,铜,锌等均具有抗菌功能,但是目前的抗菌材料的毒性较高,且功能单一,不能在抗菌同时促进伤口愈合。而铜基纳米材料由于其固有的光热性能及促伤口愈合作用受到了广泛关注。此外,创面处的铜离子可提高抗菌作用,促进创面愈合和血管再生。然而,在光热治疗中,非定域热及难以控制的温度和离子释放通常会对健康组织造成巨大损害。因此,临床迫切需要找到一种可快速清除生物被膜,同时促进慢性伤口愈合的安全有效的治疗方案。Unlike traditional chemotherapy, photothermal therapy (PTT) uses the heat generated by the material under the irradiation of a near-infrared laser light source of 650-950 nm to kill bacteria and destroy the biofilm structure, which is not easy to develop drug resistance. Inorganic nanomaterials such as silver, copper, zinc, etc. have antibacterial functions, but the current antibacterial materials have high toxicity and single function, and cannot promote wound healing while antibacterial. Copper-based nanomaterials have received extensive attention due to their inherent photothermal properties and their role in promoting wound healing. In addition, copper ions at the wound surface can enhance the antibacterial effect, promote wound healing and angiogenesis. However, in photothermal therapy, delocalized heat and uncontrollable temperature and ion release often cause enormous damage to healthy tissue. Therefore, there is an urgent clinical need to find a safe and effective treatment solution that can rapidly remove biofilm while promoting the healing of chronic wounds.
发明内容SUMMARY OF THE INVENTION
发明目的:本发明的目的是提供一种生物相容性好、促进伤口愈合的pH和热响应型CuAu纳米组装体的制备方法。Purpose of the invention: The purpose of the present invention is to provide a preparation method of pH- and heat-responsive CuAu nano-assemblies with good biocompatibility and promoting wound healing.
本发明基于Edman降解测序技术的pH和热响应型CuAu纳米组装体,所述纳米组装体以铜金纳米颗粒为主体,表面修饰化合物3为pH和热响应型基团,一端带巯基的化合物4为亲水性功能基团,并通过化合物3末端氨基和对苯二异硫氰酸酯的化学反应形成pH和热响应型CuAu纳米组装体。The present invention is based on Edman degradation sequencing technology pH and heat-responsive CuAu nano-assembly, the nano-assembly is mainly composed of copper-gold nanoparticles, the
本发明还提供所述纳米组装体的应用。The present invention also provides the application of the nano-assembly.
技术方案:本发明所述的pH和热响应型CuAu纳米组装体的制备方法,包括如下步骤:Technical solution: the preparation method of pH and heat-responsive CuAu nano-assemblies of the present invention includes the following steps:
(1)制备油胺包覆的铜金纳米颗粒;(1) preparation of oleylamine-coated copper-gold nanoparticles;
(2)制备含巯基的pH和热响应型小分子;(2) Preparation of pH- and heat-responsive small molecules containing sulfhydryl groups;
(3)对油胺包覆的铜金纳米颗粒进行配体交换,得到单分散的铜金纳米颗粒;(3) performing ligand exchange on the copper-gold nanoparticles coated with oleylamine to obtain monodisperse copper-gold nanoparticles;
(4)制备pH和热响应型的铜金纳米组装体。(4) Preparation of pH- and heat-responsive copper-gold nanoassemblies.
进一步地,油胺包覆的铜金纳米颗粒的合成:乙酰丙酮铜和油胺混合,升温并通入惰性气体,保温30-60分钟,取二次生长的金纳米颗粒的正己烷溶液加入反应体系,通惰性气体除去氧气及正己烷,升温,持续反应后降至室温,以极性溶剂沉淀纳米颗粒,除去上清液后,得到油胺包覆的铜金纳米颗粒。Further, the synthesis of oleylamine-coated copper-gold nanoparticles: mixing copper acetylacetonate and oleylamine, heating up and feeding an inert gas, keeping the temperature for 30-60 minutes, taking the n-hexane solution of the gold nanoparticles of secondary growth and adding the reaction In the system, the oxygen and n-hexane are removed by inert gas, the temperature is raised, the reaction is continued and then lowered to room temperature, the nanoparticles are precipitated with a polar solvent, and the oleylamine-coated copper-gold nanoparticles are obtained after removing the supernatant.
进一步地,含巯基的pH和热响应型小分子的合成:将N-叔丁氧羰基-氨基酸、1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐和N-羟基琥珀酰亚胺依次添加到无水N,N-二甲基甲酰胺溶液中活化,后将胱胺添加到无水N,N-二甲基甲酰胺溶液中,将所得混合物在氮气中搅拌,反应,提纯得到化合物1,取三氟乙酸和无水二氯甲烷将化合物1加入其中,室温搅拌得到化合物2,然后在甲醇中加入化合物2和二硫苏糖醇,得到化合物3。所述N-叔丁氧羰基-氨基酸的氨基酸包括甘氨酸、丙氨酸、缬氨酸、亮氨酸和异亮氨酸等只具有一个氨基和羧基且没有巯基和二硫键的α-氨基酸。Further, the synthesis of thiol-containing pH and thermally responsive small molecules: N-tert-butoxycarbonyl-amino acid, 1-ethyl-(3-dimethylaminopropyl)carbodiimide hydrochloride and N-hydroxysuccinimide was sequentially added to anhydrous N,N-dimethylformamide solution for activation, and then cystamine was added to anhydrous N,N-dimethylformamide solution, and the resulting mixture was heated under nitrogen. Stir in medium, react, purify to obtain
进一步地,对油胺包覆的铜金纳米颗粒进行配体交换:油胺包覆的铜金纳米颗粒分散于良溶剂中,加入按比例溶解的化合物3和一端带巯基的化合物4,反应,冷却后离心,加入去离子水,得到单分散的铜金纳米颗粒(CuAu NPs)。Further, ligand exchange is performed on the oleylamine-coated copper-gold nanoparticles: the oleylamine-coated copper-gold nanoparticles are dispersed in a good solvent, and
进一步地,pH和热响应型铜金纳米组装体的制备:将对苯二异硫氰酸酯溶于良溶剂中,之后加入单分散的铜金纳米颗粒与乳化剂,超声乳化后,减压蒸发,得到pH和热响应型的铜金纳米组装体(sCuAu NAs)。Further, the preparation of pH and thermally responsive copper-gold nano-assemblies: dissolving p-phenylenediisothiocyanate in a good solvent, then adding monodisperse copper-gold nanoparticles and emulsifier, after ultrasonic emulsification, reducing pressure Evaporated to obtain pH- and thermally responsive copper-gold nanoassemblies (sCuAu NAs).
进一步地,步骤(1)中油胺包覆的铜金纳米颗粒的粒径为6~8nm,其铜金比为Cu∶Au=0~5∶1。步骤(2)中,所述N-叔丁氧羰基-氨基酸的氨基酸包括甘氨酸、丙氨酸、缬氨酸、亮氨酸和异亮氨酸等只具有一个氨基和羧基且没有巯基和二硫键的α-氨基酸。步骤(3)中,单分散的铜金纳米颗粒的粒径在6~8nm;化合物4是一端分子量小于1000Da具有巯基的亲水性小分子。良溶剂选自三氯甲烷、二氯甲烷、环己烷和正己烷中的一种或多种;乳化剂选自十六烷基三甲基溴化铵或十二烷基硫酸钠;sCuAu NAs的水合粒径在100~200nm。所述的pH和热响应型铜金纳米组装体在抗耐药细菌或抗细菌生物被膜或在制备治疗创伤伤口药物的应用。所述细菌包括大肠杆菌、铜绿假单胞菌、肺炎链球菌、金黄色葡萄球菌或耐甲氧西林金黄色葡萄球菌。Further, in step (1), the particle size of the copper-gold nanoparticles coated with oleylamine is 6-8 nm, and the copper-gold ratio thereof is Cu:Au=0-5:1. In step (2), the amino acids of the N-tert-butoxycarbonyl-amino acid include glycine, alanine, valine, leucine and isoleucine, etc., have only one amino group and carboxyl group and have no sulfhydryl and disulfide groups. alpha-amino acids of the bond. In step (3), the particle size of the monodisperse copper-gold nanoparticles is 6-8 nm;
将所述的纳米组装体配制成一定浓度的溶液,成为治疗创伤伤口的药物,将该药物喷涂于创伤伤口表面,对伤口进行抗菌的同时促进伤口愈合。The nanometer assembly is prepared into a solution of a certain concentration to become a medicine for treating wounds, and the medicine is sprayed on the surface of the wounds to perform antibacterial activities on the wounds and promote wound healing.
进一步地,二次生长的金纳米颗粒的制备方法:Further, the preparation method of the gold nanoparticles of secondary growth:
(1)将四氯金酸三水合物溶解在油胺和1,2,3,4-四氢化萘的混合溶液中,通入惰性气体,在2~5℃保温30-60分钟以去除反应体系中的水蒸气和氧气,加入用油胺和1,2,3,4-四氢化萘溶解好的四丁基溴化铵,溶液由金黄色变为紫色,在2~5℃持续反应,以极性溶剂沉淀纳米颗粒,除去上清液后,得到金纳米颗粒,并溶于正己烷中备用。(1) Dissolve tetrachloroauric acid trihydrate in a mixed solution of oleylamine and 1,2,3,4-tetralin, pass in an inert gas, and keep the temperature at 2-5°C for 30-60 minutes to remove the reaction The water vapor and oxygen in the system are added with tetrabutylammonium bromide dissolved in oleylamine and 1,2,3,4-tetrahydronaphthalene. The solution changes from golden yellow to purple, and the reaction continues at 2~5℃. The nanoparticles were precipitated with a polar solvent, and the supernatant was removed to obtain gold nanoparticles, which were dissolved in n-hexane for use.
(2)将四氯金酸三水合物溶解在油胺和十八烯的混合溶液中,通入惰性气体,保温30-60分钟,加入将步骤1)中溶解在正己烷中的金纳米颗粒,通惰性气体除去氧气及正己烷,持续反应后降至室温,以极性溶剂沉淀纳米颗粒,除去上清液后,得到二次生长的金纳米颗粒,并溶于正己烷中备用。(2) Dissolving tetrachloroauric acid trihydrate in the mixed solution of oleylamine and octadecene, feeding in an inert gas, keeping the temperature for 30-60 minutes, adding the gold nanoparticles dissolved in n-hexane in step 1) , remove oxygen and n-hexane with an inert gas, continue the reaction and then drop to room temperature, precipitate nanoparticles with a polar solvent, and remove the supernatant to obtain secondary growth of gold nanoparticles, which are dissolved in n-hexane for use.
作为优选,所述步骤1)中四氯金酸三水合物、油胺、1,2,3,4-四氢化萘和四丁基溴化铵的投料比为100~200mg∶5~10mL∶5~10mL∶45~90mg,金纳米颗粒粒径在4~6nm。Preferably, in the step 1), the feed ratio of tetrachloroauric acid trihydrate, oleylamine, 1,2,3,4-tetralin and tetrabutylammonium bromide is 100~200mg: 5~10mL: 5~10mL: 45~90mg, the particle size of gold nanoparticles is 4~6nm.
作为优选,所述步骤2)中四氯金酸三水合物、油胺、十八烯和金纳米颗粒的投料比为50~100mg∶3~6mL∶3~6mL∶25~50mg,二次生长的金纳米颗粒粒径在6~8nm。Preferably, in the step 2), the feeding ratio of tetrachloroauric acid trihydrate, oleylamine, octadecene and gold nanoparticles is 50-100 mg: 3-6 mL: 3-6 mL: 25-50 mg, and the secondary growth The particle size of the gold nanoparticles is 6-8 nm.
作为优选,所述步骤3)中乙酰丙酮铜、油胺和二次生长的金纳米颗粒的投料比为20~40mg∶3~6mL∶15~30mg,合成的油胺包覆的铜金纳米颗粒的铜金比为0.8~1.2∶l。Preferably, in the step 3), the feeding ratio of copper acetylacetonate, oleylamine and the gold nanoparticles for secondary growth is 20-40mg: 3-6mL: 15-30mg, and the synthesized oleylamine-coated copper-gold nanoparticles The copper-gold ratio is 0.8 to 1.2:l.
作为优选,极性溶剂选自异丙醇、乙醇和丙酮中的一种或多种。Preferably, the polar solvent is selected from one or more of isopropanol, ethanol and acetone.
有益效果:本发明与现有技术相比,具有如下优势:Beneficial effect: Compared with the prior art, the present invention has the following advantages:
1、本发明的铜金纳米颗粒可稳定存在,不易被氧化,sCuAu NAs具有良好的生物相容性,在中性或弱碱性条件下稳定存在,在酸性及加热的条件下组装散开,同时铜离子释放增加。1. The copper-gold nanoparticles of the present invention can exist stably and are not easily oxidized. At the same time, the release of copper ions increased.
2、本发明中的CuAu NPs在650~950nm区域有一定的吸收特性,可在660nm激光的刺激下实现温度的升高。此外,为了实现更高效的光热杀菌,制备了sCuAu NAs以实现潜在的光热增强作用,根据加热-冷却曲线,确定光热转换效率(η)为66.32%。2. The CuAu NPs in the present invention have certain absorption characteristics in the region of 650-950 nm, and can achieve temperature increase under the stimulation of 660 nm laser. Furthermore, to achieve more efficient photothermal sterilization, sCuAu NAs were prepared for potential photothermal enhancement, and the photothermal conversion efficiency (η) was determined to be 66.32% according to the heating-cooling curve.
3、由于铜离子的杀菌效果有限,而所制得的sCuAuNAs经过近红外光辐照快速升温,进而促使组装体解离,且受热加速释放铜离子,与光热疗法协同抗菌。3. Due to the limited bactericidal effect of copper ions, the prepared sCuAuNAs are rapidly heated up by near-infrared light irradiation, which further promotes the dissociation of the assembly, and accelerates the release of copper ions when heated, which is synergistic with photothermal therapy.
4、在伤口生物被膜感染部位的酸性微环境中,sCuAu NAs能在激光照射下响应性解组装,发挥光热抗生物被膜作用时,避免过高温度对周围正常组织的损伤。同时铜离子释放增多,促进伤口愈合。4. In the acidic microenvironment of the wound biofilm infection site, sCuAu NAs can be disassembled responsively under laser irradiation, and when they play the role of photothermal anti-biofilm, they can avoid damage to surrounding normal tissues due to excessive temperature. At the same time, the release of copper ions increases and promotes wound healing.
附图说明Description of drawings
图1为油胺包覆的铜金纳米颗粒的透射电镜图;Fig. 1 is the transmission electron microscope picture of the copper-gold nanoparticles coated with oleylamine;
图2为油胺包覆的铜金纳米颗粒的X射线粉末衍射图;Fig. 2 is the X-ray powder diffraction pattern of oleylamine-coated copper-gold nanoparticles;
图3为化合物3的核磁共振谱图;Fig. 3 is the nuclear magnetic resonance spectrum of
图4为CuAuNPs的透射电镜图;Figure 4 is a transmission electron microscope image of CuAuNPs;
图5为sCuAuNAs在pH=7.4,37℃和pH=5.5,50℃时的透射电镜图;Figure 5 shows the TEM images of sCuAuNAs at pH=7.4, 37°C and pH=5.5, 50°C;
图6为sCuAuNAs在pH=7.4,37℃和pH=5.5,50℃时的粒径分布图;Figure 6 shows the particle size distribution of sCuAuNAs at pH=7.4, 37°C and pH=5.5, 50°C;
图7为CuAu NPs和sCuAu NAs的升温-冷却曲线及光热转换效率;Figure 7 shows the heating-cooling curves and photothermal conversion efficiencies of CuAu NPs and sCuAu NAs;
图8为sCuAu NAs的在不同条件下的铜离子释放曲线;Figure 8 shows the copper ion release curves of sCuAu NAs under different conditions;
图9为不同浓度sCuAuNAs的抑菌曲线;Fig. 9 is the antibacterial curve of different concentrations of sCuAuNAs;
图10为CuAuNPs和sCuAuNAs对MRSA的光热抗菌图;Figure 10 is the photothermal antibacterial image of CuAuNPs and sCuAuNAs against MRSA;
图11为CuAuNPs和sCuAuNAs对E.coli的光热抗菌图;Figure 11 is the photothermal antibacterial image of CuAuNPs and sCuAuNAs on E. coli;
图12为CuAu NPs和sCuAu NAs处理后生物被膜的活死细菌染色图;Fig. 12 is the stained image of live and dead bacteria in biofilms treated with CuAu NPs and sCuAu NAs;
图13为sCuAuNA对HUVEC细胞的毒性结果图;Figure 13 is a graph showing the toxicity of sCuAuNA to HUVEC cells;
图14为sCuAuNAs不同处理后HUVEC细胞迁移图;Figure 14 is the migration diagram of HUVEC cells after different treatments with sCuAuNAs;
图15为MRSA感染糖尿病创面小鼠创面愈合图;Figure 15 is a wound healing diagram of MRSA infected diabetic wounds in mice;
图16为MRSA感染糖尿病创面小鼠创面大小测量图。Fig. 16 is a graph showing the measurement of wound size in MRSA-infected diabetic wound mice.
具体实施方式Detailed ways
实施例1:油胺包覆的铜金纳米颗粒的制备Example 1: Preparation of oleylamine-coated copper-gold nanoparticles
(1)金纳米颗粒的制备:将200mg四氯金酸三水合物溶解在10mL油胺和10mL 1,2,3,4-四氢化萘的混合溶液中,通入惰性气体,在2~5℃保温30-60分钟以去除反应体系中的水蒸气和氧气,加入90mg溶解于1mL油胺和1mL 1,2,3,4-四氢化萘混合溶液中的四丁基溴化铵,溶液由金黄色变为紫色,在2~5℃持续反应1h后,以丙酮沉淀纳米颗粒,8000rpm离心5分钟,弃去上清,沉淀溶于正己烷,再用乙醇离心沉淀,得到金纳米颗粒。(1) Preparation of gold nanoparticles: Dissolve 200 mg of tetrachloroauric acid trihydrate in a mixed solution of 10 mL of oleylamine and 10 mL of 1,2,3,4-tetrahydronaphthalene, pass in an inert gas, and at 2-5 Incubate for 30-60 minutes to remove water vapor and oxygen in the reaction system, add 90 mg of tetrabutylammonium bromide dissolved in 1 mL of oleylamine and 1 mL of 1,2,3,4-tetralin mixed solution, and the solution is composed of The golden yellow color turned purple. After the reaction was continued for 1 h at 2-5 °C, the nanoparticles were precipitated with acetone, centrifuged at 8000 rpm for 5 minutes, the supernatant was discarded, the precipitate was dissolved in n-hexane, and then centrifuged with ethanol to obtain gold nanoparticles.
(2)二次生长的金纳米颗粒的制备:将100mg四氯金酸三水合物溶解在6mL油胺和6mL十八烯的混合溶液中,通入惰性气体,在80℃保温30-60分钟,加入将步骤(1)中溶解在正己烷中的金纳米颗粒,通惰性气体除去氧气及正己烷,持续反应2h后降至室温,以异丙醇沉淀纳米颗粒,8000rpm离心5分钟,弃去上清,沉淀溶于正己烷,再用乙醇离心沉淀,得到二次生长的金纳米颗粒。(2) Preparation of secondary grown gold nanoparticles: Dissolve 100 mg of tetrachloroauric acid trihydrate in a mixed solution of 6 mL of oleylamine and 6 mL of octadecene, pass in inert gas, and keep at 80°C for 30-60 minutes , add the gold nanoparticles dissolved in n-hexane in step (1), pass inert gas to remove oxygen and n-hexane, continue to react for 2h and then drop to room temperature, precipitate the nanoparticles with isopropanol, centrifuge at 8000rpm for 5 minutes, discard The supernatant, the precipitate was dissolved in n-hexane, and then centrifuged with ethanol to obtain secondary growth gold nanoparticles.
(3)油胺包覆的铜金纳米颗粒的制备:40mg乙酰丙酮铜和6mL油胺置于四颈瓶中,升温至80℃并通入惰性气体,保温30-60分钟,取步骤(2)中二次生长的金纳米颗粒的正己烷溶液加入反应体系,通惰性气体除去氧气及正己烷,然后3℃/分钟的速率升温到210℃,持续反应1h后降至室温,以乙醇沉淀纳米颗粒,8000rpm离心5分钟,弃去上清,沉淀溶于正己烷,反复清洗三遍,得到油胺包覆的铜金纳米颗粒。其中,油胺包覆的铜金纳米颗粒的制备铜金比约为Cu∶Au=1∶1。对本实施例中制备得到的油胺包覆的铜金纳米颗粒进行透射电子显微镜进行形貌表征,如图1所示。图2为X射线衍射对铜金纳米颗粒的晶型分析。(3) preparation of oleylamine-coated copper-gold nanoparticles: 40mg copper acetylacetonate and 6mL oleylamine are placed in a four-necked flask, be warming up to 80° C. and pass into inert gas, be incubated for 30-60 minutes, take step (2) The n-hexane solution of gold nanoparticles grown in ) was added to the reaction system, and the oxygen and n-hexane were removed by inert gas, and then the temperature was raised to 210 ° C at a rate of 3 ° C/min, and the reaction was continued for 1 h. The particles were centrifuged at 8000 rpm for 5 minutes, the supernatant was discarded, the precipitate was dissolved in n-hexane, and washed three times repeatedly to obtain oleylamine-coated copper-gold nanoparticles. The copper-gold ratio of the oleylamine-coated copper-gold nanoparticles is about Cu:Au=1:1. The morphology of the oleylamine-coated copper-gold nanoparticles prepared in this example was characterized by transmission electron microscopy, as shown in FIG. 1 . Figure 2 shows the crystal form analysis of copper-gold nanoparticles by X-ray diffraction.
实施例2:油胺包覆的铜金纳米颗粒的制备Example 2: Preparation of oleylamine-coated copper-gold nanoparticles
参照实施例l的制备工艺进行合成,不同之处在于,所述步骤(3)中加入的乙酰丙酮铜改为0~200mg,同样得到油胺包覆的铜金纳米颗粒。其中,油胺包覆的铜金纳米颗粒的制备铜金比分别为Cu∶Au=0~5∶1。The synthesis is carried out with reference to the preparation process of Example 1, the difference is that the copper acetylacetonate added in the step (3) is changed to 0-200 mg, and the copper-gold nanoparticles coated with oleylamine are also obtained. The copper-gold ratios of the copper-gold nanoparticles coated with oleylamine are respectively Cu:Au=0-5:1.
实施例3:含巯基的pH和热响应型小分子的合成Example 3: Synthesis of thiol-containing pH and thermoresponsive small molecules
将N-叔丁氧羰基-甘氨酸(525mg,3mmol)、1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐(1719mg,9mmol)和N-羟基琥珀酰亚胺(1035mg,9mmo1)依次添加到无水N,N-二甲基甲酰胺溶液(10mL)中并活化半小时。然后将胱胺(152.0mg,1mmol)添加到无水N,N-二甲基甲酰胺溶液中,并在室温下将所得混合物在氮气中搅拌24h。氮气保护条件下室温过夜反应,用薄层层析法检测反应进度,待层析板上原料点消失,即为反应完毕。旋蒸除去溶剂,产物溶于二氯甲烷,用水洗涤3次,干燥后用柱层析法提纯(洗脱剂为二氯甲烷∶甲醇=10∶1),得到化合物1。随后,将化合物1溶于5mL二氯甲烷中,向其中加入1mL三氟乙酸,室温搅拌4h,旋蒸除去溶剂,得到化合物2。之后在5mL甲醇中加入化合物2和二硫苏糖醇(309mg,2mmol),室温搅拌12~24h,旋蒸除去溶剂,产物溶于水,用乙酸乙酯萃取3次,干燥后用柱层析法提纯(洗脱剂为乙腈∶水=10∶1),得到化合物3。干燥后提纯得到化合物3。化合物的合成路线如下:N-tert-butoxycarbonyl-glycine (525 mg, 3 mmol), 1-ethyl-(3-dimethylaminopropyl)carbodiimide hydrochloride (1719 mg, 9 mmol) and N-hydroxysuccinimide The amine (1035 mg, 9 mmol) was sequentially added to anhydrous N,N-dimethylformamide solution (10 mL) and activated for half an hour. Cystamine (152.0 mg, 1 mmol) was then added to anhydrous N,N-dimethylformamide solution and the resulting mixture was stirred under nitrogen for 24 h at room temperature. The reaction was carried out overnight at room temperature under nitrogen protection, and the progress of the reaction was detected by thin-layer chromatography. The reaction was completed when the raw material point on the chromatography plate disappeared. The solvent was removed by rotary evaporation, the product was dissolved in dichloromethane, washed three times with water, dried and purified by column chromatography (eluent: dichloromethane:methanol=10:1) to obtain
化合物3的核磁数据:1H NMR(300MHz,DMSO-d6)δ1.31(1H,s),2.82-2.85(2H,t),3.50(2H,s),3.53-3.55(2H,t),8.12(2H,s),8.63-8.66(1H,t)。NMR data of compound 3: 1 H NMR (300 MHz, DMSO-d 6 ) δ 1.31 (1H, s), 2.82-2.85 (2H, t), 3.50 (2H, s), 3.53-3.55 (2H, t) , 8.12 (2H, s), 8.63-8.66 (1H, t).
化合物3的核磁共振谱图如图3所示,表示pH和热响应性小分子成功合成。The NMR spectrum of
实施例4:含巯基的pH和热响应型小分子的合成Example 4: Synthesis of thiol-containing pH and thermoresponsive small molecules
参照实施例3的制备工艺进行合成,不同之处在于,所述的N-叔丁氧羰基-甘氨酸中的氨基酸分别被丙氨酸、缬氨酸、亮氨酸和异亮氨酸等只具有一个氨基和羧基且没有巯基和二硫键的α-氨基酸替代。Synthesize with reference to the preparation technique of Example 3, the difference is that the amino acids in the described N-tert-butoxycarbonyl-glycine are respectively only possessed by alanine, valine, leucine and isoleucine etc. An alpha-amino acid substitution of amino and carboxyl groups without sulfhydryl and disulfide bonds.
实施例5:CuAuNPs的制备Example 5: Preparation of CuAuNPs
1mM油胺包覆的铜金纳米颗粒分散于10mL四氢呋喃中,加入溶于DMF的1mM的化合物3和1.5mM的一端是巯基修饰的化合物4,50℃反应4h,冷却后3000rpm离心3分钟,沉淀用DMF溶解后再离心2次,除去多余的小分子,沉淀用去离子水溶解,得到CuAu NPs。对CuAuNPs用透射电子显微镜进行形貌表征,结果如图4所示,粒径在6~8nm,分散在水溶液中,显示了含巯基小分子的成功修饰。1 mM oleylamine-coated copper-gold nanoparticles were dispersed in 10 mL of tetrahydrofuran, 1 mM of
实施例6:sCuAuNAs的制备Example 6: Preparation of sCuAuNAs
将对苯二异硫氰酸酯(5mM)溶于氯仿(1mL)中,之后加入CuAu NPs(1mM,10mL)与乳化剂十六烷基三甲基溴化铵,超声乳化,室温过夜搅拌后挥去氯仿,以500rpm离心3分钟去除多余的对苯二异硫氰酸酯,用1000Da的透析袋透析除去多余的十六烷基三甲基溴化铵,得到sCuAu NAs。P-phenylenediisothiocyanate (5mM) was dissolved in chloroform (1mL), then CuAu NPs (1mM, 10mL) and emulsifier cetyltrimethylammonium bromide were added, sonicated, and stirred overnight at room temperature. Chloroform was evaporated, and the excess p-phenylenediisothiocyanate was removed by centrifugation at 500 rpm for 3 minutes, and the excess cetyltrimethylammonium bromide was removed by dialysis with a 1000 Da dialysis bag to obtain sCuAu NAs.
利用动态光散射分析在不同温度及不同pH条件下sCuAu NAs的粒度分布情况,结果如表1所示。利用透射电子显微镜对得到的sCuAu NAs在pH=7.4,37℃和pH=5.5,50℃条件下进行形貌表征,结果如图5所示,利用动态光散射分析在pH=7.4,37℃和pH=5.5,50℃条件下sCuAu NAs的粒度分布,结果如图6所示。以上结果均证明,该sCuAu NAs具有良好的pH及热响应性,在pH=5.5,50℃条件下完全解组装。The particle size distribution of sCuAu NAs at different temperatures and pH conditions was analyzed by dynamic light scattering, and the results are shown in Table 1. The obtained sCuAu NAs were characterized by transmission electron microscopy at pH=7.4, 37°C and pH=5.5, 50°C. The results are shown in Fig. 5. Dynamic light scattering analysis was used at pH=7.4, 37°C and pH=7.4. The particle size distribution of sCuAu NAs at pH=5.5 and 50 °C is shown in Figure 6. The above results all prove that the sCuAu NAs have good pH and thermal responsiveness, and are completely disassembled at pH=5.5 and 50 °C.
表1.sCuAu NAs在不同温度及不同pH条件下的粒径变化情况Table 1. Particle size variation of sCuAu NAs at different temperatures and pH conditions
实施例7:sCuAuNAs的制备Example 7: Preparation of sCuAuNAs
参照实施例6的制备工艺进行合成,不同之处在于,所加入的乳化剂为十二烷基硫酸钠。Synthesize with reference to the preparation process of Example 6, the difference is that the added emulsifier is sodium lauryl sulfate.
实施例8:sCuAu NAs的光热性能测试Example 8: Photothermal performance test of sCuAu NAs
将CuAu NPs(按照实施例5制备得到)与sCuAu NAs(按照实施例6制备得到)用去离子水稀释配置成15μg/mL的溶液。将上述两种溶液经660nm近红外光发射器照射5分钟后,关闭激光器,溶液自然冷却到室温,采用红外热成像仪记录不同溶液的实时温度。CuAu NPs与sCuAu NAs的加热-冷却曲线是在1.0W/cm2获得的。光热转换效率(η)通过以下公式计算:CuAu NPs (prepared according to Example 5) and sCuAu NAs (prepared according to Example 6) were diluted with deionized water to prepare a solution of 15 μg/mL. After irradiating the above two solutions with a 660 nm near-infrared light emitter for 5 minutes, the laser was turned off, the solutions were cooled to room temperature naturally, and an infrared thermal imager was used to record the real-time temperature of different solutions. The heating-cooling curves of CuAu NPs and sCuAu NAs were obtained at 1.0 W/ cm2 . The photothermal conversion efficiency (η) is calculated by the following formula:
公式1
公式2
公式3
Q0=hS(Tmax,water-Tsurr)Q 0 =hS(T max, water -T surr )
τs的值由冷却曲线中的线性回归曲线计算出来得到,md和Cd分别表示溶液的质量(1g)和热容(4.2J/(g·K)),这样就可以得到hS的值,然后,通过公式3计算Q0,表示MPDA纳米粒子不存在时的背景能量输入。其中Tmax,water和Tsurr分别代表水的稳态最高温度和环境室温。因此,在确定hS和Q0值后,可以根据公式1计算光热转换效率。Tmax表示溶液稳定的最高温度,I和A660分别表示激光功率(1.0W)和纳米颗粒在660nm处的吸光度。结果如图7所示,sCuAu NAs的光热转换效率为66.32%比CuAu NPs(46.65%)提高。The value of τ s is calculated from the linear regression curve in the cooling curve, m d and C d represent the mass (1g) and heat capacity (4.2J/(g K)) of the solution, respectively, so that the value of hS can be obtained , and then, Q 0 is calculated by
实施例9:铜离子的响应性释放Example 9: Responsive release of copper ions
精确量取1mL sCuAu NAs(按照实例6制备得到)(2mg/mL)置于Mw=1000的透析袋中,将透析袋浸没于50mL 37℃和50℃的pH 7.4或pH 5.5的缓冲溶液中,于相应时间点取出1mL缓冲溶液并补加1mL相性酸度的空白缓冲溶液。取样结束后用电感耦合等离子色谱测定各样品中的铜含量,进而计算出铜释放量。计算公式如下:Accurately measure 1 mL of sCuAu NAs (prepared according to Example 6) (2 mg/mL) into a dialysis bag with Mw=1000, and immerse the dialysis bag in 50 mL of pH 7.4 or pH 5.5 buffer solution at 37°C and 50°C, At the corresponding time point, 1 mL of buffer solution was taken out and 1 mL of blank buffer solution of phase acidity was added. After sampling, the copper content in each sample was measured by inductively coupled plasma chromatography, and then the copper release amount was calculated. Calculated as follows:
Rt=Ct×50/2×100%R t =C t ×50/2×100%
其中Rt是响应时间点的铜释放率,Ct是该时间点取出溶液中的铜浓度,单位为:mg/mL。where R t is the copper release rate at the response time point, and C t is the copper concentration in the solution taken out at this time point, in mg/mL.
随后通过释放率对时间作图,得到图8。可以观察到,sCuAuNAs在37℃,pH 7.4基本没有铜释放,而在50℃,pH 5.5缓冲溶液中的铜释放率可超过10%。sCuAu NAs在pH 5.5或者50℃的缓冲溶液中的铜释放率均低于5%。这证明了上述合成的sCuAu NAs可以在中性环境中保持稳定,而在酸性及加热的条件下由于解组装释放出更多的铜离子。Figure 8 was then plotted by release rate versus time. It can be observed that there is almost no copper release from sCuAuNAs at 37 °C, pH 7.4, while the copper release rate can exceed 10% in buffer solution at pH 5.5 at 50 °C. The copper release rates of sCuAu NAs in buffer solutions at pH 5.5 or 50 °C were all lower than 5%. This proves that the synthesized sCuAu NAs can remain stable in a neutral environment, while more copper ions are released due to disassembly under acidic and heated conditions.
实施例10:sCuAu NAs对浮游细菌的杀伤抑制作用Example 10: Inhibitory effect of sCuAu NAs on planktonic bacteria
取对数生长期的耐甲氧西林金黄色葡萄球菌(MRSA),用新鲜的液体培养基将菌液稀释至OD600=0.01,取sCuAu NAs(按照实例6制备得到),用生理盐水稀释至不同浓度,加入到菌液混合,使其终浓度分别为0μg/mL、5μg/mL、10μg/mL、20μg/mL和40μg/mL,每孔100μL,于37℃恒温振荡培养箱内培养。孵育1小时后,用或不用660nm激光(10分钟,1.0W/cm2)照射溶液,继续孵育至18小时,在酶标仪上测定其在600nm处的吸光度,测定细菌存活率,结果如图9所示,浓度为20μg/mL和40μg/mL时,sCuAu NAs加激光照射基本杀灭95%以上浮游细菌,且不加激光时sCuAu NAs在20μg/mL和40μg/mL对细菌的杀伤能力无明显差异,存活率均在60%左右,因此之后sCuAu NAs实验浓度采用20μg/mL。Take methicillin-resistant Staphylococcus aureus (MRSA) in logarithmic growth phase, dilute the bacterial solution with fresh liquid medium to OD 600 =0.01, take sCuAu NAs (prepared according to Example 6), and dilute with normal saline to Different concentrations were added to the bacterial solution and mixed, so that the final concentrations were 0 μg/mL, 5 μg/mL, 10 μg/mL, 20 μg/mL and 40 μg/mL, 100 μL per well, and cultured in a constant temperature shaking incubator at 37 °C. After 1 hour of incubation, irradiate the solution with or without 660nm laser (10 minutes, 1.0W/cm2), continue to incubate for 18 hours, measure its absorbance at 600nm on a microplate reader, and determine the bacterial survival rate, the results are shown in Figure 9 As shown, when the concentration is 20 μg/mL and 40 μg/mL, sCuAu NAs plus laser irradiation basically kills more than 95% of planktonic bacteria, and without laser, sCuAu NAs have no obvious killing ability to bacteria at 20 μg/mL and 40 μg/mL The survival rate was about 60%, so the experimental concentration of sCuAu NAs was 20 μg/mL.
实施例11:CuAu NPs和sCuAu NAs对浮游细菌的光热杀菌作用Example 11: Photothermal sterilization of planktonic bacteria by CuAu NPs and sCuAu NAs
取对数生长期的耐甲氧西林金黄色葡萄球菌,用新鲜的液体培养基将菌液稀释至OD600=0.01,取CuAuNPs(按照实例5制备得到)和sCuAuNAs(按照实例6制备得到),用培养基稀释至20μg/mL,每孔100μL,于37℃恒温振荡培养箱内培养。孵育1小时后,用或不用660nm激光(10分钟,1.0W/cm2)照射溶液,继续孵育至12小时,在酶标仪上测定其在600nm处的吸光度,通过光密度法确定细菌存活率,结果如图10所示,不加激光时CuAuNPs和sCuAuNAs均能杀灭约35%的浮游细菌,而激光照射组sCuAu NAs能杀灭99%的细菌,CuAu NPs仅能杀灭约60%的细菌,这充分显示了光热效率的提升有利于提高光热抗菌效果,sCuAu NAs具有优越的光热抗菌效果。Take the methicillin-resistant Staphylococcus aureus in the logarithmic growth phase, dilute the bacterial solution with fresh liquid medium to OD 600 =0.01, take CuAuNPs (prepared according to Example 5) and sCuAuNAs (prepared according to Example 6), Dilute the medium to 20 μg/mL, 100 μL per well, and culture in a constant temperature shaking incubator at 37°C. After 1 hour of incubation, the solution was irradiated with or without a 660nm laser (10 minutes, 1.0W/cm2), and the incubation was continued until 12 hours. The absorbance at 600nm was measured on a microplate reader, and the bacterial survival rate was determined by optical density. The results are shown in Fig. 10. Both CuAuNPs and sCuAuNAs can kill about 35% of planktonic bacteria without laser irradiation, while sCuAu NAs in laser irradiation group can kill 99% of bacteria, and CuAu NPs can only kill about 60% of bacteria. , which fully shows that the improvement of photothermal efficiency is beneficial to improve the photothermal antibacterial effect, and sCuAu NAs have superior photothermal antibacterial effect.
实施例12:CuAu NPs和sCuAu NAs对浮游细菌的光热杀菌作用Example 12: Photothermal sterilization of planktonic bacteria by CuAu NPs and sCuAu NAs
参照实施例11的方案进行实验,不同之处在于,所取用的细菌为大肠杆菌(E.coli)。通过光密度法确定细菌存活率,结果如图11所示。这显示了sCuAu NAs的光热治疗具有广谱抗菌效果。The experiment was carried out with reference to the protocol of Example 11, except that the bacterium used was Escherichia coli (E.coli). The bacterial viability was determined by densitometry, and the results are shown in Figure 11. This shows that the photothermal treatment of sCuAu NAs has a broad-spectrum antibacterial effect.
为了证明sCuAu NAs光热治疗的广谱抗菌效果,所取用的细菌还包括铜绿假单胞菌、肺炎链球菌、金黄色葡萄球菌、沙门氏杆菌、白喉杆菌、炭疽杆菌、大肠杆菌的抗生素抗性菌株,通过光密度法分别确定治疗后的细菌存活率验证sCuAu NAs具有良好的光热治疗效果。In order to prove the broad-spectrum antibacterial effect of sCuAu NAs photothermal therapy, the bacteria used also include antibiotic resistance of Pseudomonas aeruginosa, Streptococcus pneumoniae, Staphylococcus aureus, Salmonella, Diphtheria, Bacillus anthracis, and Escherichia coli. The bacterial survival rate after treatment was determined by optical density method to verify that sCuAu NAs have good photothermal treatment effect.
实施例13:sCuAu NAs对细菌生物被膜的杀伤抑制作用Example 13: Killing and Inhibitory Effect of sCuAu NAs on Bacterial Biofilms
取对数生长期的耐甲氧西林金黄色葡萄球菌,用新鲜的液体培养基将菌液稀释至OD600=0.05,接种于96孔板内,每孔200μL,于37℃恒温培养箱内静置培养48小时,每24小时更换新鲜培养液。细菌形成生物被膜后,弃去培养液,用生理盐水对生物被膜进行漂洗,洗去浮游细菌及从生物被膜中解吸附的细菌。取CuAu NPs(按照实例5制备得到)和sCuAu NAs(按照实例6制备得到),用新鲜培养基稀释至20μg/mL,加入生物被膜中,每孔200μL,于37℃恒温培养箱内静置培养。同时,以空白培养基作为对照组。孵育1小时后,用或不用660nm激光(10分钟,1.0W/cm2)照射溶液,继续孵育至12小时,彻底清洗生物被膜,更换含有碘化丙啶(PI,54.9μM)和SYTO 9(5μM)的生理盐水。37℃孵育20分钟后,洗去荧光染料,在荧光显微镜下观察细菌生物被膜。PI染料可以染色死细菌,SYTO 9则可以同时染色活细菌及死细菌。当生物被膜完整时,PI不能透过细菌细胞壁,而活细菌被SYTO 9染为绿色。结果如图12所示,生理盐水组99%以上是绿色荧光,不加激光时CuAu NPs和sCuAu NAs只能破坏约20%的生物被膜,而激光照射组经sCuAu NAs处理后,生物被膜中细菌基本全被PI染色,显红色荧光,活性显著降低,CuAu NPs仅能破坏约50%的生物被膜,显示了sCuAu NAs具有显著的光热抗细菌生物被膜效果。Take the methicillin-resistant Staphylococcus aureus in logarithmic growth phase, dilute the bacterial solution with fresh liquid medium to OD 600 = 0.05, inoculate in a 96-well plate, 200 μL per well, and keep it in a constant temperature incubator at 37 °C. Incubate for 48 hours and replace with fresh medium every 24 hours. After bacteria form a biofilm, the culture medium is discarded, and the biofilm is rinsed with physiological saline to wash away planktonic bacteria and bacteria desorbed from the biofilm. Take CuAu NPs (prepared according to Example 5) and sCuAu NAs (prepared according to Example 6), diluted with fresh medium to 20 μg/mL, added to biofilm, 200 μL per well, and cultured in a constant temperature incubator at 37 °C. . Meanwhile, blank medium was used as control group. After 1 hour of incubation, the solution was irradiated with or without 660nm laser (10 minutes, 1.0W/cm2), and the incubation was continued until 12 hours. The biofilm was thoroughly washed and replaced with propidium iodide (PI, 54.9μM) and SYTO 9 (5μM). ) of normal saline. After incubation at 37°C for 20 minutes, the fluorescent dye was washed away and the bacterial biofilm was observed under a fluorescence microscope. PI dyes stain dead bacteria, while SYTO 9 stains both live and dead bacteria. When the biofilm is intact, PI cannot penetrate the bacterial cell wall, and live bacteria are stained green by SYTO 9. The results are shown in Fig. 12. More than 99% of the normal saline group is green fluorescence. Without laser, CuAu NPs and sCuAu NAs can only destroy about 20% of the biofilm. However, after the laser irradiation group was treated with sCuAu NAs, the bacteria in the biofilm Almost all were stained by PI, showing red fluorescence, and the activity was significantly reduced. CuAu NPs could only destroy about 50% of the biofilm, showing that sCuAu NAs had a significant photothermal antibacterial biofilm effect.
实施例14:sCuAu NAs的细胞毒性测定Example 14: Cytotoxicity assay of sCuAu NAs
HUVEC细胞接种于96孔板中,培养过夜。当细胞生长至80%汇合度时加入sCuAuNAs(1.25、2.5、5、10、20、40μg/mL),每个浓度三个复孔,以空白培养基作为对照。培养24h后移除含有纳米颗粒的培养基,将预配制好的MTT溶液(5mg/mL)加入到各孔中,每孔150μL继续置于培养箱中孵育4h;小心除去MTT溶液,每孔加150μL二甲基亚砜(DMSO),充分震荡3分钟,用酶标仪检测各孔在492nm处的吸光度OD值,将三个复孔的平均OD值作为目标样品的OD值,计算细胞存活率:HUVEC cells were seeded in 96-well plates and cultured overnight. When the cells grew to 80% confluence, sCuAuNAs (1.25, 2.5, 5, 10, 20, 40 μg/mL) were added in three replicate wells for each concentration, and blank medium was used as a control. After culturing for 24 h, remove the medium containing nanoparticles, add pre-prepared MTT solution (5 mg/mL) to each well, and continue to incubate 150 μL per well in an incubator for 4 h; 150 μL dimethyl sulfoxide (DMSO), shaken for 3 minutes, use a microplate reader to detect the absorbance OD value of each well at 492 nm, take the average OD value of the three duplicate wells as the OD value of the target sample, and calculate the cell viability. :
细胞存活率=样品OD/空白对照组OD×100%Cell viability = sample OD / blank control OD × 100%
如图13所示,在sCuAu NAs浓度为40μg/mL时略有毒性,20μg/mL及以下基本无毒性,说明在抗菌浓度20μg/mL时能保证其生物安全性。As shown in Figure 13, when the concentration of sCuAu NAs is 40 μg/mL, it is slightly toxic, and 20 μg/mL and below are basically non-toxic, indicating that the biosafety can be guaranteed when the antibacterial concentration is 20 μg/mL.
实施例15:sCuAu NAs的细胞迁移实验Example 15: Cell Migration Experiment of sCuAu NAs
首先将sCuAu NAs(按照实例6制备得到)和用660nm激光照射过的sCuAu NAs(pH5.5,10分钟)用含1%血清的基础培养基(DMEM)中稀释配制成两种溶液。将HUVEC细胞于12孔板培养24h,当细胞生长完全汇合时,用200μL枪头做细胞划痕,用空白培养基洗去细胞碎片。之后于每孔分别加入上述配置的溶液800μL,其中,Control组为空白组,未加任何药物处理,sCuAu NAs组为加入20μg/mL含sCuAu NAs的溶液,sCuAu NAs+Laser组为加入20μg/mL含sCuAu NAs(经光热10分钟)的溶液。加上述溶液培养细胞划痕后的HUVEC细胞36h,各个组细胞迁移结果如图14所示。由图14可知,HUVEC细胞做划痕经过36h后,Control组仅有少量细胞迁移,而sCuAu NAs+Laser组细胞迁移明显,比空白组增加约30%,sCuAu NAs组细胞也有促进细胞迁移能力,但效果没有sCuAu NAs+Laser组明显,说明铜离子能够促进细胞迁移。这意味着sCuAuNAs不仅可以实现光热抗菌,还能促进创面愈合。Two solutions were first prepared by diluting sCuAu NAs (prepared according to Example 6) and 660 nm laser irradiated sCuAu NAs (pH 5.5, 10 min) in basal medium (DMEM) containing 1% serum. The HUVEC cells were cultured in a 12-well plate for 24 hours. When the cells were completely confluent, a 200 μL pipette tip was used to scratch the cells, and blank medium was used to wash away cell debris. Afterwards, 800 μL of the above-configured solution was added to each well. Among them, the Control group was a blank group without any drug treatment, the sCuAu NAs group was added with 20 μg/mL solution containing sCuAu NAs, and the sCuAu NAs+Laser group was added with 20 μg/mL Solution containing sCuAu NAs (photothermal for 10 min). The above solution was added to culture the scratched HUVEC cells for 36 h, and the cell migration results of each group are shown in Figure 14. As can be seen from Figure 14, after 36 hours of scratching HUVEC cells, only a small amount of cells migrated in the Control group, while the cells in the sCuAu NAs+Laser group migrated significantly, an increase of about 30% compared with the blank group. The cells in the sCuAu NAs group also had the ability to promote cell migration. However, the effect was not as obvious as that in the sCuAu NAs+Laser group, indicating that copper ions can promote cell migration. This means that sCuAuNAs can not only achieve photothermal antibacterial, but also promote wound healing.
实例16sCuAu NAs的体内伤口愈合实验Example 16 In vivo wound healing experiments of sCuAu NAs
1、实验部分:选用22-25g的雄性BALB/c小鼠,腹腔注射STZ造模进行I型糖尿病造模;对糖尿病小鼠背部用8mm*8mm打孔器制备创面,滴加菌液浓度为1×108CFU/mL的耐甲氧金黄色葡萄球菌菌液20μL,48h后即制备耐药菌严重感染的糖尿病小鼠创面。对造模成功小鼠分组:对感染MRSA的糖尿病小鼠创面给予100μL生理盐水,称为Saline组,同时也是本实验的对照组。对感染MRSA的糖尿病小鼠创面给予上述制备的20μg/mL的含sCuAu NAs的溶液100μL,称为sCuAu NAs组。对感染MRSA的糖尿病小鼠创面给予上述制备的20μg/mL的含sCuAuNAss的溶液100μL孵育1h后,660nm激光(10分钟,1.0W/cm2)照射,称为sCuAu NAs+Laser组。1. Experimental part: 22-25g male BALB/c mice were selected, and STZ was injected intraperitoneally to make a model of type I diabetes; an 8mm*8mm hole punch was used on the back of the diabetic mice to prepare wounds, and the concentration of the bacterial solution was 1. 20 μL of 1×10 8 CFU/mL methicillin-resistant Staphylococcus aureus solution was used to prepare wounds of diabetic mice severely infected with drug-resistant bacteria after 48 hours. Grouping of successful model mice: 100 μL of normal saline was given to the wounds of MRSA-infected diabetic mice, called Saline group, which was also the control group in this experiment. 100 μL of the 20 μg/mL sCuAu NAs-containing solution prepared above was administered to the wounds of MRSA-infected diabetic mice, referred to as the sCuAu NAs group. The wounds of diabetic mice infected with MRSA were given 100 μL of the 20 μg/mL sCuAuNAss-containing solution prepared above and incubated for 1 h, and then irradiated with 660 nm laser (10 minutes, 1.0 W/cm2), which was called the sCuAu NAs+Laser group.
2、创面愈合拍照记录:对上述小鼠给药治疗后0、2、4、6,、8、10天进行创面拍照记录,如图15所示,图15为MRSA感染糖尿病创面小鼠创面愈合图,由图15可以看出,经过10天的治疗后,单独的sCuAu NAs组治疗伤口面积有所降低,但伤口尚未痊愈,表明单独修复的效果欠佳;值得一提的是,sCuAu NAs+Laser组结合了光热抗菌和铜离子促伤口愈合的双重功效,发挥了协同增效作用,其伤口基本愈合,MRSA感染糖尿病创面的修复得到了最优的效果。2. Photographs of wound healing: Take pictures of the wounds at 0, 2, 4, 6, 8, and 10 days after drug administration in the above-mentioned mice, as shown in Figure 15. Figure 15 shows the wound healing of MRSA infected diabetic wounds in mice Figure 15 shows that after 10 days of treatment, the wound area of the sCuAu NAs alone group was reduced, but the wound was not healed, indicating that the effect of repair alone was not good; it is worth mentioning that the sCuAu NAs+ The Laser group combined the dual effects of photothermal antibacterial and copper ions to promote wound healing, and played a synergistic effect. The wounds were basically healed, and the repair of MRSA-infected diabetic wounds achieved optimal results.
3、创面大小测量:用游标卡尺对上述给药治疗后0、2、4、6,、8、10天小鼠测定创面大小,如图16所示。图16为MRSA感染糖尿病创面小鼠创面大小测量图,由图16可知,创面测量数据同图15创面愈合图结果基本一致,sCuAu NAs+Laser组能够在较短时间内愈合创面。3. Measurement of wound size: The size of the wound was measured on the mice at 0, 2, 4, 6, 8, and 10 days after the above administration and treatment with a vernier caliper, as shown in FIG. 16 . Figure 16 is the measurement chart of the wound size of MRSA infected diabetic wounds in mice. It can be seen from Figure 16 that the wound measurement data is basically the same as that of the wound healing chart in Figure 15, and the sCuAu NAs+Laser group can heal the wound in a short time.
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111628189.5A CN114246844A (en) | 2021-12-28 | 2021-12-28 | Preparation method and application of pH and thermal response type CuAu nano assembly |
CN2021116281895 | 2021-12-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114404392A true CN114404392A (en) | 2022-04-29 |
CN114404392B CN114404392B (en) | 2023-06-20 |
Family
ID=80798549
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111628189.5A Pending CN114246844A (en) | 2021-12-28 | 2021-12-28 | Preparation method and application of pH and thermal response type CuAu nano assembly |
CN202210201542.XA Active CN114404392B (en) | 2021-12-28 | 2022-03-02 | Preparation method and application of a pH and heat-responsive CuAu nanoassembly |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111628189.5A Pending CN114246844A (en) | 2021-12-28 | 2021-12-28 | Preparation method and application of pH and thermal response type CuAu nano assembly |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN114246844A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115869419A (en) * | 2022-09-09 | 2023-03-31 | 中国药科大学 | Double-response type Fe 3 O 4 Nano drug-loaded assembly and preparation method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090181101A1 (en) * | 2005-08-04 | 2009-07-16 | Thomas William Rademacher | Nanoparticles comprising antibacterial ligands |
-
2021
- 2021-12-28 CN CN202111628189.5A patent/CN114246844A/en active Pending
-
2022
- 2022-03-02 CN CN202210201542.XA patent/CN114404392B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090181101A1 (en) * | 2005-08-04 | 2009-07-16 | Thomas William Rademacher | Nanoparticles comprising antibacterial ligands |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115869419A (en) * | 2022-09-09 | 2023-03-31 | 中国药科大学 | Double-response type Fe 3 O 4 Nano drug-loaded assembly and preparation method thereof |
CN115869419B (en) * | 2022-09-09 | 2024-05-24 | 中国药科大学 | A dual-responsive Fe3O4 nano-drug-carrying assembly and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN114404392B (en) | 2023-06-20 |
CN114246844A (en) | 2022-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chu et al. | Near-infrared carbon dot-based platform for bioimaging and photothermal/photodynamic/quaternary ammonium triple synergistic sterilization triggered by single NIR light source | |
Liang et al. | Facile synthesis of ZnO QDs@ GO-CS hydrogel for synergetic antibacterial applications and enhanced wound healing | |
Liu et al. | Silver nanoparticle-embedded hydrogel as a photothermal platform for combating bacterial infections | |
Tong et al. | PB@ PDA@ Ag nanosystem for synergistically eradicating MRSA and accelerating diabetic wound healing assisted with laser irradiation | |
Chen et al. | Recent advances in Ti-based MOFs in biomedical applications | |
Wang et al. | In situ fabrication of metal-organic framework derived hybrid nanozymes for enhanced nanozyme-photothermal therapy of bacteria-infected wounds | |
Bai et al. | Synergistic photothermal antibacterial therapy enabled by multifunctional nanomaterials: progress and perspectives | |
Wang et al. | Antibiotic‐derived carbon‐Nanodot‐decorated hydrogel for reactive oxygen species‐enhanced anti‐infection through biofilm damage | |
Cao et al. | Photodynamic chitosan functionalized MoS2 nanocomposite with enhanced and broad-spectrum antibacterial activity | |
Wang et al. | Nanodot-doped peptide hydrogels for antibacterial phototherapy and wound healing | |
Grumezescu et al. | MAPLE fabricated magnetite@ eugenol and (3-hidroxybutyric acid-co-3-hidroxyvaleric acid)–polyvinyl alcohol microspheres coated surfaces with anti-microbial properties | |
CN113016823B (en) | A kind of preparation method of photothermal antibacterial near-infrared bimetallic nanoparticles | |
Xu et al. | Mild heat-assisted polydopamine/alginate hydrogel containing low-dose nanoselenium for facilitating infected wound healing | |
Zhou et al. | Nanoliquid dressing with enhancing anti-infection performance under the moderate photothermal effect for wound treatment | |
Lv et al. | Selective Photothermal Therapy Based on Lipopolysaccharide Aptamer Functionalized MoS2 Nanosheet‐Coated Gold Nanorods for Multidrug‐Resistant Pseudomonas aeruginosa Infection | |
Mandal | Copper nanomaterials as drug delivery system against infectious agents and cancerous cells | |
Meng et al. | Pyroelectric Janus nanomotors for synergistic electrodynamic-photothermal-antibiotic therapies of bacterial infections | |
Qi et al. | Facile synthesis of ε-poly-L-lysine-conjugated ZnO@ PDA as photothermal antibacterial agents for synergistic bacteria killing and biofilm eradication | |
CN114404392B (en) | Preparation method and application of a pH and heat-responsive CuAu nanoassembly | |
Wang et al. | Multifunctional gold clusterzymes with distinct glucose depletion and macrophage reprogramming capability towards regulating the regeneration cascade | |
Zhong et al. | Right once for all: zinc-modulated highly stable iron-based ROS generator under physiological conditions for promoting bacteria-infected wound healing | |
Yang et al. | Near-infrared-guided NO generator for combined NO/photothermal/chemodynamic therapy of bacterial infections | |
Wu et al. | Temperature-Responsive Nanoassemblies for Self-Regulated Photothermal Therapy and Controlled Copper Release to Accelerate Chronic Wound Healing | |
Lv et al. | Polyoxometalate-based heterojunction with NIR light-facilitated photocatalytic W6+/W5+ redox cycling for enhanced bacteria-infected wound healing | |
Nie et al. | Structurally oriented carbon dots as ros nanomodulators for dynamic chronic inflammation and infection elimination |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |