CN114400912A - 电势诱导衰减预防电路和应用其的光伏系统 - Google Patents

电势诱导衰减预防电路和应用其的光伏系统 Download PDF

Info

Publication number
CN114400912A
CN114400912A CN202111529960.3A CN202111529960A CN114400912A CN 114400912 A CN114400912 A CN 114400912A CN 202111529960 A CN202111529960 A CN 202111529960A CN 114400912 A CN114400912 A CN 114400912A
Authority
CN
China
Prior art keywords
rectifier
prevention circuit
converter
voltage
induced degradation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111529960.3A
Other languages
English (en)
Inventor
蔡文
邵金呈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Goodwe Technologies Co Ltd
Original Assignee
Goodwe Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Goodwe Technologies Co Ltd filed Critical Goodwe Technologies Co Ltd
Priority to CN202111529960.3A priority Critical patent/CN114400912A/zh
Publication of CN114400912A publication Critical patent/CN114400912A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4216Arrangements for improving power factor of AC input operating from a three-phase input voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明涉及一种电势诱导衰减预防电路和应用其的光伏系统。电势诱导衰减预防电路包括整流器和DC/DC变换器,整流器的输入端与逆变器的输出端相连接并具有正输出端口、负输出端口和电压中点端口;DC/DC变换器的输入端与整流器的正输出端口和负输出端口相连接,输出端分别连接至整流器的电压中点端口和接地,用于抬升逆变器工作时光伏组件的PV‑对大地的电压而使其大于或等于0V。光伏系统光伏组件、逆变器、隔离变压器和前述的电势诱导衰减预防电路。本发明电路结构简单、性能可靠,能够有效预防光伏组件PID效应发生,同时减小了电站现场施工复杂度、减小了系统人工投入,降低运维成本。

Description

电势诱导衰减预防电路和应用其的光伏系统
技术领域
本发明属于光伏发电技术领域,具体涉及一种电势诱导衰减预防电路和应用其的光伏系统。
背景技术
光伏并网逆变器技术目前技术比较成熟,从电网相数上可分三相并网逆变器和单相并网逆变器,从并网隔离型角度来看,又可分为隔离型和非隔离型并网逆变器。在光伏地面电站领域,光伏系统几乎都采用带有箱式变压器的逆变系统实现光伏组件把DC电能馈送到高压电网。三相并网逆变器几乎采用的是boost 升压到直流母线、直流母线经过三电平或多电平逆变拓扑,实现电流由直流变换到交流的方案。三电平或多电平变换器固有的调制技术,使得半母线和大地是等电位,由于光伏组件PV-和半母线BUS-等电位连接,这使得组件PV-和大地承受-0.5Vbus电压。由于光伏组件边框接地,因此组件PV-和组件边框之间的电压差为-0.5Vbus,该电势差导致组件内部半导体载流子发生迁移而导致组件钝化,进而导致组件发电量降低,这一效应简称电势诱导衰减(PID)效应。
当前解决PID效应的方法有多种。从逆变器系统的角度解决PID效应,有预防的解决方案和修复的解决方案。
修复的解决方案为:依据组件类型,白天逆变系统发电,当组件为P型组件时,组件PV-和大地PE之间承受-0.5Vbus电压,夜间在PV-和PE之间加+0.5Vbus电压,实现组件的PID修复功能。当组件为N型组件时,PV+和PE之间承受+0.5Vbus,夜间在PV+和PE之间加-0.5Vbus, 实现N新型组件的PID修复功能。PID修复功能是依据PV组件的PID效应可逆性,实现其修复功能。但是其存在的缺点是组件不能100%完全修复,且白天组件发电时,PID效应一直存在。
PID预防功能目前已有的解决方案为:在光伏并网逆变系统中,有如下部分构成:1.光伏组件,2.光伏逆变器,3.隔离变压器。光伏组件的光电效应,产生的不稳定直流电,经过光伏逆变器变成相对稳定的交流电,通过变压器馈送到电网。由于光伏逆变器并网发电过程中,隔离变压器的等效中点和远端大地是等效电位,因此PV-和PE之间产生-0.5Vbus,导致PID效应。因此在隔离变压器低压侧,通过电阻、电感、电容等方式构造出三相中性线装置,并在三相中性线装置的第二端点(中点)和大地之间增加电压补偿装置,从而通过控制三相中性线装置的输出电压来控制三相中性线装置中点(第二端)的电位来解决PID导致的组件性能下降问题。现有PID预防方案需要在其变流器内部利用电阻或电容构造三相中性线装置,电阻方案构造会带来损耗,同时中性线装置电容、电阻等应用会带来成本的增加,同时该方案要求电压补偿装置放置于变流器内部,对于多台逆变器的系统,无疑也增加了系统的成本。
发明内容
本发明的目的是提供一种电路简单可靠、能够有效预防PID效应,同时能够减小施工复杂程度、减小系统投入、降低运维成本的电势诱导衰减预防电路和应用其的光伏系统。
为达到上述目的,本发明采用的技术方案是:
一种电势诱导衰减预防电路,应用于包括光伏组件、逆变器的光伏系统中,所述电势诱导衰减预防电路包括:
整流器,所述整流器的输入端与所述逆变器的输出端相连接,所述整流器具有正输出端口、负输出端口和电压中点端口;
DC/DC变换器,所述DC/DC变换器的输入端与所述整流器的正输出端口和负输出端口相连接,所述DC/DC变换器的输出端分别连接至所述整流器的电压中点端口和接地,所述DC/DC变换器用于抬升所述逆变器工作时所述光伏组件的PV-对大地的电压而使其大于或等于0V。
所述电势诱导衰减预防电路还包括:
整流控制器,所述整流控制器与所述整流器相连接,所述整流控制器用于控制所述整流器进行整流。
所述电势诱导衰减预防电路还包括:
DC/DC控制器,所述DC/DC控制器与所述DC/DC变换器相连接,所述DC/DC控制器用于根据所述光伏组件的PV-对大地的电压控制所述DC/DC变换器的输出电压。
所述整流器为三相三线线电压整流器或三相两线线电压整流器。
所述整流器包括整流模块、与所述整流模块相连接而获得输出电压中点的分压模块;
所述整流模块为二极管桥式整流模块、有源PFC三相整流模块或两相PFC整流模块;
所述分压模块采用电容串联形式或者电容电阻并联/串联形式。
所述DC/DC变换器为单级或多级DC/DC变换器。
所述DC/DC变换器的输出端经限流电阻接地。
所述DC/DC变换器还具有用于输出供电电源的多个电源输出端。
一种光伏系统,光伏组件、逆变器、隔离变压器,所述隔离变压器的低压侧中心点不接地,光伏系统还包括如权利要求前述的电势诱导衰减预防电路。所述电势诱导衰减预防电路集成于一个或多个所述逆变器中或独立设置。
由于上述技术方案运用,本发明与现有技术相比具有下列优点:本发明电路结构简单、性能可靠,能够有效预防光伏组件PID效应发生,同时减小了电站现场施工复杂度、减小了系统人工投入,降低运维成本。
附图说明
附图1为本发明的光伏系统的系统结构图。
附图2为本发明的光伏系统的系统结构图。
附图3为本发明的电势诱导衰减预防电路的电路图。
附图4为本发明的电势诱导衰减预防电路的电路图。
附图5为本发明的电势诱导衰减预防电路中整流器的电路图。
附图6为本发明的电势诱导衰减预防电路中整流器的电路图。
附图7为本发明的电势诱导衰减预防电路的电路图。
附图8为本发明的电势诱导衰减预防电路的电路图。
具体实施方式
下面结合附图所示的实施例对本发明作进一步描述。
实施例一:如附图1和附图2所示,光伏系统包括光伏组件、与光伏组件相连接的逆变器(光伏逆变器)、低压侧与逆变器相连接的隔离变压器,隔离变压器的高压侧连接电网。其中,隔离变压器的低压侧与光伏逆变器相连接,且隔离变压器的低压侧中心点不接地,此时隔离变压器的低压侧中心点在系统工作时是浮动的。而传统的隔离变压器其低压侧中心点接地,在光伏系统工作时,由于三相逆变拓扑NPC、ANPC、TNPC等拓扑在PWM调制输出时,使得BUSN和隔离变压器中心点等电位,由于隔离变压器低压侧中心点接地,使得BUSN等效和大地是等电位,PV-端和BUSN之间通过电容C2连接,PV-和BUSN电压为-0.5Vbus.故PV-和PE之间承受-0.5Vbus电压,这将导致PID效应发生。上述光伏系统中,一台隔离变压器可以连接多台逆变器,从而多台逆变器及其连接的光伏组件与一台隔离变压器构成一个光伏子阵。
针对PID效应,该光伏系统还包括电势诱导衰减预防电路。该电势诱导衰减预防电路包括整流器和DC/DC变换器。整流器的输入端与逆变器的输出端相连接,其具有正输出端口DC+、负输出端口DC-和电压中点端口DCN,附图中称之为整流器及直流中点产生单元。DC/DC变换器的输入端与整流器的正输出端口DC+和负输出端口DC-相连接,DC/DC变换器的输出端分别连接至整流器的电压中点端口DCN和接地,DC/DC变换器用于抬升逆变器工作时光伏组件的PV-对大地的电压而使其大于或等于0V。DC/DC变换器的输出端经限流电阻R接地。
整流器为三相三线线电压整流器或三相两线线电压整流器,附图1所示为三相两线线电压整流器,其两个输入端与逆变器的两相输出相连接,如附图2所示为三相三线线电压整流器,其三个输入端与逆变器的三相输出相连接。整流器包括整流模块、与整流模块相连接的分压模块。整流模块可以选用以下三种形式:①二极管桥式整流模块,如附图3、4、7、8所示,二极管桥式整流模块包括两个或三个并联的桥臂,每个桥臂包括两个串联的二极管,每个桥臂的中点为整流模块的输入端,即整流器的输入端,每个桥臂的两端则为整流模块的输出端,即整流器的正输出端口DC+和负输出端口DC-;②有源PFC三相整流模块,如附图6所示,其包括三个桥臂,每个桥臂包括两个串联的三极管或者其他类型的开关器件,每个桥臂的中点为整流模块的输入端,即整流器的输入端,每个桥臂的两端则为整流模块的输出端,即整流器的正输出端口DC+和负输出端口DC-;③两相PFC整流模块,如附图5所示,其包括两个桥臂,每个桥臂包括两个串联的三极管,每个桥臂的中点为整流模块的输入端,即整流器的输入端,每个桥臂的两端则为整流模块的输出端,即整流器的正输出端口DC+和负输出端口DC-。整流模块输出直流电压,通过分压模块而获得输出电压中点DCN。分压模块采用电容串联形式或者电容电阻并联/串联形式,如附图3至8所示。
在此基础上,该电势诱导衰减预防电路还可以包括整流控制器,整流控制器与整流器相连接,用于控制整流器进行整流。整流控制器主要用于PFC整流模块,对于二极管桥式整流模块则不需要整流控制器参与。
DC/DC变换器也是隔离DC/DC电源,其用于产生PID预防所需的电压,抬升逆变器工作时光伏组件的PV-对大地的电压,使得的PV-对大地的电压大于或等于0V,消除PID发生的条件,抑制PID效应的发生。DC/DC变换器的输入为整流器输出的直流电压DC+和DC-。DC/DC变换器为单级DC/DC变换器,如附图3、4所示,或为多级DC/DC变换器,如附图7、8所示。每级DC/DC变换器包括原边串联三极管的变压器,后级DC/DC变换器的原边与前级DC/DC变换器的副边相连接。同时第一级DC/DC变换器可以设置多组副边,从而使得DC/DC变换器形成用于输出多种供电电源(如12V、24V)的多个电源输出端。该DC/DC变换器的拓扑形式不限于DC/DC变换器隔离的反激拓扑形式或者其他隔离DC/DC电源拓扑形式。DC/DC变换器产生所需要的直流电压V0,该直流电压V0加在整流器的输出电压中点DCN、限流电阻R和大地之间。
在此基础上,该电势诱导衰减预防电路还可以包括DC/DC控制器,其与DC/DC变换器相连接,用于根据光伏组件的PV-对大地的电压控制DC/DC变换器的输出电压,来使得光伏组件的PV-对大地的电压而使其大于或等于0V。也可以不需要控制器参与,而采用常见的隔离DC/DC控制IC来实现DC/DC 变化的电压输出,满足PID预防功能。上述整流控制器和DC/DC控制器可以集成为同一控制器。
上述电势诱导衰减预防电路集成于一个或多个逆变器中,也可以独立设置而应用于隔离变压器的低压侧(和逆变器的交流侧直接连接)。
上述电势诱导衰减预防电路在提供PID预防功能的同时,融合可交流供电功能,即在DC/DC变换器中可以输出+12V、+24V等隔离电源,当其集成于逆变器内部时,可用于逆变器交流供电,节省逆变器独立的交流供电元器件成本;当其单独放置于箱变侧,可以为箱变监控等提供供电电源。
上述方案提供了一种新的预防PID效应的方案,成本比较低,便于工业产品实现,有效预防PID效应,有助于提高光伏系统发电量、提高客户收益,延长光伏组件使用寿命,具有重大应用价值,本PID预防方案,融合了AC供电功能,因此对于逆变器来讲,不需要额外的交流供电电源电路的设计和元器件的使用,节省了系统的成本。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (10)

1.一种电势诱导衰减预防电路,应用于包括光伏组件、逆变器的光伏系统中,其特征在于:所述电势诱导衰减预防电路包括:
整流器,所述整流器的输入端与所述逆变器的输出端相连接,所述整流器具有正输出端口、负输出端口和电压中点端口;
DC/DC变换器,所述DC/DC变换器的输入端与所述整流器的正输出端口和负输出端口相连接,所述DC/DC变换器的输出端分别连接至所述整流器的电压中点端口和接地,所述DC/DC变换器用于抬升所述逆变器工作时所述光伏组件的PV-对大地的电压而使其大于或等于0V。
2.根据权利要求1所述的电势诱导衰减预防电路,其特征在于:所述电势诱导衰减预防电路还包括:
整流控制器,所述整流控制器与所述整流器相连接,所述整流控制器用于控制所述整流器进行整流。
3.根据权利要求1所述的电势诱导衰减预防电路,其特征在于:所述电势诱导衰减预防电路还包括:
DC/DC控制器,所述DC/DC控制器与所述DC/DC变换器相连接,所述DC/DC控制器用于根据所述光伏组件的PV-对大地的电压控制所述DC/DC变换器的输出电压。
4.根据权利要求1至3中任一项所述的电势诱导衰减预防电路,其特征在于:所述整流器为三相三线线电压整流器或三相两线线电压整流器。
5.根据权利要求1至3中任一项所述的电势诱导衰减预防电路,其特征在于:所述整流器包括整流模块、与所述整流模块相连接而获得输出电压中点的分压模块;
所述整流模块为二极管桥式整流模块、有源PFC三相整流模块或两相PFC整流模块;
所述分压模块采用电容串联形式或者电容电阻并联/串联形式。
6.根据权利要求1至3中任一项所述的电势诱导衰减预防电路,其特征在于:所述DC/DC变换器为单级或多级DC/DC变换器。
7.根据权利要求1至3中任一项所述的电势诱导衰减预防电路,其特征在于:所述DC/DC变换器的输出端经限流电阻接地。
8.根据权利要求1至3中任一项所述的电势诱导衰减预防电路,其特征在于:所述DC/DC变换器还具有用于输出供电电源的多个电源输出端。
9.一种光伏系统,光伏组件、逆变器、隔离变压器,所述隔离变压器的低压侧中心点不接地,其特征在于:所述光伏系统还包括如权利要求1至8中任一项所述的电势诱导衰减预防电路。
10.根据权利要求9所述的光伏系统,其特征在于:所述电势诱导衰减预防电路集成于一个或多个所述逆变器中或独立设置。
CN202111529960.3A 2021-12-15 2021-12-15 电势诱导衰减预防电路和应用其的光伏系统 Pending CN114400912A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111529960.3A CN114400912A (zh) 2021-12-15 2021-12-15 电势诱导衰减预防电路和应用其的光伏系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111529960.3A CN114400912A (zh) 2021-12-15 2021-12-15 电势诱导衰减预防电路和应用其的光伏系统

Publications (1)

Publication Number Publication Date
CN114400912A true CN114400912A (zh) 2022-04-26

Family

ID=81227131

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111529960.3A Pending CN114400912A (zh) 2021-12-15 2021-12-15 电势诱导衰减预防电路和应用其的光伏系统

Country Status (1)

Country Link
CN (1) CN114400912A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116232216A (zh) * 2023-05-08 2023-06-06 深圳市首航新能源股份有限公司 Pid修复电路、逆变器与光伏系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116232216A (zh) * 2023-05-08 2023-06-06 深圳市首航新能源股份有限公司 Pid修复电路、逆变器与光伏系统

Similar Documents

Publication Publication Date Title
Kerekes et al. Transformerless photovoltaic inverters connected to the grid
CN101621254B (zh) 应用在配电网的电力电子变压器
CN104158208A (zh) 一种单级光伏并网逆变器及其控制方法和应用
CN112583041B (zh) 逆变器、逆变系统及控制方法
WO2018171767A1 (zh) 五电平低共模漏电流单相光伏并网逆变器及光伏并网系统
CN104953945A (zh) 高效率的光伏发电系统以及发电方法
CN104006479A (zh) 光伏空调系统及其控制方法
US20230046346A1 (en) Power System
CN102946209A (zh) 单级三相大升压比串联电压型准阻抗源逆变器
CN115441565A (zh) 一种新能源高效接入的电解铝碳减排系统
CN113872241A (zh) 防光伏组件电势诱导衰减的并网逆变系统
CN105391079A (zh) 一种基于新能源互连的功率融通型平衡供电系统及方法
CN109449997B (zh) 一种模块化大功率岸电电源系统
CN108173280A (zh) 光储一体化系统
CN105186919A (zh) 非隔离并网变换器、空调系统及变换器控制方法
CN114400912A (zh) 电势诱导衰减预防电路和应用其的光伏系统
US20230163675A1 (en) Power supply system
CN218242998U (zh) 一种光伏逆变系统保护电路和保护系统
US20220200290A1 (en) Power System
CN108023496B (zh) 串联同时选择开关电压型单级多输入低频环节逆变器
US20220360174A1 (en) Basic unit for power converter, power converter, and universal power interface
Shafeeque et al. A novel single stage DC-AC buck boost inverter for solar power extraction
CN203907859U (zh) 光伏空调系统
Zhu et al. A novel multi-function PV micro-inverter with an optimized harmonic compensation strategy
CN108696144B (zh) 交错反激式dc/dc硬件调制补偿电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination