CN114397693A - 一种自适应扩展视场放射源定位方法 - Google Patents

一种自适应扩展视场放射源定位方法 Download PDF

Info

Publication number
CN114397693A
CN114397693A CN202210055586.6A CN202210055586A CN114397693A CN 114397693 A CN114397693 A CN 114397693A CN 202210055586 A CN202210055586 A CN 202210055586A CN 114397693 A CN114397693 A CN 114397693A
Authority
CN
China
Prior art keywords
view
field
imaging
positioning method
radiation source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210055586.6A
Other languages
English (en)
Inventor
刘崎
成毅
庹先国
牟昱璇
张松柏
郑洪龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University of Science and Engineering
Original Assignee
Sichuan University of Science and Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University of Science and Engineering filed Critical Sichuan University of Science and Engineering
Priority to CN202210055586.6A priority Critical patent/CN114397693A/zh
Publication of CN114397693A publication Critical patent/CN114397693A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Computational Linguistics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Biomedical Technology (AREA)
  • Evolutionary Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

本发明公开了一种自适应扩展视场放射源定位方法,包括建立编码孔径成像系统,对其成像视场进行划分编号;用蒙特卡罗方法模拟使每个区域获得足量的投影图像;构建深度神经网络,预处理投影图像作为训练样本对网络进行训练优化;用蒙特卡罗方法模拟成像视场内包含所有像素的系统响应矩阵和包含完整编码视场内所有像素的系统响应矩阵;实际测量时,采集现场事例数据输入模型中对放射源所在区域进行识别、再根据识别结果采用统计迭代算法实现图像重建。本发明的自适应扩展视场放射源定位方法通过一次成像即可完成大视场范围、高分辨率的辐射成像定位,免受部分编码效应引起的伪重建热点干扰的同时,大大地提高了放射源的定位搜寻效率和准确性。

Description

一种自适应扩展视场放射源定位方法
技术领域
本发明涉及一种放射源定位方法,尤其涉及一种自适应扩展视场放射源定位方法。
背景技术
核安全事关国计民生,随着我国大量核设施的投产运营,对放射性材料进行快速准确地成像定位,对保障核安全具有重要意义。相比于传统的辐射剂量仪、能谱仪等非成像设备,伽马射线成像技术可远距离同时提供放射源的空间分布和相对强度信息,能有效降低相关工作人员的辐射吸收剂量,具有明显的优势。
编码孔径成像技术是一种基于机械准直的射线成像技术,具有角分辨率高、灵敏度高等优点,在核工业、核安全与核安保、环境监测、公共安全等领域得到了广泛的应用。但编码孔径成像系统的成像视场很小,不仅会影响大范围搜索辐射热点的效率,更可能受到位于部分编码视场的放射源引起的部分编码效应,使得重建图像中存在伪热点,进而导致放射源被错误定位,甚至会导致相关工作人员在短时间内因遭受过多辐射曝光而导致身体受到伤害。
关于成像视场、完整编码视场和部分编码视场的解释:
现有的编码孔径成像系统的成像视场一般意义上仅指完整编码视场,而未考虑部分编码视场,但在实际应用中,放射源可能会位于部分编码视场并对重建结果的准确性产生干扰,为了得到准确的结果,通常需要将成像系统对不同方位角分别进行多次成像,再进行人工判别,不仅耗时费力,更难以保证可靠性。
完整编码视场,英文为Fully-coded Field-of-View,简写为FCFOV。指位于该区域内的放射源发射并被探测到的光子都经过了准直器的调制,因此能在探测器阵列上形成完整的投影图样。
部分编码视场,Partially-coded Field-of-View,简写为PCFOV。位于该区域内的放射源发射并被探测到的光子仅有一部分经过了准直器的调制,而另一部分则直接与探测器发生了作用,因此仅在探测器阵列上形成部分投影图样。
本发明中描述的成像视场,是由完整编码视场和部分编码视场共同构成的。在整个成像视场中,部分编码视场为成像视场减去完整编码视场得到的环状区域。
发明内容
本发明的目的就在于提供一种解决上述问题,不会因部分编码效应产生的伪热点导致放射源被错误定位、能快速准确地重建出宽视场、高分辨率的放射源空间分布图像的,一种自适应扩展视场放射源定位方法。
为了实现上述目的,本发明采用的技术方案是这样的:一种自适应扩展视场放射源定位方法,包括以下步骤;
(1)建立一编码孔径成像系统,确定其成像视场,所述成像视场由位于其中心的完整编码视场、和位于完整编码视场外侧的部分编码视场构成,将完整编码视场作为中心区域,部分编码视场沿中心区域的边界划分为8个部分区域,对9个区域分别编号;
(2)采用蒙特卡罗方法,模拟编码孔径成像系统对位于9个区域内的放射源的成像过程,使每个区域分别获得数量充足的投影图像;
(3)构建深度神经网络,将投影图像预处理后作为训练样本,将投影图像对应的放射源所在的区域编号作为标签,对神经网络模型进行训练和优化,得到深度神经网络模型;
(4)采用蒙特卡罗方法模拟成像视场内包含所有像素的系统响应矩阵A,并得到包含完整编码视场内所有像素的系统响应矩阵AF
(5)实际测量时,采用编码孔径成像系统采集辐射场景中的事例数据形成投影图像,预处理后输入深度神经网络模型中,对放射源所在区域进行识别;
(6)采用统计迭代重建算法实现图像重建;
放射源为1个或多个,当识别到放射源都位于中心区域时,重建过程采用系统响应矩阵AF;当识别到有放射源位于部分区域时,重建过程采用系统响应矩阵A。
作为优选:所述的编码孔径成像系统包括编码准直器和探测器阵列,其中探测器阵列为呈矩阵分布的探测器。
作为优选:所述编码准直器的编码方式包括随机阵列、非冗余阵列、均匀冗余阵列、修正均匀冗余阵列、和自支持阵列。
作为优选:步骤(1)中,9个区域分别编号具体为,在成像视场中,按从上到下、从左到右的顺序分别编号为R1-R9,其中,中心区域对应的标记为R5。
作为优选:步骤(2)中,模拟放射源的成像过程是对不同能量、活度、数量、形状、位置的放射源以及添加不同水平、分布的噪声的条件进行模拟。
作为优选:所述深度神经网络的结构采用全连接神经网络、卷积神经网络中的一种或几种。
作为优选:所述预处理为:归一化、标准化、填充、降维、主成分分析法中的一种或几种。
作为优选:所述步骤(3)中所述的标签采用独热编码方式。
作为优选:所述统计迭代重建算法包括最大似然期望最大化算法和压缩感知算法。
作为优选:得到包含完整编码视场内所有像素的系统响应矩阵AF,具体为:从系统响应矩阵A中提取,或采用蒙特卡罗方法单独模拟,系统响应矩阵A和系统响应矩阵AF的像素划分大小相同或不同。
与现有技术相比,本发明的优点在于:
将部分编码视场划分为数个部分区域、和中心区域构成9个区域,采用蒙特卡罗方法模拟编码孔径成像系统对每个区域内的放射源的成像过程,从而得到9个区域对应的不同特征的投影图像,输入到深度神经网络模型进行训练优化。位于不同部分区域内的放射源会在探测器阵列上形成与该区域相关的特殊图样,因此该区域划分方法有利于加速深度神经网络模型训练的收敛过程,提高模型对位于部分编码视场的放射源的识别精度,在后续实际测量时,能够准确识别出放射源的位置。
本发明结合深度学习方法与统计迭代重建算法,将传统编码孔径成像系统的能准确成像的视场范围,从原有的完整编码视场扩展至部分编码视场,本发明能准确识别部分编码视场是否存在放射源,并根据识别结果实现自适应扩展视场的宽视场、高分辨率成像,可有效避免部分编码效应引起重建图像中出现伪热点。方法可移植性强,适用于不同几何结构、不同材料的设备。
附图说明
图1为本发明的总流程图;
图2a为编码孔径成像系统的视场划分方法示意图;
图2b为图2a中成像视场的主视图;
图3为实际测量时采用最大似然期望最大化算法进行图像重建的流程图;
图4a为在仅部分编码视场存在放射源条件下的放射源位置示意图;
图4b为现有技术在图4a条件下采用互相关法重建的图像;
图4c为现有技术在图4a条件下采用传统的最大似然期望最大化算法重建的图像;
图4d为本发明在图4a条件下重建的图像;
图5a为完整编码视场和部分编码视场同时存在放射源条件下的放射源位置示意图;
图5b为现有技术在图5a条件下采用互相关法重建的图像;
图5c为现有技术在图5a条件下采用传统的最大似然期望最大化算法重建的图像;
图5d为本发明在图5a条件下重建的图像。
图中:1、编码准直器;2、探测器阵列;3、成像视场。
具体实施方式
下面将结合附图对本发明作进一步说明。
实施例1:参见图1-2b,一种自适应扩展视场放射源定位方法,包括以下步骤;
(1)建立一编码孔径成像系统,确定其成像视场3,所述成像视场3由位于其中心的完整编码视场、和位于完整编码视场外侧的部分编码视场构成,将完整编码视场作为中心区域,部分编码视场沿中心区域的边界划分为8个部分区域,对9个区域分别编号;本实施例中,9个区域分别编号具体为,在成像视场3中,按从上到下、从左到右的顺序分别编号为R1-R9,其中,中心区域对应的标记为R5;
(2)采用蒙特卡罗方法,模拟编码孔径成像系统对位于9个区域内的放射源的成像过程,使每个区域分别获得数量充足的投影图像;本实施例中,模拟放射源的成像过程是对不同能量、活度、数量、形状、位置的放射源以及添加不同水平、分布的噪声的条件进行模拟;
(3)构建深度神经网络,将投影图像预处理后作为训练样本,将投影图像对应的放射源所在的区域编号作为标签,对神经网络模型进行训练和优化,得到深度神经网络模型;
(4)采用蒙特卡罗方法模拟成像视场3内包含所有像素的系统响应矩阵A,并得到包含完整编码视场内所有像素的系统响应矩阵AF
(5)实际测量时,采用编码孔径成像系统采集辐射场景中的事例数据形成投影图像,预处理后输入深度神经网络模型中,对放射源所在区域进行识别;
(6)采用统计迭代重建算法实现图像重建;
放射源为1个或多个,当识别到放射源都位于中心区域时,重建过程采用系统响应矩阵AF;当识别到有放射源位于部分区域时,重建过程采用系统响应矩阵A。
本实施例中:所述的编码孔径成像系统包括编码准直器1和探测器阵列2,其中探测器阵列2为呈矩阵分布的探测器。
所述编码准直器1的编码方式包括随机阵列、非冗余阵列、均匀冗余阵列、修正均匀冗余阵列、和自支持阵列。所述深度神经网络的结构采用全连接神经网络、卷积神经网络中的一种或几种。
所述预处理为:归一化、标准化、填充、降维、主成分分析法中的一种或几种。
所述步骤(3)中所述的标签采用独热编码方式。
所述统计迭代重建算法包括最大似然期望最大化算法和压缩感知算法。
得到包含完整编码视场内所有像素的系统响应矩阵AF,具体为:从系统响应矩阵A中提取,或采用蒙特卡罗方法单独模拟,系统响应矩阵A和系统响应矩阵AF的像素划分大小相同或不同。
实施例2:参见图1-图5d,在实施例1的基础上,我们进一步限定。
其中,步骤(1)在建立一编码孔径成像系统时,编码孔径成像系统的探测器阵列2为19×19的BGO晶体条,设置编码孔径成像系统的编码准直器1与探测器阵列2之间的距离为59mm。成像视场3中中心区域和部分区域的的编号参见图2a和图2b,依次为R1-R9,其中中心区域为R5。R5区域对应的FCFOV大小为40°×40°,FCFOV和PCFOV构成的整体成像视场3大小为72°×72°。
在实际测量时,先进行步骤(5)采用编码孔径成像系统采集辐射场景中的事例数据形成投影图像,将投影图像输入到深度神经网络模型中进行放射源的区域识别;
再通过步骤(6)采用统计迭代重建算法实现图像重建。重建时的方法包括但不局限于最大似然期望最大化算法和压缩感知算法,但为了更好的说明本发明方法,本实施例中采用最大似然期望最大化算法,具体参见图3:
当识别到部分编码视场存在放射源时,导入包含所有像素的系统响应矩阵A;当未识别到部分编码视场存在放射源时,从系统响应矩阵A中提取,或采用蒙特卡罗方法单独模拟并导入仅包含完整编码视场像素的系统响应矩阵AF,并采用最大似然期望最大化算法实现图像重建,其中迭代公式如下:
Figure BDA0003476078540000081
式中,I为探测器阵列2中的探测器总数,J为A或AF对应的图像空间的总像素数;
k为迭代次数,
Figure BDA0003476078540000082
Figure BDA0003476078540000083
分别是第k次和第k+1次迭代后的重建图像;
aij是导入的系统响应矩阵的基本元素,代表光子从第j个像素发出并被第i个探测器探测到的概率,pi为第i个探测器像素的计数值,且i=1~I,j=1~J。
验证:为了验证方法的有效性,对完整编码视场和部分编码视场同时存在放射源的辐射场景进行了实验测试验证,并采用了互相关法、传统的最大似然期望最大化算法以及本发明的方法进行了对比。
参见图4a,活度为1mCi的137Cs点源距离编码孔径成像系统2米,位于成像视场3中心左侧约1.3米,本发明采用互相关法、传统的最大似然期望最大化算法、和本发明方法重建的图像如图4b-图4d。从图中可知,互相关法、传统的最大似然期望最大化算法重建的图像都在中心偏右侧出现了伪热点,而采用本发明的方法可以将左侧位于部分编码视场的放射源准确重建出来。
参见图5a,通过将上述活度为1mCi的137Cs的点源在成像视场3中心位置和成像视场3的中心左侧1.2米位置分别进行测量,将两次采集的投影数据相加构成完整编码视场和部分编码视场同时具有放射源的辐射场景。同样采用互相关法、传统的最大似然期望最大化算法、和本发明方法重建的图像如图5b-图5d。从图中可知,采用互相关法和传统的最大似然期望最大化算法重建的图像都只能将完整部分编码视场的辐射热点准确重建,但位于部分编码视场的放射源却被错误地重建在了图像的右侧,而采用本发明的方法可以同时将完整编码视场和部分编码视场的放射源准确重建出来。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种自适应扩展视场放射源定位方法,其特征在于:包括以下步骤;
(1)建立一编码孔径成像系统,确定其成像视场,所述成像视场由位于其中心的完整编码视场、和位于完整编码视场外侧的部分编码视场构成,将完整编码视场作为中心区域,部分编码视场沿中心区域的边界划分为8个部分区域,对9个区域分别编号;
(2)采用蒙特卡罗方法,模拟编码孔径成像系统对位于9个区域内的放射源的成像过程,使每个区域分别获得数量充足的投影图像;
(3)构建深度神经网络,将投影图像预处理后作为训练样本,将投影图像对应的放射源所在的区域编号作为标签,对神经网络模型进行训练和优化,得到深度神经网络模型;
(4)采用蒙特卡罗方法模拟成像视场内包含所有像素的系统响应矩阵A,并得到包含完整编码视场内所有像素的系统响应矩阵AF
(5)实际测量时,采用编码孔径成像系统采集辐射场景中的事例数据形成投影图像,预处理后输入深度神经网络模型中,对放射源所在区域进行识别;
(6)采用统计迭代重建算法实现图像重建;
放射源为1个或多个,当识别到放射源都位于中心区域时,重建过程采用系统响应矩阵AF;当识别到有放射源位于部分区域时,重建过程采用系统响应矩阵A。
2.根据权利要求1所述的一种自适应扩展视场放射源定位方法,其特征在于:所述的编码孔径成像系统包括编码准直器和探测器阵列,其中探测器阵列为呈矩阵分布的探测器。
3.根据权利要求2所述的一种自适应扩展视场放射源定位方法,其特征在于:所述编码准直器的编码方式包括随机阵列、非冗余阵列、均匀冗余阵列、修正均匀冗余阵列、和自支持阵列。
4.根据权利要求1所述的一种自适应扩展视场放射源定位方法,其特征在于:步骤(1)中,9个区域分别编号具体为,在成像视场中,按从上到下、从左到右的顺序分别编号为R1-R9,其中,中心区域对应的标记为R5。
5.根据权利要求1所述的一种自适应扩展视场放射源定位方法,其特征在于:步骤(2)中,模拟放射源的成像过程是对不同能量、活度、数量、形状、位置的放射源以及添加不同水平、分布的噪声的条件进行模拟。
6.根据权利要求1所述的一种自适应扩展视场放射源定位方法,其特征在于:所述深度神经网络的结构采用全连接神经网络、卷积神经网络中的一种或几种。
7.根据权利要求1所述的一种自适应扩展视场放射源定位方法,其特征在于:所述预处理为:归一化、标准化、填充、降维、主成分分析法中的一种或几种。
8.根据权利要求1所述的一种自适应扩展视场放射源定位方法,其特征在于:所述步骤(3)中所述的标签采用独热编码方式。
9.根据权利要求1所述的一种自适应扩展视场放射源定位方法,其特征在于:所述统计迭代重建算法包括最大似然期望最大化算法和压缩感知算法。
10.根据权利要求1所述的一种自适应扩展视场放射源定位方法,其特征在于:得到包含完整编码视场内所有像素的系统响应矩阵AF,具体为:从系统响应矩阵A中提取,或采用蒙特卡罗方法单独模拟,系统响应矩阵A和系统响应矩阵AF的像素划分大小相同或不同。
CN202210055586.6A 2022-01-18 2022-01-18 一种自适应扩展视场放射源定位方法 Pending CN114397693A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210055586.6A CN114397693A (zh) 2022-01-18 2022-01-18 一种自适应扩展视场放射源定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210055586.6A CN114397693A (zh) 2022-01-18 2022-01-18 一种自适应扩展视场放射源定位方法

Publications (1)

Publication Number Publication Date
CN114397693A true CN114397693A (zh) 2022-04-26

Family

ID=81231749

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210055586.6A Pending CN114397693A (zh) 2022-01-18 2022-01-18 一种自适应扩展视场放射源定位方法

Country Status (1)

Country Link
CN (1) CN114397693A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116660969A (zh) * 2023-07-27 2023-08-29 四川轻化工大学 多时间序列深度神经网络放射源三维定位系统与定位方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116660969A (zh) * 2023-07-27 2023-08-29 四川轻化工大学 多时间序列深度神经网络放射源三维定位系统与定位方法
CN116660969B (zh) * 2023-07-27 2023-10-13 四川轻化工大学 多时间序列深度神经网络放射源三维定位系统与定位方法

Similar Documents

Publication Publication Date Title
Abe et al. Diffuse supernova neutrino background search at Super-Kamiokande
CN103163548B (zh) 基于伽马相机的放射性物质探测方法及其装置和系统
CN106716179B (zh) 数字正电子发射断层摄影中的飞行时间校准
CN109031440A (zh) 一种基于深度学习的伽马放射性成像方法
CN103927729A (zh) 图像处理方法及图像处理装置
CN103800019B (zh) 随机散射点形成方法及pet图像的散射校正方法
CN105190357A (zh) 用于对伽马辐射事件的评估的装置和方法
CN107837090A (zh) 计算机断层成像中基于正弦图的散射射线校正
CN110599562B (zh) 基于多能量系统响应矩阵的放射源定位重建方法
US7732773B2 (en) Gamma-ray tracking method for pet systems
Backholm et al. Simultaneous reconstruction of emission and attenuation in passive gamma emission tomography of spent nuclear fuel
CA3175821C (en) Gamma ray detection system and calibration method thereof
Kohlhase et al. Capability of MLEM and OE to detect range shifts with a Compton camera in particle therapy
CN113777648B (zh) 一种基于随机编码与神经网络探测器成像的方法及伽马相机
CN110215619B (zh) 质子智能在线监测系统
CN114397693A (zh) 一种自适应扩展视场放射源定位方法
Yamaguchi et al. Dose image prediction for range and width verifications from carbon ion‐induced secondary electron bremsstrahlung x‐rays using deep learning workflow
CN105374060A (zh) 一种基于结构字典约束的pet图像重建方法
Schmidt Sensitivity of AugerPrime to the masses of ultra-high-energy cosmic rays
WO2011081566A1 (ru) Способ идентификации ядерного взрыва по изотопам криптона и ксенона
Jia et al. Deep learning‐augmented radioluminescence imaging for radiotherapy dose verification
KR101030927B1 (ko) 환자맞춤형 방사선 측정 방법 및 시스템
Kowash A rotating modulation imager for the orphan source search problem
Basalyga et al. Use of deep learning to classify Compton camera based prompt gamma imaging for proton radiotherapy
Hebert et al. Maximum likelihood reconstruction for a prototype electronically collimated single photon emission system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination