CN114395019A - 草莓FvMYB79基因及其应用 - Google Patents

草莓FvMYB79基因及其应用 Download PDF

Info

Publication number
CN114395019A
CN114395019A CN202111534672.7A CN202111534672A CN114395019A CN 114395019 A CN114395019 A CN 114395019A CN 202111534672 A CN202111534672 A CN 202111534672A CN 114395019 A CN114395019 A CN 114395019A
Authority
CN
China
Prior art keywords
fvmyb79
gene
sequence
fruit
strawberry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111534672.7A
Other languages
English (en)
Other versions
CN114395019B (zh
Inventor
薛程
蔡建法
陈栩
高震
温陈金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Agricultural University
Original Assignee
Shandong Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Agricultural University filed Critical Shandong Agricultural University
Priority to CN202111534672.7A priority Critical patent/CN114395019B/zh
Publication of CN114395019A publication Critical patent/CN114395019A/zh
Application granted granted Critical
Publication of CN114395019B publication Critical patent/CN114395019B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明公开了草莓FvMYB79基因及其应用。FvMYB79基因,其核苷酸序列为SEQ ID No.1所示,包含507bp的开放阅读框;编码168个氨基酸,其编码的氨基酸序列为序列表SEQ ID No.2所示。采用农杆菌瞬时转化法在草莓果实中瞬时过量表达FvMYB79基因,软化相关基因的转录水平显著升高,果实硬度显著下降;而瞬时沉默FvMYB79基因则会得到相反的结果。双荧光素酶试验结果显示,FvMYB79转录因子通过激活FvPME38基因的启动子发挥调控功能。由此证明FvMYB79基因参与调控草莓果实软化。

Description

草莓FvMYB79基因及其应用
技术领域
本发明属于植物基因工程领域,涉及草莓FvMYB79基因及其应用,具体涉及从野生二倍体草莓‘Ruegen’中分离、克隆得到一个调控草莓果实软化的FvMYB79基因。
背景技术
果实的生长发育除了形态与结构上的变化外,还伴随着复杂的生理生化变化,包括果实成熟过程中香气、风味、色泽、质地以及内含物质等的变化(Giovannoni et al.,2017)。其中,质地变化是影响果实品质的重要因素。质地变化的显著表现是果实硬度下降、后熟软化。因此,果实软化机理一直是果树生物学研究探讨的重点领域之一。
软化是大多数肉质水果逐渐成熟的标志。我们通常希望果实的软硬程度在一定范围之内,过度软化的果实会导致采后贮藏过程中的腐烂,大大缩短了果品的货架期,从而造成较大的经济损失。目前,生产者们主要通过一系列保鲜技术,例如低温贮藏、气调贮藏、活性包装、采后1-MCP处理、水杨酸处理、钙离子处理、壳聚糖处理、多胺处理、茉莉酸甲酯处理等,来延缓或减弱整个成熟过程,以此控制果实的软化(Wang et al.,2018)。但是,这样势必会影响果实成熟过程中其它生理过程,引起着色不均匀、糖含量降低、香味不足等问题,导致果实综合品质的下降。因此,科学家们在过去几十年的研究中都试图去揭示果实软化的分子机制,以此来开发新的生产技术,实现对果实软化过程的单独调控,而不影响其它生理过程的正常进行。
目前植物生物学家普遍认为,细胞壁组分发生降解、细胞壁结构改变是导致果实硬度和质地改变的主要原因。成熟果实的细胞壁是由多糖、果胶和结构性糖蛋白等构成(Cosgrove,1997)。细胞壁降解过程有多种酶的参与,主要有多聚半乳糖醛酸酶(Polygalacturonase,PG)、果胶裂解酶(Pectate lyases,PL)、果胶甲酯酶(Pectinmethylesterase,PME)、纤维素酶(Cellulase,Cx)、β-半乳糖苷酶(β-galactosidase,β-Gal)、木葡聚糖内糖基转移酶(Xyloglucan endotransglycosylase,XET)、α-L-阿拉伯呋喃糖苷酶(α-L-Arabinofuranosidase,α-L-Af)和扩展蛋白(Expansin)等(Brummell,2006),在这些酶的解聚作用下细胞壁网状多聚物解体,细胞松散,引起果实软化。
果胶是细胞壁初生壁和中胶层的主要成分,影响果实的质地和品质。随着果实成熟软化,胞间层和细胞壁中果胶由不溶的原果胶状态降解变为可溶性果胶,多聚体中甲基去除,以及半乳糖、阿拉伯糖等中性糖含量减少(Manrique&Lajolo,2004)。对苹果、梨、草莓等果实成熟软化过程中果胶变化分析表明,果实成熟软化的主要原因是可溶性果胶含量的增加和共价结合果胶、离子型结合果胶含量的减少(Segonne et al.,2014;Zhu et al.,2017;Liu et al.,2018)。
果胶的降解与PG、PME、PL、β-Gal、α-L-Af等细胞壁相关酶的活性密切相关。PG活性的增加在番茄、桃、猕猴桃等果实成熟过程中与果实软化呈现良好的相关性(Wang et al.,2018)。但其作用对于果实的成熟软化并不是必须的。番茄成熟突变体rin中转入PG基因使PG酶活性增加,虽然多聚半乳糖醛酸溶解和解聚仍然发生,但果实不能恢复软化。这表明PG虽然是细胞壁果胶降解起始的关键因子,但并不能诱导果实软化(Wang et al.,2018)。PME主要功能是去除果胶中的半乳糖醛酸残基C-6酯化基团,催化果胶酯酸转化为果胶酸(Wuet al.,2018)。只有去酯化的果胶才能被PG水解,PG与PME协同发生作用。PME活性在不同种类、不同品种的果实中存在着显著差异。从番茄果实发育早期到番茄果实的绿熟期,PME活性一直增加,粉红期活性最高,其后伴随着果实的成熟和衰老,PME活性逐渐减低(Jeong etal.,2018)。在香蕉(Mbeguie et al.,2009)果实成熟软化过程中,PME活性逐渐增加,而在鳄梨、芒果(Hu et al.,2018)和番木瓜(Paull&Chen,1983)中却下降。β-Gal酶被分为β-GalI、II、III等3种形式的同工酶,其中β-Gal II水解果胶的作用最强(Lazan et al.,2004)。这3种酶在果实成熟和软化过程中活性变化不一样(Rastegar et al.,2012;Yang et al.,2018)。在番茄果实的发育及成熟过程中,β-Gal II活性在绿色期果实中几乎检测不到,但在果实成熟时急剧上升,而β-Gal I、β-Gal III与β-Gal II的活性变化相反,在绿色期果实中活性较高,但在果实成熟时下降(Rodoni et al.,2010)。在番木瓜果实成熟过程中总的β-Gal活性呈增加趋势,但β-Gal I活性只在果实成熟时增加,而β-Gal II在果实成熟后,活性水平下降(Lazan et al.,2004)。α-L-Af是导致细胞壁多糖中阿拉伯糖残基降解的主要糖苷酶。研究表明,α-L-Af在苹果(Nobile et al.,2011)、日本梨(Tateishi et al.,2005)、番茄(Sozzi et al.,2002)、桃(Carolina Di Santo et al.,2009)等果实成熟过程中的软化有重要作用。在番茄果实发育早期,可检测到高水平的α-L-Af活性,并在果实成熟过程中保持稳定(Itai et al.,2003)。
本实验室前期研究发现,果胶甲酯酶家族的FvPME38和FvPME39基因参与非呼吸跃变型果实草莓的软化过程。多组学数据分析显示,果实成熟过程中FvPME38和FvPME39基因启动子区DNA甲基化水平减弱,DNA双链不再紧密环绕在组蛋白上,而且松散区存在转录因子的结合序列。但是现有技术还未见关于FvMYB79基因功能及其调控机制的相关报道。
发明内容
本发明的目的是提供一个调控草莓果实软化的FvMYB79基因。
本发明的另一目的是提供该基因的应用。
本发明的目的可通过以下技术方案实现:
一种分离自野生二倍体草莓‘Ruegen’具有促进果实软化的FvMYB79基因,其核苷酸序列为SEQ ID No.1所示,包含507bp的开放阅读框;编码168个氨基酸,其编码的氨基酸序列为序列表SEQ ID No.2所示。
含有本发明所述FvMYB79基因的重组表达载体。
作为本发明的一种优选,以pK7WG2D为原始载体,将FvMYB79基因的完整CDS序列通过Gateway重组技术插入attB1和attB2之间构建得到FvMYB79基因过量表达的重组表达载体。
作为本发明的一种优选,以pK7GWIWG2D为原始载体,将FvMYB79基因的部分特异序列通过Gateway重组技术插入attB1和attB2之间,以此构建FvMYB79沉默载体;所述的FvMYB79基因的部分特异序列通过PCR扩增得到,扩增部分特异序列上游引物FvMYB79-F2序列如SEQ ID No.5所示,下游引物FvMYB79-R2序列如SEQ ID No.6所示。
含有本发明所述FvMYB79基因或所述重组表达载体的宿主菌。
克隆本发明所述FvMYB79基因完整CDS序列及其部分特异序列的引物对,克隆完整CDS序列上游引物FvMYB79-F1序列如SEQ ID No.3所示,下游引物FvMYB79-R1序列如SEQ IDNo.4所示;克隆部分特异CDS序列上游引物FvMYB79-F2序列如SEQ ID No.5所示,下游引物FvMYB79-R2序列如SEQ ID No.6所示。
本发明所述FvMYB79基因在促进草莓果实软化中的应用。
本发明所述的重组表达载体在调控草莓果实软化中的应用。
本发明所述的宿主菌在调控草莓果实软化中的应用。
有益效果
本实验室前期研究发现,果胶甲酯酶家族的FvPME38和FvPME39基因参与非呼吸跃变型果实草莓的软化过程。多组学数据分析显示,果实成熟过程中FvPME38和FvPME39基因启动子区DNA甲基化水平减弱,DNA双链不再紧密环绕在组蛋白上,而且松散区存在转录因子的结合序列。本发明通过RNA-seq共表达网络分析,发现了FvMYB79与两PME基因表达模式一致。采用农杆菌瞬时转化法在草莓果实中瞬时过量表达FvMYB79基因,软化相关基因的转录水平显著升高,果实硬度显著下降;而瞬时沉默FvMYB79基因则会得到相反的结果。双荧光素酶试验结果显示,FvMYB79转录因子通过激活FvPME38基因的启动子发挥调控功能。该基因的发现为果实品质改良提供宝贵的基因资源及理论基础。
FvMYB79基因的发现,不仅为改良草莓果实质地提供理论基础;同时可将该基因开发成分子标记,以此辅助园艺作物果实品质改良育种,进一步加快育种进程,缩短育种周期,有利于降低农业成本和实现环境友好。
通过农杆菌介导的转化方法,将FvMYB79基因在草莓果实中进行功能验证,结果表明FvMYB79基因具有同时调控多个果实软化相关酶基因的优点,为分子育种提供更高效地途径。
附图说明
图1为本发明FvMYB79基因草莓果实发育过程中表达水平分析。
其中:A,草莓发育过程中与FvPME38基因共表达的转录因子。红线表示表达模式一致;绿线表示相反。B,与FvPME38共表达的候选基因在Ruegen果实发育过程中相对表达量热图。C和E,Ruegen(C)和Hawaii-4(E)草莓果实发育五个时期的果实形态。D和F,FvMYB79基因在Ruegen(D)和Hawaii-4(F)果实发育的五个时期表达量变化
图2为本发明FvMYB79基因瞬时转化果实的功能分析。
其中:A和B,瞬时转化果实中FvMYB79基因的表达量分析。C,过量表达或者沉默抑制FvMYB79基因的果实硬度检测。D,过量表达或者沉默抑制FvMYB79基因的果实形态。E,过量表达或者沉默抑制FvMYB79基因的果实中软化和类黄酮合成相关基因的表达量分析。G,双荧光素酶试验验证FvMYB79转录因子对软化和类黄酮相关基因的调控作用。
具体实施方式
以下结合具体实施例对本发明做出详细的描述。根据以下的描述和这些实施例,本领域技术人员可以确定本发明的基本特征,并且在不偏离本发明精神和范围的情况下,可以对本发明做出各种改变和修改,以使其适用各种用途和条件。
实施例1 FvMYB79基因分离克隆,基因超表达及沉默载体的构建
取3μg‘Ruegen’果肉RNA,用one-step gDNA removal and cDNA synthesis kit(Transgen,China)进行反转录,方法参照说明书。按照一般设计引物的原则用Snapgene软件设计出带有attB1和attB2接头的引物SEQ ID NO.3、SEQ ID NO.4、SEQ ID NO.5、SEQ IDNO.6。PCR扩增的50μL的反应体系中包括200ng cDNA,1×缓冲液(
Figure BDA0003412705990000051
GXLBuffer),0.2μM dNTP,1.25U GXL聚合酶(
Figure BDA0003412705990000052
GXL DNA Polymerase)(前述缓冲液和GXL DNA聚合酶购自TaKaRa公司),0.2μM上述引物。PCR反应在eppendorf扩增仪上按以下程序完成:98℃,预变性3分钟,98℃变性10秒,60℃退火15秒,68℃延伸90秒,35个热循环,68℃延伸10分钟,16℃保存。
PCR产物经1%的琼脂糖凝胶电泳检测后,用小量胶回收试剂盒(购自康为世纪,按照该试剂盒提供的操作说明书操作)回收DNA片段。将回收得到的目的片段,经过BP反应连接到pDONR221入门载体中,再经LR反应插入到最终载体中。过量表达载体采用GATEWAY系统pK7WG2D;基因沉默载体采用GATEWAY系统pK7GWIWG2D。BP和LR酶gou购自ThermoFisher公司,货号分别为11789020和11791020。BP反应总体积5μL,其中含有目的片段胶回收产物3.5μL,pDONR221空载质粒1μL,BP酶0.5μL,均匀混合后25℃连接反应过夜。取连接产物5μL转化大肠杆菌感受态DH5α,将得到的阳性克隆抽提质粒送生物公司测序。测序结果表明,FvMYB79的CDS全长为507bp,其核苷酸序列为SEQ ID NO.1所示,能编码168个氨基酸残基的蛋白,序列为SEQ ID NO.2所示。LR反应总体积5μL,其中包含搭载目的片段的pDONR221质粒3.5μL,pK7WG2D或pK7GWIWG2D空载质粒1μL,LR酶0.5μL,均匀混合后25℃连接反应过夜。取连接产物5μL转化大肠杆菌感受态DH5α,将得到的阳性克隆抽提质粒送生物公司测序。我们将基因过量表达重组载体命名为MYB79-OE;基因沉默重组载体命名为MYB79-RNAi。采用冻融法将重组载体导入到农杆菌GV3101中。
实施例2 FvMYB79基因时空表达模式分析
野生草莓‘Ruegen’和‘Hawaii-4’的总RNA的提取采用天根多糖多酚植物总RNA提取试剂盒(DP305-03),提取步骤参照说明书。取3μg提取的总RNA,用one-step gDNAremoval and cDNA synthesis kit(Transgen,China)进行反转录,方法参照说明书。荧光定量PCR以Fvactin为内参基因,荧光定量试剂盒购自Roche公司。Real-timePCR所用仪器为Roche 480定量PCR仪,反应体系为:2×SYBR GreenI Master Mix 10μL,上下游引物(10μM)0.4μL,2μLcDNA,7.2μL ddH2O。反应条件为95℃变性5min;95℃预变性5s,60℃退火5s,72℃延伸10s重复45个循环;熔解曲线分析65℃到95℃,每5s升高1℃。
有研究表明红色果实(Ruegen)及白色果实(Hawaii-4)的发育过程中,FvMYB79基因在花托中的表达水平基本一致,呈现早期较低,进入转熟期后显著升高,并且在成熟期维持较高水平;但不同的是FvMYB79基因在Ruegen瘦果发育的后期具有更高的表达量,而在Hawaii-4瘦果发育的后期表达水平却较低,暗示着FvMYB79基因可能参与Ruegen瘦果发育的色泽变化(图1C-F)。
实施例3草莓果实瞬时转化
瞬时转化草莓果实采用农杆菌注射法,具体步骤如下:
1)用含有50mg/L Rif+和100mg/L Sp+的固体LB培养基划线活化农杆菌,在28℃的培养箱中培养36小时;
2)用灭菌的牙签或枪头挑取线上的单克隆,放入100mL锥形瓶中,加入30mL含有50mg/L Rif+和100mg/L Sp+的液体LB培养基,在28℃的摇床中200rpm培养12小时;
3)用50mL离心管4000rpm离心20分钟收集菌体;
4)每个离心管中加入10mL诱导介质(10mM MgCl2、10mM MES、200mM乙酰丁香酮,pH5.5)重悬菌体后,在小摇床上60rpm室温诱导3个小时;
5)4000rpm离心20分钟收集菌体,加入新鲜的诱导介质重悬菌体,调整OD600在0.1-0.2之间,将菌液注射到花后17-18天Ruegen草莓果实中,每次实验注射6个果实,重复3次实验;
6)7天后取下果实,用CT-3质构仪检测果实硬度;Q-RT-PCR检测软化相关基因的表达量变化。
结果表明,过量表达FvMYB79基因会显著加快草莓果实的软化过程;而沉默FvMYB79基因的表达则会显著抑制软化过程(图2A-D)。
实施例4果实软化及类黄酮合成相关基因的表达量检测
RNA的提取、cDNA的合成、荧光定量PCR的体系及步骤参照实施例2。采用瞬时转化法调控FvMYB79基因表达水平,会显著改变草莓果实软化基因FvPEM38、FvPEM39、FvEXP1、FvEXP3、FvPL、FvPG、FvCEL,以及类黄酮合成相关基因FvCHS、FvCHI、FvMYB10、FvDFR、FvUFGT的转录水平(图2E-F)。
表1实时荧光定量引物
Figure BDA0003412705990000071
实施例5双荧光素酶试验检测FvMYB79转录因子对下游基因的调控作用
启动子序列的克隆以草莓Ruegen的DNA为克隆模板。选择pGreenII 0800-LUC的Kpn I和Pst I作为酶切位点,按照一般设计引物的原则用Snapgene软件设计出带有重组序列的引物。PCR扩增的反应体系及程序以及目的片段回收参照实施例1。pGreenII 0800-LUC载体的双酶切体系总体积为50μL,其中含有经过质粒提取获得的pGreenII 0800-LUC载体质粒1μg,10×Buffer(购自NEB公司)5μL,Kpn I 1μL,Pst I 1μL,用ddH2O补齐到总体系为50μL。于37℃酶切3小时后回收。经过限制性内切酶消化过的表达载体pGreenII 0800-LUC与基因启动子序列使用重组酶Exnase II(购自Vazyme公司)于37℃连接30分钟。反应总体积10μL,其中含有5×CE II Buffer 2μL,Exnase II 1μL,基因启动子序列的PCR回收产物2μL,pGreenII 0800-LUC载体的双酶切回收产物3μL,用ddH2O补齐到总体系为10μL。取连接产物10μL转化大肠杆菌感受态DH5α,在含有50mg/L卡那霉素的LB固体平板中筛选出阳性克隆,抽提质粒进行酶切及PCR鉴定,重组质粒样品送生物公司测序。构建完成的载体采用冻融法将重组载体导入到含有pSoup辅助质粒的农杆菌GV3101中。与含有FvMYB79-OE质粒的GV3101农杆菌通过混菌组合瞬时注射到烟草叶片中。注射两天后,LUC和REN荧光值的测定使用dual luciferase assay reagents(Promega,E1910)试剂盒,方法参照说明书。双荧光素酶试验结果显示,FvMYB79转录因子通过激活FvPME38基因的启动子发挥调控功能(图2G)。
表2基因启动子序列克隆引物
Figure BDA0003412705990000081
Figure BDA0003412705990000091
主要参考文献
Brummell DA.2006.Cell wall disassembly in ripening fruit.FunctionalPlant Biology 33(2):103-119.
Carolina Di Santo M,Pagano EA,Sozzi GO.2009.Differential expressionof alpha-l-arabinofuranosidase and alpha-l-arabinofuranosidase/beta-d-xylosidase genes during peach growth and ripening.Plant Physiol Biochem 47(7):562-569.
Cosgrove DJ.1997.Assembly and enlargement of the primary cell wall inplants.Annual review of cell developmental biology 13(1):171-201.
Giovannoni J,Nguyen C,Ampofo B,Zhong S,Fei Z.2017.The Epigenome andTranscriptional Dynamics of Fruit Ripening.Annu Rev Plant Biol 68:61-84.
Hu K,Dars AG,Liu Q,Xie B,Sun Z.2018.Phytochemical profiling of theripening of Chinese mango(Mangifera indica L.)cultivars by real-timemonitoring using UPLC-ESI-QTOF-MS and its potential benefits as prebioticingredients.Food Chemistry 256:171-180.
Itai A,Ishihara K,Bewley JD.2003.Characterization of expression,andcloning,of beta-D-xylosidase and alpha-L-arabinofuranosidase in developingand ripening tomato (Lycopersicon esculentum Mill.)fruit.J Exp Bot 54(393):2615-2622.
Jeong HY,Nguyen HP,Eom SH,Lee C.2018.Integrative analysis of pectinmethylesterase(PME)and PME inhibitors in tomato(Solanum lycopersicum):Identification,tissue-specific expression,and biochemicalcharacterization.Plant Physiol Biochem 132:557-565.
Lazan H,Ng SY,Goh LY,Ali ZM.2004.Papaya beta-galactosidase/galactanase isoforms in differential cell wall hydrolysis and fruit softeningduring ripening.Plant Physiol Biochem 42(11):847-853.
Liu H,Qian M,Song C,Li J,Zhao C,Li G,Wang A,Han M.2018.Down-Regulation of PpBGAL10 and PpBGAL16 Delays Fruit Softening in Peach byReducing Polygalacturonase and Pectin Methylesterase Activity.Front Plant Sci9:1015.
Manrique GD,Lajolo FM.2004.Cell-wall polysaccharide modificationsduring postharvest ripening of papaya fruit(Carica papaya).PostharvestBiology Technology 33(1):11-26.
Mbeguie AMD,Hubert O,Baurens FC,Matsumoto T,Chillet M,Fils-Lycaon B,Sidibe-Bocs S.2009.Expression patterns of cell wall-modifying genes frombanana during fruit ripening and in relationship with finger drop.J Exp Bot60(7):2021-2034.
Nobile PM,Wattebled F,Quecini V,Girardi CL,Lormeau M,LaurensF.2011.Identification of a novel alpha-L-arabinofuranosidase gene associatedwith mealiness in apple.J Exp Bot 62(12):4309-4321.
Paull RE,Chen NJ.1983.Postharvest Variation in Cell Wall-DegradingEnzymes of Papaya(Carica papaya L.)during Fruit Ripening.Plant Physiol 72(2):382-385.
Rastegar S,Rahemi M,Baghizadeh A,Gholami M.2012.Enzyme activity andbiochemical changes of three date palm cultivars with different softeningpattern during ripening.Food Chemistry 134(3):1279-1286.
Rodoni L,Casadei N,Concellon A,Chaves Alicia AR,VicenteAR.2010.Effect of short-term ozone treatments on tomato(Solanum lycopersicumL.)fruit quality and cell wall degradation.J Agric Food Chem 58(1):594-599.
Segonne SM,Bruneau M,Celton JM,Le Gall S,Francin-Allami M,Juchaux M,Laurens F,Orsel M,Renou JP.2014.Multiscale investigation of mealiness inapple:an atypical role for a pectin methylesterase during fruitmaturation.BMC Plant Biol 14:375.
Sozzi GO,Greve LC,Prody GA,Labavitch JM.2002.Gibberellic acid,synthetic auxins,and ethylene differentially modulate alpha-L-Arabinofuranosidase activities in antisense 1-aminocyclopropane-1-carboxylicacid synthase tomato pericarp discs.Plant Physiol 129(3):1330-1340.
Tateishi A,Mori H,Watari J,Nagashima K,Yamaki S,InoueH.2005.Isolation,characterization,and cloning of{alpha}-L-Arabinofuranosidaseexpressed during fruit ripening of Japanese pear.Plant Physiol 138(3):1653-1664.
Wang D,Yeats TH,Uluisik S,Rose JKC,Seymour GB.2018.Fruit Softening:Revisiting the Role of Pectin.Trends in Plant Science 23(4):302-310.
Wu HC,Bulgakov VP,Jinn TL.2018.Pectin Methylesterases:Cell WallRemodeling Proteins Are Required for Plant Response to Heat Stress.FrontPlant Sci 9:1612.
Yang H,Liu J,Dang M,Zhang B,Li H,Meng R,Qu D,Yang Y,ZhaoZ.2018.Analysis of beta-Galactosidase During Fruit Development and Ripeningin Two Different Texture Types of Apple Cultivars.Front Plant Sci 9:539.
Zhu N,Huang W,Wu D,Chen K,He Y.2017.Quantitative visualization ofpectin distribution maps of peach fruits.Sci Rep 7(1):9275.
序列表
<110> 山东农业大学
<120> 草莓FvMYB79基因及其应用
<160> 6
<170> SIPOSequenceListing 1.0
<210> 1
<211> 507
<212> DNA
<213> 草莓(Fragaria × ananassa Duch.)
<400> 1
atgaatacag gagcttggac tacacaagag gacaatatcc ttgtagatta tgtcgaaact 60
cacggcgaag gaaagtggag caaagtttca aaggaaacag gtctcaagag atgcgggaaa 120
agttgcaggg tgcggtggct aaactatcta agatccaata tcaagagggg caatatctca 180
ccggaggacg aagacctcat catgagactc cacaagctct taggcaacag atggtctctc 240
atttcaagga gacttccagg gagaacagat actgaaatca agaatcactg gaacactgtc 300
ataagaagaa ggaagatcat caatagcaag aagcaatgca tatcagaaaa caataaacgg 360
aacaacaaac cttctgttgg gagctcccat ttgctgttga cagactctga tgcagtccat 420
acgaatccgg caagaataat gaaagttggt aaagctgttc accaacagtc acataatgac 480
gaaaatcttg aaactgatgt tgattga 507
<210> 2
<211> 168
<212> PRT
<213> 草莓(Fragaria × ananassa Duch.)
<400> 2
Met Asn Thr Gly Ala Trp Thr Thr Gln Glu Asp Asn Ile Leu Val Asp
1 5 10 15
Tyr Val Glu Thr His Gly Glu Gly Lys Trp Ser Lys Val Ser Lys Glu
20 25 30
Thr Gly Leu Lys Arg Cys Gly Lys Ser Cys Arg Val Arg Trp Leu Asn
35 40 45
Tyr Leu Arg Ser Asn Ile Lys Arg Gly Asn Ile Ser Pro Glu Asp Glu
50 55 60
Asp Leu Ile Met Arg Leu His Lys Leu Leu Gly Asn Arg Trp Ser Leu
65 70 75 80
Ile Ser Arg Arg Leu Pro Gly Arg Thr Asp Thr Glu Ile Lys Asn His
85 90 95
Trp Asn Thr Val Ile Arg Arg Arg Lys Ile Ile Asn Ser Lys Lys Gln
100 105 110
Cys Ile Ser Glu Asn Asn Lys Arg Asn Asn Lys Pro Ser Val Gly Ser
115 120 125
Ser His Leu Leu Leu Thr Asp Ser Asp Ala Val His Thr Asn Pro Ala
130 135 140
Arg Ile Met Lys Val Gly Lys Ala Val His Gln Gln Ser His Asn Asp
145 150 155 160
Glu Asn Leu Glu Thr Asp Val Asp
165
<210> 3
<211> 52
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
ggggacaagt ttgtacaaaa aagcaggctt aatgaataca ggagcttgga ct 52
<210> 4
<211> 55
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
ggggaccact ttgtacaaga aagctgggtt atcaacatca gtttcaagat tttcg 55
<210> 5
<211> 58
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
ggggacaagt ttgtacaaaa aagcaggctt aataagaaga aggaagatca tcaatagc 58
<210> 6
<211> 55
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
ggggaccact ttgtacaaga aagctgggtt atcaacatca gtttcaagat tttcg 55

Claims (10)

1.一种FvMYB79基因,其特征在于该基因CDS序列如SEQ ID No.1所示。
2.根据权利要求1所述的FvMYB79基因,其特征在于FvMYB79基因编码的氨基酸序列如SEQ ID No.2所示。
3.含有权利要求1所述FvMYB79基因的重组表达载体。
4.根据权利要求3所述的重组表达载体,其特征在于以pK7WG2D为原始载体,将FvMYB79基因的完整CDS序列通过Gateway重组技术插入attB1和attB2之间构建得到FvMYB79基因过量表达的重组表达载体。
5.根据权利要求3所述的重组表达载体,其特征在于以pK7GWIWG2D为原始载体,将FvMYB79基因的部分特异序列通过Gateway重组技术插入attB1和attB2之间,以此构建FvMYB79沉默载体;所述的FvMYB79基因的部分特异序列通过PCR扩增得到,扩增部分特异序列上游引物FvMYB79-F2序列如SEQ ID No.5所示,下游引物FvMYB79-R2序列如SEQ ID No.6所示。
6.含有权利要求1所述基因或权利要求3或4所述重组表达载体的宿主菌。
7.克隆权利要求1所述FvMYB79基因完整CDS序列的引物对,其特征在于上游引物FvMYB79-F1序列如SEQ ID No.3所示,下游引物FvMYB79-R1序列如SEQ ID No.4所示。
8.权利要求1所述的基因在促进草莓果实软化中的应用。
9.权利要求3所述的重组表达载体在调控草莓果实软化中的应用。
10.权利要求5所述的宿主菌在调控草莓果实软化中的应用。
CN202111534672.7A 2021-12-15 2021-12-15 草莓FvMYB79基因及其应用 Active CN114395019B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111534672.7A CN114395019B (zh) 2021-12-15 2021-12-15 草莓FvMYB79基因及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111534672.7A CN114395019B (zh) 2021-12-15 2021-12-15 草莓FvMYB79基因及其应用

Publications (2)

Publication Number Publication Date
CN114395019A true CN114395019A (zh) 2022-04-26
CN114395019B CN114395019B (zh) 2023-06-16

Family

ID=81226748

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111534672.7A Active CN114395019B (zh) 2021-12-15 2021-12-15 草莓FvMYB79基因及其应用

Country Status (1)

Country Link
CN (1) CN114395019B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102124111A (zh) * 2008-06-06 2011-07-13 格拉斯兰兹技术有限公司 参与生物合成的新基因
CN102703470A (zh) * 2005-08-30 2012-10-03 新西兰植物和食品研究院有限公司 调控植物中色素生产的组合物和方法
CN107267522A (zh) * 2017-06-23 2017-10-20 南京农业大学 梨转录因子PyMYB114及其重组表达载体和应用
CN107686840A (zh) * 2017-06-23 2018-02-13 南京农业大学 梨转录因子PyERF3及其重组表达载体和应用
CN109576288A (zh) * 2018-12-05 2019-04-05 浙江五合生物科技有限公司 一种草莓ABA降解途径关键酶FveCYP707A4a基因及其应用
CN110511947A (zh) * 2019-09-11 2019-11-29 上海市农业科学院 草莓液泡加工酶编码基因FaVPE3及其应用
CN110894221A (zh) * 2019-12-12 2020-03-20 中国科学院植物研究所 草莓成熟相关转录因子基因FaNAC2及其应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102703470A (zh) * 2005-08-30 2012-10-03 新西兰植物和食品研究院有限公司 调控植物中色素生产的组合物和方法
CN102124111A (zh) * 2008-06-06 2011-07-13 格拉斯兰兹技术有限公司 参与生物合成的新基因
CN107267522A (zh) * 2017-06-23 2017-10-20 南京农业大学 梨转录因子PyMYB114及其重组表达载体和应用
CN107686840A (zh) * 2017-06-23 2018-02-13 南京农业大学 梨转录因子PyERF3及其重组表达载体和应用
CN109576288A (zh) * 2018-12-05 2019-04-05 浙江五合生物科技有限公司 一种草莓ABA降解途径关键酶FveCYP707A4a基因及其应用
CN110511947A (zh) * 2019-09-11 2019-11-29 上海市农业科学院 草莓液泡加工酶编码基因FaVPE3及其应用
CN110894221A (zh) * 2019-12-12 2020-03-20 中国科学院植物研究所 草莓成熟相关转录因子基因FaNAC2及其应用

Also Published As

Publication number Publication date
CN114395019B (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
Karppinen et al. Abscisic acid regulates anthocyanin biosynthesis and gene expression associated with cell wall modification in ripening bilberry (Vaccinium myrtillus L.) fruits
Shi et al. Transcriptional regulation of fleshy fruit texture
Jia et al. Abscisic acid, sucrose, and auxin coordinately regulate berry ripening process of the Fujiminori grape
Villarreal et al. Polygalacturonase activity and expression of related genes during ripening of strawberry cultivars with contrasting fruit firmness
Deytieux-Belleau et al. Pectin methylesterase and polygalacturonase in the developing grape skin
Paniagua et al. Elucidating the role of polygalacturonase genes in strawberry fruit softening
Giovannoni et al. Expression of a chimeric polygalacturonase gene in transgenic rin (ripening inhibitor) tomato fruit results in polyuronide degradation but not fruit softening.
Zhang et al. The SlFSR gene controls fruit shelf-life in tomato
Gwanpua et al. Expression analysis of candidate cell wall-related genes associated with changes in pectin biochemistry during postharvest apple softening
Barnavon et al. Involvement of pectin methyl-esterase during the ripening of grape berries: partial cDNA isolation, transcript expression and changes in the degree of methyl-esterification of cell wall pectins
Guillaumie et al. Transcriptional analysis of late ripening stages of grapevine berry
Mwaniki et al. Expression characteristics of seven members of the β-galactosidase gene family in ‘La France’pear (Pyrus communis L.) fruit during growth and their regulation by 1-methylcyclopropene during postharvest ripening
Dautt-Castro et al. Genome-wide identification of mango (Mangifera indica L.) polygalacturonases: Expression analysis of family members and total enzyme activity during fruit ripening
Song et al. Screening of cell wall-related genes that are expressed differentially during ripening of pears with different softening characteristics
Bustamante et al. Cloning of the promoter region of β-xylosidase (FaXyl1) gene and effect of plant growth regulators on the expression of FaXyl1 in strawberry fruit
Cheng et al. PpERF/ABR1 functions as an activator to regulate PpPG expression resulting in fruit softening during storage in peach (Prunus persica)
Dautt-Castro et al. Mesocarp RNA-Seq analysis of mango (Mangifera indica L.) identify quarantine postharvest treatment effects on gene expression
Wakasa et al. Divergent expression of six expansin genes during apple fruit ontogeny
Martínez et al. β-Xylosidase activity and expression of a β-xylosidase gene during strawberry fruit ripening
Pua et al. Isolation and expression of two pectate lyase genes during fruit ripening of banana (Musa acuminata)
Yang et al. Expression of expansin genes during postharvest lignification and softening of ‘Luoyangqing’and ‘Baisha’loquat fruit under different storage conditions
Ishimaru et al. Expression of three expansin genes during development and maturation of Kyoho grape berries
Pei et al. Genome-wide identification and expression analysis of genes associated with peach (Prunus persica) fruit ripening
Liu et al. ROS scavenger Hypotaurine delays postharvest softening of ‘Kyoho’grape by regulating pectin and cell metabolism pathway
Su et al. Expansin SlExp1 and endoglucanase SlCel2 synergistically promote fruit softening and cell wall disassembly in tomato

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant