CN114389294A - 一种面向降维等效的海量电动汽车集中式控制方法及系统 - Google Patents

一种面向降维等效的海量电动汽车集中式控制方法及系统 Download PDF

Info

Publication number
CN114389294A
CN114389294A CN202210013920.1A CN202210013920A CN114389294A CN 114389294 A CN114389294 A CN 114389294A CN 202210013920 A CN202210013920 A CN 202210013920A CN 114389294 A CN114389294 A CN 114389294A
Authority
CN
China
Prior art keywords
electric
state
electric vehicle
power grid
electric vehicles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210013920.1A
Other languages
English (en)
Other versions
CN114389294B (zh
Inventor
王明深
袁晓冬
杨毅
高磊
周琦
郑明忠
易文飞
叶志刚
王晨清
罗飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Jiangsu Electric Power Co Ltd
Electric Power Research Institute of State Grid Jiangsu Electric Power Co Ltd
Original Assignee
State Grid Jiangsu Electric Power Co Ltd
Electric Power Research Institute of State Grid Jiangsu Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Jiangsu Electric Power Co Ltd, Electric Power Research Institute of State Grid Jiangsu Electric Power Co Ltd filed Critical State Grid Jiangsu Electric Power Co Ltd
Priority to CN202210013920.1A priority Critical patent/CN114389294B/zh
Publication of CN114389294A publication Critical patent/CN114389294A/zh
Application granted granted Critical
Publication of CN114389294B publication Critical patent/CN114389294B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/322Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种面向降维等效的海量电动汽车集中式控制方法,通过构建电动汽车电池模型、构建电动汽车集中式模型、构建每辆电动汽车出行缓急程度参数并将当前接入电网所有电动汽车的目标控制功率转化为对这些电动汽车的控制信号后,判定电动汽车是否应该切换充放电状态,并根据判定的充放电状态对当前介入的电动汽车进行充放电调整。本发明在降低海量电动汽车模型维度的同时,简化控制信号和保障用户的出行需求。采用有限数量的离散状态描述电动汽车的入网状态和SOC状态,有效简化了集群中心与海量电动汽车控制的复杂程度;使用考虑用户出行缓急程度的自适应控制方法,终端控制满足了用户的个性化出行需求。

Description

一种面向降维等效的海量电动汽车集中式控制方法及系统
技术领域
本发明属于电力系统运行控制技术领域,具体涉及一种面向降维等效的海量电动汽车集中式控制方法及系统。
背景技术
随着风光可再生新能源快速发展,可再生新能源随机不确定性引发的功率波动问题愈发突出,一种有效方式是为可再生新能源配置储能,但目前储能成本居高不下的问题直接影响了可再生新能源接入电网的经济性。近年来,电动汽车以其节能经济、低碳环保的巨大优势,成为汽车发展的新形势,在世界范围内快速发展。电动汽车出行结束后,需要接入电网获取电能,随着海量电动汽车接入电网,电动汽车充电负荷会成为电网的重要负荷,电动汽车接入电网的过程中,能够改变充电功率大小,甚至向电网反馈电能,海量分散接入电网的电动汽车能够等效成为可观的储能容量,为电网提供储能能力支撑。目前,针对于海量集中式电动汽车的控制方法,主要通过单体电动汽车建模,分析电动汽车的储能特性,然后通过叠加方式计算一定数量电动汽车的储能特性,最后针对每辆电动汽车提出相应的控制信号,以保证用户的出行需求,此方法对控制中心的要求较高,要求控制中心能够应对高维度的复杂计算,同时要求控制中心能够与电动汽车入网终端良好的通信。
发明内容
为解决现有技术中存在的不足,本发明的目的在于,提供一种面向降维等效的海量电动汽车集中式控制方法。
本发明采用如下的技术方案:
一种面向降维等效的海量电动汽车集中式控制方法包括以下步骤:
步骤1,根据电动汽车接入电网后的充电状态,构建单体电动汽车的电池模型;
步骤2,根据当前接入电网所有电动汽车的SOC状态,构建海量电动汽车集中式模型;
海量电动汽车集中式模型的构建方法为:设定单体电动汽车的电网接入状态以及对电动汽车电池荷电状态进行离散化,然后根据单体电动汽车接入状态以及电池荷电状态值找到其所述子区间以计算当前接入电网的所有电动汽车在相邻子区间不同状态的平均转移概率;
步骤3,将接受到的对步骤1中当前接入电网所有电动汽车的目标控制功率转化为对这些电动汽车的控制信号;
步骤4,根据步骤1至3构建的模型与参数,判定电动汽车是否应该切换充放电状态;
步骤5,根据判定的充放电状态对当前介入的电动汽车进行充放电调整。
在步骤1中,所述电动汽车电池模型满足以下关系式:
Figure BDA0003459056140000021
式中,t为当前时刻,Δt为时间间隔,i为当前接入电网的电动汽车编号,Sev,i(t)为当前接入电网的第i辆电动汽车电池的SOC状态值,Pev,i(t)为当前接入电网的第i辆电动汽车与电网的交换功率,Qev,i为当前接入电网的第i辆电动汽车的电池容量,Pevc,i和Pevd,i分别为当前接入电网的第i辆电动汽车额定充电和放电功率,ηevc,i和ηevd,i分别为当前接入电网的第i辆电动汽车的额定充电和放电效率。
在步骤3中,所述海量电动汽车集中式模型可以用向量X(t)表示,并满足以下关系式:
X(t)=[x1(t),x2(t),...,xj(t),...,x3n(t)]T
式中,xj(t)为处于第j个状态子区间的电动汽车数量,状态子区间为将电动汽车SOC的变化范围[0,1]离散为n个的相等的状态子区间,每个区间的长度为1/n。
海量电动汽车集中式模型的变化可以通过以下方法获得:
X(t+Δt)=A·X(t)
式中,X(t)为一向量,具体满足以下关系式:
X(t)=[x1(t),x2(t),...,xj(t),...,x3n(t)]T
xj(t)为处于第j个状态子区间的电动汽车数量,状态子区间为将电动汽车SOC的变化范围[0,1]离散为n个的相等的状态子区间,每个区间的长度为1/n;
状态转移矩阵A为状态转移矩阵,可以根据所有电动汽车在相邻子区间的数量变化来得到。
状态转移矩阵A满足以下关系式:
Figure BDA0003459056140000031
式中,σc和σd分别为充电和放电状态下当前接入电网的所有电动汽车在相邻子区间的平均转移概率。
充电和放电状态下当前接入电网的所有电动汽车在相邻子区间的平均转移概率满足以下关系式:
Figure BDA0003459056140000032
式中,
Figure BDA0003459056140000033
Figure BDA0003459056140000034
分别为当前接入电网的所有电动汽车的平均额定充电和放电功率;
Figure BDA0003459056140000035
Figure BDA0003459056140000036
分别为当前接入电网的所有电动汽车的平均充电和放电效率;
Figure BDA0003459056140000037
为当前接入电网的所有电动汽车的平均电池容量。
对接入电网所有电动汽车的控制信号转化模型满足以下关系式:
X(t+Δt)=A·X(t)+B·U(t)
式中,B为控制矩阵,U(t)为控制信号转换的控制向量。
控制矩阵B满足以下关系式:
Figure BDA0003459056140000041
式中,On×n为n×n的零矩阵,为In×n为n×n的单位矩阵。
控制信号转换的控制向量U(t)为U(t)=[u1(t),...,uj(t),...,u2n(t)]T,具体满足以下关系式:
Figure BDA0003459056140000042
Figure BDA0003459056140000043
其中,ΔPr(t)为接收到的对接入电网所有电动汽车的目标控制功率;v1(t)与v2(t)分别为概率控制信号向量V(t)中的第一控制信号与第二控制信号,概率控制信号向量V(t)为:
V(t)=[v1(t),v2(t)]T
第一控制信号分量与第二控制信号分量分别满足以下关系式:
Figure BDA0003459056140000044
Figure BDA0003459056140000045
ΔPd2i(t)、ΔPi2c(t)、ΔPc2i(t)、ΔPi2d(t)分别为当前接入电网的所有电动汽车由放电转为空闲状态、由空闲转为充电、由充电转为空闲、由空闲转为放电状态的可调节容量。
当前接入电网的所有电动汽车由放电转为空闲状态、由空闲转为充电、由充电转为空闲、由空闲转为放电状态的可调节容量满足以下关系式:
Figure BDA0003459056140000051
其中,Cd2i、Ci2c、Cc2i、Ci2d分别为海量电动汽车由放电转为空闲状态、由空闲转为充电、由充电转为空闲、由空闲转为放电状态的可调节容量评估矩阵。
可调节容量评估矩阵满足以下关系式:
Figure BDA0003459056140000052
电动汽车出行缓急程度参数满足以下关系式:
Figure BDA0003459056140000053
式中,ξev,i(t)表示当前接入电网的第i辆电动汽车出行的缓急程度参数,tsf,i表示第i辆电动汽车离开电网的时刻,Sevr,i表示第i辆电动汽车出行需求SOC,Sev,i(t)表示第i辆电动汽车的SOC状态值,Pevc,i表示第i辆电动汽车从接入电网到当前时刻的平均额定充电功率,ηevc,i表示第i辆电动汽车从接入电网到当前时刻的平均充电效率,Qev,i表示第i辆电动汽车的电池容量。
判定方法具体为:
电动汽车入网终端接收到控制信号V(t)后,如果信号中的概率值v1(t)≥0、v2(t)≥0,则放电状态的电动汽车按照v2(t)进行概率响应并决定是否切换到空闲状态,然后空闲状态的电动汽车按照v1(t)进行概率响应并决定是否切换到充电状态;如果信号中的概率值v1(t)≤0、v2(t)≤0,则充电状态的电动汽车按照v1(t)进行概率响应并决定是否切换到空闲状态,然后空闲状态的电动汽车按照v2(t)进行概率响应并决定是否切换到放电状态。
本发明还公开了基于一种基于面向降维等效的海量电动汽车集中式控制方法的一种面向降维等效的海量电动汽车集中式控制系统,包括电动汽车电池模型构建模块、电动汽车集中式模型构建模块、集群控制中心以及电动汽车入网终端模块;
电动汽车电池模型构建模块根据电动汽车接入电网后的充电状态构建电动汽车电池模型并将结果输入至电动汽车入网终端;
电动汽车集中式模型构建模块根据当前接入电网所有电动汽车的SOC状态构建海量电动汽车集中式模型,并将结果输入至电动汽车入网终端;
集群控制中心将接受到的对当前接入电网所有电动汽车的目标控制功率转化为对这些电动汽车的控制信号并将结果输入至电动汽车入网终端;
所述电动汽车入网终端构建每辆电动汽车出行缓急程度参数,并根据接收到的模型对电动汽车模式是否进行切换进行判定。
电动汽车电池模型满足以下关系式:
Figure BDA0003459056140000061
式中,t为当前时刻,Δt为时间间隔,i为当前接入电网的电动汽车编号,Sev,i(t)为当前接入电网的第i辆电动汽车电池的SOC状态值,Pev,i(t)为当前接入电网的第i辆电动汽车与电网的交换功率,Qev,i为当前接入电网的第i辆电动汽车的电池容量,Pevc,i和Pevd,i分别为当前接入电网的第i辆电动汽车额定充电和放电功率,ηevc,i和ηevd,i分别为当前接入电网的第i辆电动汽车的额定充电和放电效率。
海量电动汽车集中式模型可以用向量X(t)表示,并满足以下关系式:
X(t)=[x1(t),x2(t),...,xj(t),...,x3n(t)]T
式中,xj(t)为处于第j个状态子区间的电动汽车数量,状态子区间为将电动汽车SOC的变化范围[0,1]离散为n个的相等的状态子区间,每个区间的长度为1/n。
海量电动汽车集中式模型的变化可以通过以下方法获得:
X(t+Δt)=A·X(t)
式中,X(t)为一向量,具体满足以下关系式:
X(t)=[x1(t),x2(t),...,xj(t),...,x3n(t)]T
xj(t)为处于第j个状态子区间的电动汽车数量,状态子区间为将电动汽车SOC的变化范围[0,1]离散为n个的相等的状态子区间,每个区间的长度为1/n;
状态转移矩阵A为状态转移矩阵,可以根据所有电动汽车在相邻子区间的数量变化来得到。
状态转移矩阵A满足以下关系式:
Figure BDA0003459056140000071
式中,σc和σd分别为充电和放电状态下当前接入电网的所有电动汽车在相邻子区间的平均转移概率。
充电和放电状态下当前接入电网的所有电动汽车在相邻子区间的平均转移概率满足以下关系式:
Figure BDA0003459056140000072
式中,
Figure BDA0003459056140000073
Figure BDA0003459056140000074
分别为当前接入电网的所有电动汽车的平均额定充电和放电功率;
Figure BDA0003459056140000075
Figure BDA0003459056140000076
分别为当前接入电网的所有电动汽车的平均充电和放电效率;
Figure BDA0003459056140000077
为当前接入电网的所有电动汽车的平均电池容量。
对接入电网所有电动汽车的控制信号转化模型满足以下关系式:
X(t+Δt)=A·X(t)+B·U(t)
式中,B为控制矩阵,U(t)为控制信号转换的控制向量。
本发明的有益效果在于,与现有技术相比,本发明在降低海量电动汽车模型维度的同时,简化控制信号和保障用户的出行需求。采用有限数量的离散状态描述电动汽车的入网状态和SOC状态,提出了适用于海量电动汽车集中式控制的降维等效模型;提出了电动汽车的概率控制信号,有效简化了集群中心与海量电动汽车控制的复杂程度;提出了考虑用户出行缓急程度的自适应控制方法,终端控制满足了用户的个性化出行需求。
附图说明
图1为本发明电动汽车接入电网后的运行区域示意图;
图2为本发明控制效果示意图。
具体实施方式
下面结合附图对本申请作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本申请的保护范围。
一种面向降维等效的海量电动汽车集中式控制方法,海量电动汽车指适用于万级以上的电动汽车,具体包括以下步骤:
步骤1,根据电动汽车接入电网后的充电状态,构建单体电动汽车电池模型;
在本发明中,所构建的单体电动汽车电池模型为在三种状态下的电池模型;
具体地,电动汽车接入电网后,电动汽车可以处于充电状态,即从电网获取电能,电动汽车可以处于空闲状态,即与电网不存在功率交换,电动汽车也可以处于放电状态,即向电网反馈电能,单体电动汽车在3种状态下的电池模型如下所示:
Figure BDA0003459056140000091
式中,t为当前时刻,Δt为时间间隔,i为当前接入电网的电动汽车编号,Sev,i(t)为当前接入电网的第i辆电动汽车电池的SOC状态值,Pev,i(t)为当前接入电网的第i辆电动汽车与电网的交换功率,Qev,i为当前接入电网的第i辆电动汽车的电池容量,Pevc,i和Pevd,i分别为当前接入电网的第i辆电动汽车额定充电和放电功率,ηevc,i和ηevd,i分别为当前接入电网的第i辆电动汽车的额定充电和放电效率;
基于以上内容,本领域普通技术人员应该知道,电动汽车电池模型可以通过等效电路、神经网络以及电化学的方式进行构建,单体电动汽车电池模型可以有大于3或小于3个的状态;为了提高计算速度,本发明实施例提出的电动汽车电池模型仅为实施过程中的一种优选技术方案,并非是实施本发明一种面向降维等效的海量电动汽车集中式控制方法的必然限制。
步骤2,根据当前接入电网所有电动汽车的SOC状态,构建海量电动汽车集中式模型;
本领域普通技术人员应知道,本实施例所提供的电动汽车集中式模型仅为一优选技术方案,并非为实施本发明一种面向降维等效的海量电动汽车集中式控制方法的必然限制;
本发明提出的海量电动汽车集中式模型通过设定单体电动汽车的电网接入状态以及对电动汽车电池荷电状态进行离散化后,根据单体电动汽车接入状态以及电池荷电状态值找到其所述子区间,以计算当前接入电网的所有电动汽车在相邻子区间不同状态的平均转移概率以体现该海量电动汽车集整体的变化;
电动汽车的接入状态为离散变量,SOC为电池的荷电状态,SOC状态值为连续变量,SOC的最小值和最大值分别为0和1,将SOC的变化范围[0,1]离散为n个相等的子区间,每个区间的长度为1/n,考虑到电动汽车存在3种接入状态,电动汽车状态可以用3n个长度为1/n的子区间描述。充电状态的子区间按照SOC从小到达的顺序编号为1、2、…、n,空闲状态的子区间按照SOC从小到大的顺序编号为n+1、n+2、…、2n,放电状态的子区间按照SOC从小到达的顺序编号为2n+1、2n+2、…、3n。
在任意t时刻,针对所有接入电网后同一时刻下的电动汽车,各单体电动汽车都可以根据接入状态和SOC状态值找到所属的子区间,xj(t)为处于第j个状态子区间的电动汽车数量,海量电动汽车集中式模型可以用向量X(t)描述,如下所示:
X(t)=[x1(t),x2(t),...,xj(t),...,x3n(t)]T
从t时刻到t+Δt时刻,可以描述X(t)的变化,如下所示:
X(t+Δt)=A·X(t)
式中,状态转移矩阵A为状态转移矩阵,可以根据所有电动汽车在相邻子区间的数量变化来得到,具体满足以下关系是:
Figure BDA0003459056140000101
式中,σc和σd分别为充电和放电状态下当前接入电网的所有电动汽车在相邻子区间的平均转移概率,σc和σd分别满足以下关系式:
Figure BDA0003459056140000102
式中,
Figure BDA0003459056140000103
Figure BDA0003459056140000104
分别为当前接入电网的所有电动汽车的平均额定充电和放电功率;
Figure BDA0003459056140000105
Figure BDA0003459056140000106
分别为当前接入电网的所有电动汽车的平均充电和放电效率;
Figure BDA0003459056140000107
为当前接入电网的所有电动汽车的平均电池容量。
步骤3,将接受到的对步骤1中当前接入电网所有电动汽车的目标控制功率转化为对这些电动汽车的控制信号;
本领域普通技术人员应知道,本实施例所提供的电动汽车控制信号转化方法仅为一优选技术方案,并非为实施本发明一种面向降维等效的海量电动汽车集中式控制方法的必然限制;
本发明所提出的转化方法利用电动汽车在从不同充电状态下转化时的可调节容量总和设置概率控制信号;
具体地,对接入电网所有电动汽车的控制信号转化模型满足以下关系式:
X(t+Δt)=A·X(t)+B·U(t)
式中,B为控制矩阵,U(t)为控制信号转换的控制向量,U(t)=[u1(t),...,uj(t),...,u2n(t)]T
Figure BDA0003459056140000111
式中,On×n为n×n的零矩阵,为In×n为n×n的单位矩阵;
Figure BDA0003459056140000112
Figure BDA0003459056140000113
为保障控制过程用户的个性化出行需求,单体电动汽车接入电网过程中的约束区域如图1所示。其中,A-B表示电动汽车接入电网后开始充电;B-C表示电动汽车充电达到SOC的最大值后离开电网;A-D表示电动汽车接入电网时刻后开始放电直至SOC达到最小值;D-E表示电动汽车SOC保持在最小值;E-F表示电动汽车充电直至SOC到达电动汽车出行需求SOC值后离开电网。
其中,ΔPr(t)为接收到的对接入电网所有电动汽车的目标控制功率;v1(t)与v2(t)分别为概率控制信号向量V(t)中的第一控制信号与第二控制信号,概率控制信号向量V(t)为:
V(t)=[v1(t),v2(t)]T
第一控制信号分量与第二控制信号分量分别满足以下关系式:
Figure BDA0003459056140000114
Figure BDA0003459056140000121
其中,ΔPd2i(t)为放电状态的所有电动汽车转换为空闲状态能够提供的可调节容量总和,ΔPi2c(t)为空闲状态的所有电动汽车转换为充电状态能够提供的可调节容量总和,ΔPc2i(t)为充电状态的所有电动汽车转换为空闲状态能够提供的可调节容量总和,ΔPi2d(t)为空闲状态的所有电动汽车转换为放电状态能够提供的可调节容量总和,ΔPd2i(t)、ΔPi2c(t)、ΔPc2i(t)、ΔPi2d(t)分别满足以下关系式:
Figure BDA0003459056140000122
其中,Cd2i、Ci2c、Cc2i、Ci2d分别为海量电动汽车由放电转为空闲状态、由空闲转为充电、由充电转为空闲、由空闲转为放电状态的可调节容量评估矩阵,本领域普通技术人员可以根据实际情况进行设定,在本实施例中,这些可调节容量评估矩阵满足以下关系式:
Figure BDA0003459056140000123
步骤4,根据步骤1至3构建的模型,判定电动汽车是否应该切换充放电状态;
本领域普通技术人员应该根据所构建的模型设置电动汽车的充放电状态规则,本发明给出的仅为一优选实施例,并非是实施本发明一种面向降维等效的海量电动汽车集中式控制方法的必然限制;
本发明根据用户出行缓急程度,提出了一种自适应控制方法;
首先计算电动汽车出行缓急程度参数;
电动汽车出行缓急程度参数为表征不同用户离开电网的缓急程度的参数,本领域普通技术人员可以根据实际情况进行设定,可以为直接设定的自然数;本实施例中例举的仅为一最佳实施例;具体地,该电动汽车出行缓急程度参数满足以下关系式:
Figure BDA0003459056140000131
式中,ξev,i(t)表示当前接入电网的第i辆电动汽车出行的缓急程度参数,tsf,i表示第i辆电动汽车离开电网的时刻,Sevr,i表示第i辆电动汽车出行需求SOC,Sev,i(t)表示第i辆电动汽车的SOC状态值,Pevc,i表示第i辆电动汽车从接入电网到当前时刻的平均额定充电功率,ηevc,i表示第i辆电动汽车从接入电网到当前时刻的平均充电效率,Qev,i表示第i辆电动汽车的电池容量;
电动汽车入网终端接收到控制信号V(t)后,如果信号中的概率值v1(t)≥0、v2(t)≥0,则放电状态的电动汽车按照v2(t)进行概率响应并决定是否切换到空闲状态,然后空闲状态的电动汽车按照v1(t)进行概率响应并决定是否切换到充电状态;如果信号中的概率值v1(t)≤0、v2(t)≤0,则充电状态的电动汽车按照v1(t)进行概率响应并决定是否切换到空闲状态,然后空闲状态的电动汽车按照v2(t)进行概率响应并决定是否切换到放电状态。
在实际控制过程中,电动汽车入网终端接收到控制信号概率值为θi(t),电动汽车切换状态的方法满足以下关系式:
Figure BDA0003459056140000132
式中,λi(t)为t时刻入网终端按照均匀分布U(0,1)产生的随机数,
Figure BDA0003459056140000133
为当前接入电网的电动汽车缓急程度参数的平均值。
步骤5,根据判定的充放电状态对当前介入的电动汽车进行充放电调整。
控制效果如图2所示,可以看出实际控制功率能够很好的追踪目标功率。
本发明还公开了一种基于面向降维等效的海量电动汽车集中式控制方法的面向降维等效的海量电动汽车集中式控制系统,该系统包括电动汽车电池模型构建模块、电动汽车集中式模型构建模块、集群控制中心以及电动汽车入网终端模块;
电动汽车电池模型构建模块根据电动汽车接入电网后的充电状态构建电动汽车电池模型并将结果输入至电动汽车入网终端;
电动汽车集中式模型构建模块根据当前接入电网所有电动汽车的SOC状态构建海量电动汽车集中式模型,并将结果输入至电动汽车入网终端;
集群控制中心将接受到的对当前接入电网所有电动汽车的目标控制功率转化为对这些电动汽车的控制信号并将结果输入至电动汽车入网终端;
电动汽车入网终端构建每辆电动汽车出行缓急程度参数,并根据接收到的模型对电动汽车模式是否进行切换进行判定。
电动汽车电池模型构建模块构建的电动汽车电池模型满足以下关系式:
Figure BDA0003459056140000141
式中,t为当前时刻,Δt为时间间隔,i为当前接入电网的电动汽车编号,Sev,i(t)为当前接入电网的第i辆电动汽车电池的SOC状态值,Pev,i(t)为当前接入电网的第i辆电动汽车与电网的交换功率,Qev,i为当前接入电网的第i辆电动汽车的电池容量,Pevc,i和Pevd,i分别为当前接入电网的第i辆电动汽车额定充电和放电功率,ηevc,i和ηevd,i分别为当前接入电网的第i辆电动汽车的额定充电和放电效率。
电动汽车集中式模型构建模块构建的海量电动汽车集中式模型可以用向量X(t)表示,并满足以下关系式:
X(t)=[x1(t),x2(t),...,xj(t),...,x3n(t)]T
式中,xj(t)为处于第j个状态子区间的电动汽车数量,状态子区间为将电动汽车SOC的变化范围[0,1]离散为n个的相等的状态子区间,每个区间的长度为1/n。
海量电动汽车集中式模型的变化可以通过以下方法获得:
X(t+Δt)=A·X(t)
式中,X(t)为一向量,具体满足以下关系式:
X(t)=[x1(t),x2(t),...,xj(t),...,x3n(t)]T
xj(t)为处于第j个状态子区间的电动汽车数量,状态子区间为将电动汽车SOC的变化范围[0,1]离散为n个的相等的状态子区间,每个区间的长度为1/n;
状态转移矩阵A满足以下关系式:
Figure BDA0003459056140000151
式中,σc和σd分别为充电和放电状态下当前接入电网的所有电动汽车在相邻子区间的平均转移概率。
充电和放电状态下当前接入电网的所有电动汽车在相邻子区间的平均转移概率满足以下关系式:
Figure BDA0003459056140000152
集群控制中心对接入电网所有电动汽车的控制信号转化模型满足以下关系式:
X(t+Δt)=A·X(t)+B·U(t)
式中,B为控制矩阵,U(t)为控制信号转换的控制向量。
本发明申请人结合说明书附图对本发明的实施示例做了详细的说明与描述,但是本领域技术人员应该理解,以上实施示例仅为本发明的优选实施方案,详尽的说明只是为了帮助读者更好地理解本发明精神,而并非对本发明保护范围的限制,相反,任何基于本发明的发明精神所作的任何改进或修饰都应当落在本发明的保护范围之内。

Claims (21)

1.一种面向降维等效的海量电动汽车集中式控制方法,其特征在于,所述面向降维等效的海量电动汽车集中式控制方法包括以下步骤:
步骤1,根据电动汽车接入电网后的充电状态,构建单体电动汽车的电池模型;
步骤2,根据当前接入电网所有电动汽车的SOC状态,构建海量电动汽车集中式模型;
所述海量电动汽车集中式模型的构建方法为:设定单体电动汽车的电网接入状态以及对电动汽车电池荷电状态进行离散化,然后根据单体电动汽车接入状态以及电池荷电状态值找到其所述子区间以计算当前接入电网的所有电动汽车在相邻子区间不同状态的平均转移概率;
步骤3,将接受到的对步骤1中当前接入电网所有电动汽车的目标控制功率转化为对这些电动汽车的控制信号;
步骤4,根据步骤1至3构建的模型与参数,判定电动汽车是否应该切换充放电状态;
步骤5,根据判定的充放电状态对当前介入的电动汽车进行充放电调整。
2.根据权利要求1所述的一种面向降维等效的海量电动汽车集中式控制方法,其特征在于,
在所述步骤1中,所述电动汽车电池模型满足以下关系式:
Figure FDA0003459056130000011
式中,t为当前时刻,Δt为时间间隔,i为当前接入电网的电动汽车编号,Sev,i(t)为当前接入电网的第i辆电动汽车电池的SOC状态值,Pev,i(t)为当前接入电网的第i辆电动汽车与电网的交换功率,Qev,i为当前接入电网的第i辆电动汽车的电池容量,Pevc,i和Pevd,i分别为当前接入电网的第i辆电动汽车额定充电和放电功率,ηevc,i和ηevd,i分别为当前接入电网的第i辆电动汽车的额定充电和放电效率。
3.根据权利要求1或2所述的一种面向降维等效的海量电动汽车集中式控制方法,其特征在于,
在所述步骤3中,所述海量电动汽车集中式模型可以用向量X(t)表示,并满足以下关系式:
X(t)=[x1(t),x2(t),...,xj(t),...,x3n(t)]T
式中,xj(t)为处于第j个状态子区间的电动汽车数量,状态子区间为将电动汽车SOC的变化范围[0,1]离散为n个的相等的状态子区间,每个区间的长度为1/n。
4.根据权利要求1或3所述的一种面向降维等效的海量电动汽车集中式控制方法,其特征在于,
所述海量电动汽车集中式模型的变化可以通过以下方法获得:
X(t+Δt)=A·X(t)
式中,X(t)为一向量,具体满足以下关系式:
X(t)=[x1(t),x2(t),...,xj(t),...,x3n(t)]T
xj(t)为处于第j个状态子区间的电动汽车数量,状态子区间为将电动汽车SOC的变化范围[0,1]离散为n个的相等的状态子区间,每个区间的长度为1/n;
状态转移矩阵A为状态转移矩阵,可以根据所有电动汽车在相邻子区间的数量变化来得到。
5.根据权利要求4所述的一种面向降维等效的海量电动汽车集中式控制方法,其特征在于,
所述状态转移矩阵A满足以下关系式:
Figure FDA0003459056130000021
式中,σc和σd分别为充电和放电状态下当前接入电网的所有电动汽车在相邻子区间的平均转移概率。
6.根据权利要求2、3或4所述的一种面向降维等效的海量电动汽车集中式控制方法,其特征在于,
所述充电和放电状态下当前接入电网的所有电动汽车在相邻子区间的平均转移概率满足以下关系式:
Figure FDA0003459056130000031
式中,
Figure FDA0003459056130000032
Figure FDA0003459056130000033
分别为当前接入电网的所有电动汽车的平均额定充电和放电功率;
Figure FDA0003459056130000034
Figure FDA0003459056130000035
分别为当前接入电网的所有电动汽车的平均充电和放电效率;
Figure FDA0003459056130000036
为当前接入电网的所有电动汽车的平均电池容量。
7.根据权利要求1或6所述的一种面向降维等效的海量电动汽车集中式控制方法,其特征在于,
所述对接入电网所有电动汽车的控制信号转化模型满足以下关系式:
X(t+Δt)=A·X(t)+B·U(t)
式中,B为控制矩阵,U(t)为控制信号转换的控制向量。
8.根据权利要求7所述的一种面向降维等效的海量电动汽车集中式控制方法,其特征在于,
所述控制矩阵B满足以下关系式:
Figure FDA0003459056130000037
式中,On×n为n×n的零矩阵,为In×n为n×n的单位矩阵。
9.根据权利要求7或8所述的一种面向降维等效的海量电动汽车集中式控制方法,其特征在于,
所述控制信号转换的控制向量U(t)为U(t)=[u1(t),...,uj(t),...,u2n(t)]T,具体满足以下关系式:
Figure FDA0003459056130000038
Figure FDA0003459056130000041
其中,ΔPr(t)为接收到的对接入电网所有电动汽车的目标控制功率;v1(t)与v2(t)分别为概率控制信号向量V(t)中的第一控制信号与第二控制信号,概率控制信号向量V(t)为:
V(t)=[v1(t),v2(t)]T
10.根据权利要求9所述的一种面向降维等效的海量电动汽车集中式控制方法,其特征在于,
所述第一控制信号分量与第二控制信号分量分别满足以下关系式:
Figure FDA0003459056130000042
Figure FDA0003459056130000043
ΔPd2i(t)、ΔPi2c(t)、ΔPc2i(t)、ΔPi2d(t)分别为当前接入电网的所有电动汽车由放电转为空闲状态、由空闲转为充电、由充电转为空闲、由空闲转为放电状态的可调节容量。
11.根据权利要求10所述的一种面向降维等效的海量电动汽车集中式控制方法,其特征在于,
所述当前接入电网的所有电动汽车由放电转为空闲状态、由空闲转为充电、由充电转为空闲、由空闲转为放电状态的可调节容量满足以下关系式:
Figure FDA0003459056130000044
其中,Cd2i、Ci2c、Cc2i、Ci2d分别为海量电动汽车由放电转为空闲状态、由空闲转为充电、由充电转为空闲、由空闲转为放电状态的可调节容量评估矩阵。
12.根据权利要求11所述的一种面向降维等效的海量电动汽车集中式控制方法,其特征在于,
所述可调节容量评估矩阵满足以下关系式:
Figure FDA0003459056130000051
13.根据权利要求1或12所述的一种面向降维等效的海量电动汽车集中式控制方法,其特征在于,
所述电动汽车出行缓急程度参数满足以下关系式:
Figure FDA0003459056130000052
式中,ξev,i(t)表示当前接入电网的第i辆电动汽车出行的缓急程度参数,tsf,i表示第i辆电动汽车离开电网的时刻,Sevr,i表示第i辆电动汽车出行需求SOC,Sev,i(t)表示第i辆电动汽车的SOC状态值,Pevc,i表示第i辆电动汽车从接入电网到当前时刻的平均额定充电功率,ηevc,i表示第i辆电动汽车从接入电网到当前时刻的平均充电效率,Qev,i表示第i辆电动汽车的电池容量。
14.根据权利要求1或13所述的一种面向降维等效的海量电动汽车集中式控制方法,其特征在于,
所述判定方法具体为:
电动汽车入网终端接收到控制信号V(t)后,如果信号中的概率值v1(t)≥0、v2(t)≥0,则放电状态的电动汽车按照v2(t)进行概率响应并决定是否切换到空闲状态,然后空闲状态的电动汽车按照v1(t)进行概率响应并决定是否切换到充电状态;如果信号中的概率值v1(t)≤0、v2(t)≤0,则充电状态的电动汽车按照v1(t)进行概率响应并决定是否切换到空闲状态,然后空闲状态的电动汽车按照v2(t)进行概率响应并决定是否切换到放电状态。
15.基于权利要求1-14任意一项所述的一种基于面向降维等效的海量电动汽车集中式控制方法的一种面向降维等效的海量电动汽车集中式控制系统,其特征在于,
所述系统包括电动汽车电池模型构建模块、电动汽车集中式模型构建模块、集群控制中心以及电动汽车入网终端模块;
所述电动汽车电池模型构建模块根据电动汽车接入电网后的充电状态构建电动汽车电池模型并将结果输入至电动汽车入网终端;
所述电动汽车集中式模型构建模块根据当前接入电网所有电动汽车的SOC状态构建海量电动汽车集中式模型,并将结果输入至电动汽车入网终端;
所述集群控制中心将接受到的对当前接入电网所有电动汽车的目标控制功率转化为对这些电动汽车的控制信号并将结果输入至电动汽车入网终端;
所述电动汽车入网终端构建每辆电动汽车出行缓急程度参数,并根据接收到的模型对电动汽车模式是否进行切换进行判定。
16.根据权利要求15所述的一种面向降维等效的海量电动汽车集中式控制系统,其特征在于,
所述电动汽车电池模型满足以下关系式:
Figure FDA0003459056130000061
式中,t为当前时刻,Δt为时间间隔,i为当前接入电网的电动汽车编号,Sev,i(t)为当前接入电网的第i辆电动汽车电池的SOC状态值,Pev,i(t)为当前接入电网的第i辆电动汽车与电网的交换功率,Qev,i为当前接入电网的第i辆电动汽车的电池容量,Pevc,i和Pevd,i分别为当前接入电网的第i辆电动汽车额定充电和放电功率,ηevc,i和ηevd,i分别为当前接入电网的第i辆电动汽车的额定充电和放电效率。
17.根据权利要求15或16所述的一种面向降维等效的海量电动汽车集中式控制系统,其特征在于,
所述海量电动汽车集中式模型可以用向量X(t)表示,并满足以下关系式:
X(t)=[x1(t),x2(t),...,xj(t),...,x3n(t)]T
式中,xj(t)为处于第j个状态子区间的电动汽车数量,状态子区间为将电动汽车SOC的变化范围[0,1]离散为n个的相等的状态子区间,每个区间的长度为1/n。
18.根据权利要求17所述的一种面向降维等效的海量电动汽车集中式控制系统,其特征在于,
所述海量电动汽车集中式模型的变化可以通过以下方法获得:
X(t+Δt)=A·X(t)
式中,X(t)为一向量,具体满足以下关系式:
X(t)=[x1(t),x2(t),...,xj(t),...,x3n(t)]T
xj(t)为处于第j个状态子区间的电动汽车数量,状态子区间为将电动汽车SOC的变化范围[0,1]离散为n个的相等的状态子区间,每个区间的长度为1/n;
状态转移矩阵A为状态转移矩阵,可以根据所有电动汽车在相邻子区间的数量变化来得到。
19.根据权利要求18所述的一种面向降维等效的海量电动汽车集中式控制系统,其特征在于,
所述状态转移矩阵A满足以下关系式:
Figure FDA0003459056130000071
式中,σc和σd分别为充电和放电状态下当前接入电网的所有电动汽车在相邻子区间的平均转移概率。
20.根据权利要求19所述的一种面向降维等效的海量电动汽车集中式控制系统,其特征在于,
所述充电和放电状态下当前接入电网的所有电动汽车在相邻子区间的平均转移概率满足以下关系式:
Figure FDA0003459056130000081
式中,
Figure FDA0003459056130000082
Figure FDA0003459056130000083
分别为当前接入电网的所有电动汽车的平均额定充电和放电功率;
Figure FDA0003459056130000084
Figure FDA0003459056130000085
分别为当前接入电网的所有电动汽车的平均充电和放电效率;
Figure FDA0003459056130000086
为当前接入电网的所有电动汽车的平均电池容量。
21.根据权利要求16所述的一种面向降维等效的海量电动汽车集中式控制系统,其特征在于,
所述对接入电网所有电动汽车的控制信号转化模型满足以下关系式:
X(t+Δt)=A·X(t)+B·U(t)
式中,B为控制矩阵,U(t)为控制信号转换的控制向量。
CN202210013920.1A 2022-01-06 2022-01-06 一种面向降维等效的海量电动汽车集中式控制方法及系统 Active CN114389294B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210013920.1A CN114389294B (zh) 2022-01-06 2022-01-06 一种面向降维等效的海量电动汽车集中式控制方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210013920.1A CN114389294B (zh) 2022-01-06 2022-01-06 一种面向降维等效的海量电动汽车集中式控制方法及系统

Publications (2)

Publication Number Publication Date
CN114389294A true CN114389294A (zh) 2022-04-22
CN114389294B CN114389294B (zh) 2024-04-30

Family

ID=81199139

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210013920.1A Active CN114389294B (zh) 2022-01-06 2022-01-06 一种面向降维等效的海量电动汽车集中式控制方法及系统

Country Status (1)

Country Link
CN (1) CN114389294B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117474270A (zh) * 2023-11-10 2024-01-30 哈尔滨工业大学 一种基于bp的电动公交车激励-响应特性精准量化方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130142350A (ko) * 2012-06-19 2013-12-30 현대모비스 주식회사 스마트 전기자동차 및 이의 운용방법
CN105069251A (zh) * 2015-08-26 2015-11-18 华北电力大学(保定) 一种基于情景模式仿真的电动汽车集群模型建模方法
CN113011104A (zh) * 2021-04-02 2021-06-22 华北电力大学(保定) 一种面向电网调频控制的集群电动汽车充电负荷聚合建模方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130142350A (ko) * 2012-06-19 2013-12-30 현대모비스 주식회사 스마트 전기자동차 및 이의 운용방법
CN105069251A (zh) * 2015-08-26 2015-11-18 华北电力大学(保定) 一种基于情景模式仿真的电动汽车集群模型建模方法
CN113011104A (zh) * 2021-04-02 2021-06-22 华北电力大学(保定) 一种面向电网调频控制的集群电动汽车充电负荷聚合建模方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王明深 等: "考虑电动汽车集群储能能力和风电接入的平抑控制策略", 电力自动化设备, vol. 38, no. 05, 4 May 2018 (2018-05-04), pages 211 - 219 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117474270A (zh) * 2023-11-10 2024-01-30 哈尔滨工业大学 一种基于bp的电动公交车激励-响应特性精准量化方法

Also Published As

Publication number Publication date
CN114389294B (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
CN110378548B (zh) 一种电动汽车虚拟电厂多时间尺度响应能力评估模型构建方法
CN109980742B (zh) 计及动力电池梯次利用基于mmc结构的充电站优化方法
CN105680474B (zh) 一种储能抑制光伏电站快速功率变化的控制方法
CN107069776B (zh) 一种平滑微网联络线功率的储能前瞻分布式控制方法
CN111244988B (zh) 考虑分布式电源的电动汽车和储能优化调度方法
CN104966127A (zh) 一种基于需求响应的电动汽车经济调度方法
CN111697578B (zh) 多目标含储能区域电网运行控制方法
CN109034587B (zh) 一种协调多种可控单元的主动配电系统优化调度方法
CN112706753B (zh) 一种基于灰狼优化的ecms混动汽车能量管理策略
He et al. A new cost-minimizing power-allocating strategy for the hybrid electric bus with fuel cell/battery health-aware control
CN113199946A (zh) 一种基于马尔科夫过程的电动汽车储能聚合建模方法
Luo et al. Load forecasting of electric vehicle charging station based on edge computing
CN117060470A (zh) 一种基于灵活性资源的配电网电压优化控制方法
CN114389294B (zh) 一种面向降维等效的海量电动汽车集中式控制方法及系统
CN113011104B (zh) 一种面向电网调频控制的集群电动汽车充电负荷聚合建模方法
CN111856285B (zh) 一种电动汽车退役电池组等效模型建模方法
CN112928769B (zh) 一种兼顾补偿预测误差和平抑波动的光伏混合储能控制方法
CN113500940A (zh) 一种基于粒子群算法的电动汽车有序充放电动态优化策略
CN112467717A (zh) 一种基于模糊控制的混合能源系统实时负荷分配方法
CN112036735A (zh) 一种用于光伏电站的储能系统的储能容量规划方法及系统
CN115360738B (zh) 一种考虑可控域约束的电动汽车一次调频控制方法
CN116645089A (zh) 一种考虑退役电池容量退化的储能系统双层优化配置方法
CN116885761A (zh) 一种功率型-能量型混合储能系统容量优化方法
CN114759616A (zh) 一种考虑电力电子器件特性的微电网鲁棒优化调度方法
CN110890763B (zh) 限制充放电状态切换的电动汽车与光伏发电协同调度方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant