CN114386715A - Prediction method, system, equipment and medium for main braking air path pressure leakage - Google Patents
Prediction method, system, equipment and medium for main braking air path pressure leakage Download PDFInfo
- Publication number
- CN114386715A CN114386715A CN202210121767.4A CN202210121767A CN114386715A CN 114386715 A CN114386715 A CN 114386715A CN 202210121767 A CN202210121767 A CN 202210121767A CN 114386715 A CN114386715 A CN 114386715A
- Authority
- CN
- China
- Prior art keywords
- pressure
- parking
- time period
- data
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 43
- 238000012423 maintenance Methods 0.000 claims abstract description 71
- 238000012790 confirmation Methods 0.000 claims abstract description 31
- 238000012216 screening Methods 0.000 claims abstract description 31
- 238000004364 calculation method Methods 0.000 claims abstract description 7
- 238000007781 pre-processing Methods 0.000 claims description 31
- 230000004913 activation Effects 0.000 claims description 28
- 238000012549 training Methods 0.000 claims description 27
- 230000015654 memory Effects 0.000 claims description 17
- 230000008859 change Effects 0.000 claims description 16
- 238000012937 correction Methods 0.000 claims description 16
- 238000005070 sampling Methods 0.000 claims description 16
- 230000002159 abnormal effect Effects 0.000 claims description 14
- 238000004590 computer program Methods 0.000 claims description 11
- 238000001514 detection method Methods 0.000 claims description 11
- 238000012545 processing Methods 0.000 claims description 11
- 230000014759 maintenance of location Effects 0.000 claims description 8
- 238000013178 mathematical model Methods 0.000 claims description 6
- 238000000605 extraction Methods 0.000 claims description 4
- 238000010200 validation analysis Methods 0.000 claims 2
- 238000004458 analytical method Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 5
- 230000003252 repetitive effect Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Business, Economics & Management (AREA)
- Strategic Management (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Human Resources & Organizations (AREA)
- Economics (AREA)
- General Physics & Mathematics (AREA)
- Development Economics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Biology (AREA)
- Game Theory and Decision Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Engineering & Computer Science (AREA)
- Entrepreneurship & Innovation (AREA)
- Marketing (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Valves And Accessory Devices For Braking Systems (AREA)
Abstract
Description
技术领域technical field
本发明涉及列车制动主风气路压力检测技术领域,尤其涉及一种制动主风气路压力泄漏的预测方法、系统、设备及介质。The invention relates to the technical field of train braking main air gas path pressure detection, in particular to a method, system, equipment and medium for predicting pressure leakage of the main brake air air path.
背景技术Background technique
冬季时由于热胀冷缩导致管接头处密封性较差,造成管路漏气故障较多。传统的车辆检修过程中,对于气密性泄漏点的检测方式主要依靠耳听、手工检测、肥皂水检测等方法。但是该检测方式效率低且较小的泄漏情况难以发现。In winter, due to thermal expansion and cold contraction, the tightness of the pipe joints is poor, resulting in more air leakage failures in the pipeline. In the traditional vehicle maintenance process, the detection methods for air tightness leaks mainly rely on hearing, manual detection, soapy water detection and other methods. However, this detection method is inefficient and it is difficult to find small leaks.
随着地铁智能化运维水平的不断深入,传感器、嵌入式系统、网络通信、大数据等技术的飞速发展,地铁列车普遍通过车载数据传输装置将车辆运行过程中出现的故障问题和关键的行车参数发送至地面数据中心,从而实时监控车组状态。但是因通信容量和传感器成本高等因素限制,使得车辆传输的气路压力信号种类较少,压力数据的采用精度不够高,泄漏情况预测的准确性低;需要额外加入传感器,成本高且难推广。With the continuous deepening of the level of intelligent operation and maintenance of subways and the rapid development of technologies such as sensors, embedded systems, network communication, and big data, subway trains generally use on-board data transmission devices to transmit faults and key traffic problems during vehicle operation. The parameters are sent to the ground data center to monitor the status of the fleet in real time. However, due to the limitation of communication capacity and high cost of sensors, there are few types of air pressure signals transmitted by vehicles, the accuracy of pressure data is not high enough, and the accuracy of leakage prediction is low; additional sensors are required, which is costly and difficult to promote.
发明内容SUMMARY OF THE INVENTION
本发明要解决的技术问题是为了克服现有技术中制动主风气路压力预测效率低且准确性差的缺陷,提供一种制动主风气路压力泄漏的预测方法、系统、设备及介质。The technical problem to be solved by the present invention is to provide a method, system, equipment and medium for predicting the pressure leakage of the main brake air circuit in order to overcome the defects of low efficiency and poor accuracy of the brake main air circuit pressure prediction in the prior art.
本发明是通过下述技术方案来解决上述技术问题:The present invention solves the above-mentioned technical problems through the following technical solutions:
第一方面,本发明提供一种制动主风气路压力泄漏的预测方法,所述预测方法包括:In a first aspect, the present invention provides a method for predicting the pressure leakage of the main air circuit of the brake, the predicting method comprising:
获取目标地铁列车在目标时段的运行状态数据;所述运行状态数据包括停放确认参数;Obtain the running state data of the target subway train in the target period; the running state data includes the parking confirmation parameter;
根据所述停放确认参数,从所述运行状态数据中筛选出所述目标地铁列车的最长停放时间段对应的停放状态数据;According to the parking confirmation parameter, filter out the parking state data corresponding to the longest parking time period of the target subway train from the running state data;
基于所述停放状态数据计算获得在所述最长停放时间段的主风气路压力有效数据;Calculating and obtaining valid data of the main air circuit pressure in the longest parking time period based on the parking state data;
将所述主风气路压力有效数据输入泄漏模型,输出所述目标地铁列车在目标时段的制动主风气路压力的泄漏状态;所述泄漏模型为二维阈值数组和二维属性数组构造的数学模型,所述二维阈值数组中每个阈值表征主风气路压力在设定温度和设定压力下的保持时间阈值,所述二维属性数组的属性值包括真值和假值,所述二维阈值数组的维度包括温度和压力。Input the effective data of the main air circuit pressure into the leakage model, and output the leakage state of the brake main air circuit pressure of the target subway train in the target time period; the leakage model is a mathematical model constructed by a two-dimensional threshold array and a two-dimensional attribute array. model, each threshold value in the two-dimensional threshold value array represents the retention time threshold value of the main air circuit pressure at the set temperature and the set pressure, and the attribute values of the two-dimensional attribute array include true values and false values, and the two The dimensions of the dimensional threshold array include temperature and pressure.
较佳地,所所述停放确认参数包括列车速度、司机室激活系数和空压机工作系数;Preferably, the parking confirmation parameters include train speed, cab activation coefficient and air compressor working coefficient;
所述根据所述停放确认参数,从所述运行状态数据中筛选出所述目标地铁列车的最长停放时间段对应的停放状态数据的步骤包括:The step of filtering out the parking state data corresponding to the longest parking time period of the target subway train from the running state data according to the parking confirmation parameter includes:
根据所述列车速度、所述司机室激活系数和所述空压机工作系数,从所述目标时段中截取至少一个备选停放时间段;intercepting at least one alternative parking time period from the target period according to the train speed, the driver's cab activation coefficient and the air compressor operating coefficient;
或,or,
所述运行状态数据还包括时间参数和基准参数,所述基准参数包括制动主风气路压力;所述停放确认参数包括列车速度、司机室激活系数和空压机工作系数;The operating state data further includes a time parameter and a reference parameter, the reference parameter includes the brake main air pressure; the parking confirmation parameter includes the train speed, the activation coefficient of the driver's cab and the working coefficient of the air compressor;
根据所述列车速度、所述司机室激活系数和所述空压机工作系数,从所述目标时段中截取至少一个初选停放时间段;intercepting at least one primary parking time period from the target period according to the train speed, the driver's cab activation coefficient and the air compressor operating coefficient;
将所述制动主风气路压力中每两个相邻气压变化值与第一阈值进行对比,根据对比结果从所述初选停放时段中确定至少一个备选停放时间段;Comparing every two adjacent air pressure change values in the pressure of the main brake air circuit with the first threshold value, and determining at least one alternative parking time period from the preliminary selected parking time period according to the comparison result;
从所述备选停放时间段中筛选出最长时段作为最长停放时间段;Screening out the longest time period from the alternative parking time periods as the longest parking time period;
从所述运行状态数据中截取所述最长停放时间段对应的停放状态数据。The parking state data corresponding to the longest parking time period is intercepted from the running state data.
较佳地,所述基于所述停放状态数据计算获得在所述最长停放时间段的主风气路压力有效数据的步骤包括:Preferably, the step of calculating and obtaining the valid data of the main air passage pressure in the longest parking time period based on the parking state data includes:
提取所述停放状态数据中多个不同的气压值,并删除最大和最小的气压值,生成初始气压数组;Extracting a plurality of different air pressure values in the parking state data, and deleting the maximum and minimum air pressure values to generate an initial air pressure array;
从所述初始气压数组中剔除采样时刻间隔大于第二阈值所对应的气压值,生成压力保持集合和超时判断信息;Eliminate the air pressure value corresponding to the sampling time interval greater than the second threshold from the initial air pressure array, and generate the pressure maintenance set and timeout judgment information;
根据所述压力保持集合和所述停放状态数据生成备选压力保持样本集合和压力保持预设判断信息;generating an alternative pressure maintaining sample set and pressure maintaining preset judgment information according to the pressure maintaining set and the parking state data;
将所述备选压力保持样本集合中的样本数量与预设数量进行比对;comparing the number of samples in the alternative pressure holding sample set with a preset number;
若所述样本数量不大于所述预设数量,则直接将所述备选压力保持样本集合作为有效压力保持样本集合,并生成备选压力保持样本判断信息和所述主风气路压力有效数据;If the number of samples is not greater than the preset number, the candidate pressure maintenance sample set is directly used as the effective pressure maintenance sample set, and the candidate pressure maintenance sample judgment information and the effective data of the main air gas path pressure are generated;
若所述样本数量大于所述预设数量,则将所述备选压力保持集合中的样本按照压力保持时长从大到小的顺序进行排序后,筛选获得符合所述预设数量的有效压力保持样本集合,并生成所述备选压力保持样本判断信息和所述主风气路压力有效数据;If the number of samples is greater than the preset number, after sorting the samples in the candidate pressure maintenance set in descending order of the pressure maintenance duration, filter to obtain effective pressure maintenance that meets the preset number sample set, and generate the judgment information of the candidate pressure retention sample and the valid data of the main air circuit pressure;
其中,所述有效压力保持样本集合包括压力保持值、保持温度值、压力保持时长和起始时间点中的至少一种。Wherein, the effective pressure maintaining sample set includes at least one of a pressure maintaining value, a maintaining temperature value, a pressure maintaining duration and a starting time point.
较佳地,所述根据所述压力保持集合和所述停放状态数据生成备选压力保持样本集合的步骤包括:Preferably, the step of generating an alternative pressure holding sample set according to the pressure holding set and the parking state data includes:
从所述压力保持值集合中选择至少一个目标压力保持值;selecting at least one target pressure hold value from the set of pressure hold values;
将所述停放状态数据中气压值与所述目标压力保持值的差值与第三阈值进行比对后,根据比对结果从所述最长停放时段中截取多个备选目标压力保持时段;After comparing the difference between the air pressure value and the target pressure holding value in the parking state data with a third threshold value, intercept a plurality of candidate target pressure holding periods from the longest parking period according to the comparison result;
从所述备选目标压力时段中筛选出最长目标压力保持时段,并判断所述最长目标压力保持时段是否满足预设条件;Screen out the longest target pressure holding period from the candidate target pressure periods, and determine whether the longest target pressure holding period satisfies a preset condition;
若满足,则根据从所述停放状态数据中截取的所述最长目标压力保持时段所对应的目标压力保持状态数据,生成所述备选压力保持样本集合;If so, generating the candidate pressure maintaining sample set according to the target pressure maintaining state data corresponding to the longest target pressure maintaining period intercepted from the parking state data;
若不满足,则再执行所述从所述压力保持值集合中选择至少一个目标压力保持值的步骤,直至所述压力保持值集合中的所有压力保持值遍历完为止。If not, the step of selecting at least one target pressure holding value from the pressure holding value set is performed again until all pressure holding values in the pressure holding value set are traversed.
较佳地,所述预测方法通过以下步骤训练得到所述泄漏模型,包括:Preferably, the prediction method is trained to obtain the leakage model through the following steps, including:
采集地铁列车在一历史时段的多个正常的主风气路压力的压力保持数据;Collecting the pressure holding data of multiple normal main air circuit pressures of subway trains in a historical period;
将所述压力保持数据输入初始模型中进行训练,以得到所述泄漏模型。The pressure retention data is input into an initial model for training to obtain the leak model.
较佳地,所述压力保持数据包括标准参数,所述将所述压力保持数据输入初始模型中进行训练,以得到所述泄漏模型的步骤包括:Preferably, the pressure maintenance data includes standard parameters, and the step of inputting the pressure maintenance data into an initial model for training to obtain the leakage model includes:
选择所述标准参数位于设定范围内的所述压力保持数据作为有效压力保持数据;Selecting the pressure maintaining data with the standard parameter within the set range as the effective pressure maintaining data;
基于所述有效压力保持数据中的压力保持时间,对所述初始模型中二维阈值数组的压力保持时间阈值进行修正,生成所述泄漏模型。Based on the pressure holding time in the effective pressure holding data, the pressure holding time threshold of the two-dimensional threshold array in the initial model is corrected to generate the leakage model.
较佳地,所述获取目标地铁列车在目标时段的运行状态数据之后,所述预测方法还包括:Preferably, after obtaining the running state data of the target subway train in the target time period, the prediction method further includes:
对所述运行状态数据进行预处理;所述预处理包括对所述运行状态数据进行完整性检测和异常数据修正,并生成预处理判断信息;Preprocessing the operating status data; the preprocessing includes performing integrity detection and abnormal data correction on the operating status data, and generating preprocessing judgment information;
其中,所述主风气路压力有效数据包括所述有效压力保持样本集合、所述预处理判断信息、所述超时判断信息、所述压力保持预设判断信息和所述备选压力保持样本判断信息。Wherein, the effective data of the main air circuit pressure includes the effective pressure maintenance sample set, the preprocessing judgment information, the timeout judgment information, the pressure maintenance preset judgment information, and the alternative pressure maintenance sample judgment information .
第二方面,本发明提供一种制动主风气路压力泄漏的预测系统,所述预测系统包括:In a second aspect, the present invention provides a system for predicting pressure leakage of a brake main air circuit, the predicting system comprising:
获取模块,用于获取目标地铁列车在目标时段的运行状态数据;所述运行状态数据包括停放确认参数;an acquisition module, used for acquiring the running state data of the target subway train in the target period; the running state data includes the parking confirmation parameter;
筛选模块,用于根据所述停放确认参数,从所述运行状态数据中筛选出所述目标地铁列车的最长停放时间段对应的停放状态数据;a screening module, configured to screen out the parking status data corresponding to the longest parking time period of the target subway train from the running status data according to the parking confirmation parameter;
计算模块,用于基于所述停放状态数据计算获得在所述最长停放时间段的主风气路压力有效数据;a calculation module, configured to calculate and obtain the effective data of the main air gas path pressure in the longest parking time period based on the parking state data;
预测模块,用于将所述主风气路压力有效数据输入泄漏模型,输出所述目标地铁列车在目标时段的制动主风气路压力的泄漏状态;所述泄漏模型为二维阈值数组和二维属性数组构造的数学模型,所述二维阈值数组中每个阈值表征主风气路压力在设定温度和设定压力下的保持时间阈值,所述二维属性数组的属性值包括真值和假值,所述二维阈值数组的维度包括温度和压力。The prediction module is used to input the effective data of the main air gas path pressure into the leakage model, and output the leakage state of the brake main air gas path pressure of the target subway train in the target period; the leakage model is a two-dimensional threshold array and a two-dimensional Mathematical model constructed by an attribute array, each threshold in the two-dimensional threshold array represents the retention time threshold of the main air gas path pressure at the set temperature and the set pressure, and the attribute values of the two-dimensional attribute array include true and false value, the dimensions of the two-dimensional threshold array include temperature and pressure.
较佳地,所述停放确认参数包括列车速度、司机室激活系数和空压机工作系数;所述筛选模块,包括:Preferably, the parking confirmation parameters include train speed, cab activation coefficient and air compressor working coefficient; the screening module includes:
第一截取单元,用于根据所述列车速度、所述司机室激活系数和所述空压机工作系数,从所述目标时段中截取至少一个备选停放时间段;a first intercepting unit, configured to intercept at least one alternative parking time period from the target time period according to the train speed, the driver's cab activation coefficient and the air compressor operating coefficient;
或,or,
所述运行状态数据还包括时间参数和基准参数,所述基准参数包括制动主风气路压力,所述停放确认参数包括列车速度、司机室激活系数和空压机工作系数;所述筛选模块,包括:The operating state data further includes a time parameter and a reference parameter, the reference parameter includes the brake main air path pressure, and the parking confirmation parameter includes the train speed, the driver's cab activation coefficient and the air compressor working coefficient; the screening module, include:
第二截取单元,用于根据所述列车速度、所述司机室激活系数和所述空压机工作系数,从所述目标时段中截取至少一个初选停放时间段;a second intercepting unit, configured to intercept at least one primary parking time period from the target time period according to the train speed, the driver's cab activation coefficient and the air compressor operating coefficient;
第一对比单元,用于将所述制动主风气路压力中每两个相邻气压变化值与第一阈值进行对比,根据对比结果从所述初选停放时段中确定至少一个备选停放时间段;a first comparison unit, configured to compare every two adjacent air pressure change values in the pressure of the main brake air circuit with a first threshold value, and determine at least one alternative parking time from the preliminary selected parking period according to the comparison result part;
第一筛选单元,用于从所述备选停放时间段中筛选出最长时段作为最长停放时间段;a first screening unit, configured to screen out the longest time period from the alternative parking time periods as the longest parking time period;
第三截取单元,用于从所述运行状态数据中截取所述最长停放时间段对应的停放状态数据。A third intercepting unit, configured to intercept the parking state data corresponding to the longest parking time period from the running state data.
较佳地,所述计算模块,包括:Preferably, the computing module includes:
提取单元,用于提取所述停放状态数据中多个不同的气压值,并删除最大和最小的气压值,生成初始气压数组;an extraction unit, configured to extract a plurality of different air pressure values in the parking state data, delete the maximum and minimum air pressure values, and generate an initial air pressure array;
剔除单元,用于从所述初始气压数组中剔除采样时刻间隔大于第二阈值所对应的气压值,生成压力保持集合和超时判断信息;A removal unit, configured to remove the air pressure value corresponding to the sampling time interval greater than the second threshold value from the initial air pressure array, and generate a pressure holding set and timeout judgment information;
生成单元,用于根据所述压力保持集合和所述停放状态数据生成备选压力保持样本集合和压力保持预设判断信息;a generating unit, configured to generate an alternative pressure maintaining sample set and pressure maintaining preset judgment information according to the pressure maintaining set and the parking state data;
第二对比单元,用于将所述备选压力保持样本集合中的样本数量与预设数量进行比对;a second comparison unit, configured to compare the number of samples in the candidate pressure maintenance sample set with a preset number;
第一处理单元,用于若所述样本数量不大于所述预设数量,则直接将所述备选压力保持样本集合作为有效压力保持样本集合,并生成备选压力保持样本判断信息和所述主风气路压力有效数据;a first processing unit, configured to directly use the candidate pressure maintenance sample set as an effective pressure maintenance sample set if the number of samples is not greater than the preset number, and generate candidate pressure maintenance sample judgment information and the Valid data of main air circuit pressure;
第二处理单元,用于若所述样本数量大于所述预设数量,则将所述备选压力保持集合中的样本按照压力保持时长从大到小的顺序进行排序后,筛选获得符合所述预设数量的有效压力保持样本集合,并生成所述备选压力保持样本判断信息和所述主风气路压力有效数据;The second processing unit is configured to, if the number of samples is greater than the preset number, sort the samples in the candidate pressure holding set in descending order of pressure holding time, and filter out the samples that meet the requirements of the pressure holding time. a preset number of effective pressure holding sample sets, and generating the candidate pressure holding sample judgment information and the effective data of the main air path pressure;
其中,所述有效压力保持样本集合包括压力保持值、保持温度值、压力保持时长和起始时间点中的至少一种。Wherein, the effective pressure maintaining sample set includes at least one of a pressure maintaining value, a maintaining temperature value, a pressure maintaining duration and a starting time point.
较佳地,所述生成单元具体用于:Preferably, the generating unit is specifically used for:
从所述压力保持值集合中选择至少一个目标压力保持值;selecting at least one target pressure hold value from the set of pressure hold values;
将所述停放状态数据中气压值与所述目标压力保持值的差值与第三阈值进行比对后,根据比对结果从所述最长停放时段中截取多个备选目标压力保持时段;After comparing the difference between the air pressure value and the target pressure holding value in the parking state data with a third threshold value, intercept a plurality of candidate target pressure holding periods from the longest parking period according to the comparison result;
从所述备选目标压力时段中筛选出最长目标压力保持时段,并判断所述最长目标压力保持时段是否满足预设条件;Screen out the longest target pressure holding period from the candidate target pressure periods, and determine whether the longest target pressure holding period satisfies a preset condition;
若满足,则根据从所述停放状态数据中截取的所述最长目标压力保持时段所对应的目标压力保持状态数据,生成所述备选压力保持样本集合;If so, generating the candidate pressure maintaining sample set according to the target pressure maintaining state data corresponding to the longest target pressure maintaining period intercepted from the parking state data;
若不满足,则再执行所述从所述压力保持值集合中选择至少一个目标压力保持值的步骤,直至所述压力保持值集合中的所有压力保持值遍历完为止。If not, the step of selecting at least one target pressure holding value from the pressure holding value set is performed again until all pressure holding values in the pressure holding value set are traversed.
较佳地,所述预测系统通过以下模块训练得到所述泄漏模型,包括:Preferably, the prediction system obtains the leakage model by training the following modules, including:
采集模块,用于采集地铁列车在一历史时段的多个正常的主风气路压力的压力保持数据;The acquisition module is used to collect the pressure maintenance data of multiple normal main air circuit pressures of subway trains in a historical period;
训练模块,用于将所述压力保持数据输入初始模型中进行训练,以得到所述泄漏模型。A training module, configured to input the pressure maintenance data into an initial model for training to obtain the leakage model.
较佳地,所述压力保持数据包括标准参数,所述训练模块,包括:Preferably, the pressure maintenance data includes standard parameters, and the training module includes:
选择单元,用于选择所述标准参数位于设定范围内的所述压力保持数据作为有效压力保持数据;a selection unit, configured to select the pressure maintaining data whose standard parameters are within a set range as the effective pressure maintaining data;
修正单元,用于基于所述有效压力保持数据中的压力保持时间,对所述初始模型中二维阈值数组的压力保持时间阈值进行修正,生成所述泄漏模型。A correction unit, configured to correct the pressure holding time threshold of the two-dimensional threshold array in the initial model based on the pressure holding time in the effective pressure holding data to generate the leakage model.
所述预测系统还包括:The forecasting system also includes:
预处理模块,用于对所述运行状态数据进行预处理;所述预处理包括对所述运行状态数据进行完整性检测和异常数据修正,并生成预处理判断信息;a preprocessing module, configured to preprocess the operating status data; the preprocessing includes performing integrity detection and abnormal data correction on the operating status data, and generating preprocessing judgment information;
其中,所述主风气路压力有效数据包括所述有效压力保持样本集合、所述预处理判断信息、超时判断信息、压力保持预设判断信息和备选压力保持样本判断信息。Wherein, the effective data of the main air gas path pressure includes the effective pressure maintaining sample set, the preprocessing judgment information, the timeout judgment information, the pressure maintaining preset judgment information and the alternative pressure maintaining sample judgment information.
第三方面,本发明提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现第一方面所述的制动主风气路压力泄漏的预测方法。In a third aspect, the present invention provides an electronic device, comprising a memory, a processor, and a computer program stored in the memory and running on the processor, the processor implementing the computer program described in the first aspect when the processor executes the computer program Prediction method of brake main air circuit pressure leakage.
第四方面,本发明提供一种计算机可读存储介质,所述计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现第一方面所述的制动主风气路压力泄漏的预测方法。In a fourth aspect, the present invention provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the brake main air pressure of the first aspect is realized Leak prediction methods.
本发明的积极进步效果在于:提供一种制动主风气路压力泄漏的预测方法、系统、设备及介质,该预测方法通过基于地铁列车制动主风气路相关参数,训练得到泄漏模型,基于地铁列车的运行状态数据计算得到主风气路压力有效数据,将主风气路压力有效数据输入泄漏模型中预测列车的气压泄漏情况。本发明在传感器精度受限的条件下,计算得到主风气路压力有效数据;提高了压力泄漏预测数据的可靠性和有效性,增强了地铁列车的主风气路压力预测的效率和准确性;及时指导地铁列车的主风气路维保工作,降低了维修保养的成本。The positive and progressive effect of the present invention is to provide a method, system, equipment and medium for predicting the pressure leakage of the braking main air path. The running state data of the train is calculated to obtain the effective data of the pressure of the main air circuit, and the effective data of the pressure of the main air circuit is input into the leakage model to predict the air pressure leakage of the train. Under the condition of limited sensor accuracy, the invention calculates and obtains effective data of the main air gas path pressure; improves the reliability and validity of the pressure leakage prediction data, and enhances the efficiency and accuracy of the main air air path pressure prediction of subway trains; It guides the maintenance work of the main air road of subway trains and reduces the cost of maintenance.
附图说明Description of drawings
图1为本发明实施例1的制动主风气路压力泄漏的预测方法的流程图。FIG. 1 is a flowchart of a method for predicting the pressure leakage of the brake main air passage according to Embodiment 1 of the present invention.
图2为本发明实施例1的制动主风气路压力泄漏的预测方法的步骤S3的流程图。FIG. 2 is a flowchart of step S3 of the method for predicting the pressure leakage of the main air passage of the brake according to Embodiment 1 of the present invention.
图3为本发明实施例1的制动主风气路压力泄漏的预测方法的步骤S4的流程图。FIG. 3 is a flowchart of step S4 of the method for predicting the pressure leakage of the main air passage of the brake according to Embodiment 1 of the present invention.
图4为本发明实施例1的制动主风气路压力泄漏的预测方法的步骤S43的流程图。FIG. 4 is a flowchart of step S43 of the method for predicting the pressure leakage of the main air passage of the brake according to Embodiment 1 of the present invention.
图5为本发明实施例2的制动主风气路压力泄漏的预测系统的模块示意图。FIG. 5 is a schematic block diagram of a system for predicting the pressure leakage of the brake main air circuit according to Embodiment 2 of the present invention.
图6为本发明实施例2的制动主风气路压力泄漏的预测系统的泄漏模型初始训练的结果示意图。FIG. 6 is a schematic diagram showing the results of initial training of the leakage model of the system for predicting the pressure leakage of the main air circuit of the brake according to Embodiment 2 of the present invention.
图7为本发明实施例2的制动主风气路压力泄漏的预测系统的泄漏模型训练结束的结果示意图。FIG. 7 is a schematic diagram showing the result of the completion of the training of the leakage model of the system for predicting the pressure leakage of the main air passage of the brake according to Embodiment 2 of the present invention.
图8为本发明实施例3的电子设备的硬件结构示意图。FIG. 8 is a schematic diagram of a hardware structure of an electronic device according to Embodiment 3 of the present invention.
具体实施方式Detailed ways
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。The present invention is further described below by way of examples, but the present invention is not limited to the scope of the described examples.
实施例1Example 1
如图1所示,本实施例提供一种制动主风气路压力泄漏的预测方法,该预测方法包括如下步骤:As shown in FIG. 1 , this embodiment provides a method for predicting the pressure leakage of the main air circuit of the brake, and the predicting method includes the following steps:
S1、获取目标地铁列车在目标时段的运行状态数据;运行状态数据包括停放确认参数。S1. Acquire the running state data of the target subway train in the target period; the running state data includes parking confirmation parameters.
S2、对运行状态数据进行预处理;预处理包括对运行状态数据进行完整性检测和异常数据修正;并生成预处理判断信息。S2. Preprocessing the running state data; the preprocessing includes performing integrity detection on the running state data and correcting abnormal data; and generating preprocessing judgment information.
S3、根据停放确认参数,从运行状态数据中筛选出目标地铁列车的最长停放时间段对应的停放状态数据。S3. According to the parking confirmation parameter, filter out the parking state data corresponding to the longest parking time period of the target subway train from the running state data.
S4、基于停放状态数据计算获得在最长停放时间段的主风气路压力有效数据。S4, based on the parking state data, calculate and obtain valid data on the pressure of the main air circuit in the longest parking time period.
S5、将主风气路压力有效数据输入泄漏模型,输出目标地铁列车在目标时段的制动主风气路压力的泄漏状态。该泄漏模型为二维阈值数组和二维属性数组构造的数学模型,二维阈值数组的维度包括温度和压力,二维阈值数组中每个阈值表征主风气路压力在设定温度和设定压力下的保持时间阈值,二维属性数组的属性值包括真值和假值。S5. Input the effective data of the main air gas path pressure into the leakage model, and output the leakage state of the brake main air air path pressure of the target subway train in the target period. The leakage model is a mathematical model constructed by a two-dimensional threshold array and a two-dimensional attribute array. The dimensions of the two-dimensional threshold array include temperature and pressure. Each threshold in the two-dimensional threshold array represents the pressure of the main air passage at the set temperature and set pressure. Below the hold time threshold, the attribute values of the two-dimensional attribute array include true and false values.
在步骤S1中,定时接收目标地铁列车上的传感器等电子设备采集到的与列车运行相关的行车数据。从该行车数据中获取目标时段(2021年12月1日凌晨至2021年12月2日24时)与主风气路压力相关的运行状态数据。该运行状态数据可以包括当前时刻、主风气路压力值、车外环境温度值和停放确认参数等。In step S1, the running data related to the train operation collected by electronic devices such as sensors on the target subway train are received regularly. Obtain the operating state data related to the pressure of the main air circuit during the target period (early morning on December 1, 2021 to 24:00 on December 2, 2021) from the driving data. The operating state data may include the current time, the pressure value of the main air circuit, the ambient temperature value outside the vehicle, and the parking confirmation parameters, and the like.
在步骤S2中,首先检查运行状态数据的完整性,若数据完整,则进一步检测数据格式是否满足预设要求(例如,pkl或者csv文件),若符合数据格式的要求的情况下,最后确定该数据量是否满足最低数据量的限制。若以上中任何一个检查结果不通过,可以返回数据获取失败的提示信息。识别运行状态数据中的主风气路压力对应的异常数据点,例如,单次突变的数据点和超出预设范围数据点(例如,预设范围为7.5bar~9.0bar)。将异常数据点通过近邻值替代、平均值修正、缺省值修正等方式进行修正。若修正失败时,可以返回修正失败的提示信息。In step S2, first check the integrity of the running status data, if the data is complete, further check whether the data format meets the preset requirements (for example, pkl or csv file), if it meets the requirements of the data format, finally determine the Whether the data volume meets the minimum data volume limit. If any of the above checks fails, a prompt message indicating that data acquisition failed can be returned. Identify abnormal data points corresponding to the main air path pressure in the operating state data, for example, data points with a single sudden change and data points beyond a preset range (for example, the preset range is 7.5bar-9.0bar). The abnormal data points are corrected by means of neighbor value substitution, average value correction, default value correction, etc. If the correction fails, you can return a prompt message that the correction failed.
在步骤S3中,根据停放确认参数从运行状态数据中选择出多个停放时间段,从多个停放时间段中选择最长停放时间段。进一步从运行状态数据中筛选出最长停放时间段对应的停放状态数据。In step S3, a plurality of parking time periods are selected from the running state data according to the parking confirmation parameter, and the longest parking time period is selected from the plurality of parking time periods. Further, the parking state data corresponding to the longest parking time period is filtered out from the running state data.
可以理解,可以将停放确认参数作为筛选条件一,为了保证压力变化的平稳性,还可以将主风气路压力变化间隔小于或者等于0.1bar作为筛选条件二,从而确定目标地铁列车在目标时段中的最长停放时间段。It can be understood that the parking confirmation parameter can be used as the screening condition 1. In order to ensure the stability of the pressure change, the pressure change interval of the main air circuit can be less than or equal to 0.1 bar as the screening condition 2, so as to determine the target subway train in the target period. Maximum parking time period.
在步骤S4中,根据停放状态数据中出现的非重复主风气路压力对应的压力值后,将最大的压力值和最小的压力值去除,最后将异常采样时刻对应的主风气路压力等无效数据筛出掉,生成压力保持值集合。In step S4, the maximum pressure value and the minimum pressure value are removed according to the pressure value corresponding to the non-repetitive main air path pressure appearing in the parking state data, and finally invalid data such as the main air path pressure corresponding to the abnormal sampling time are removed. Sieve out to generate a set of pressure hold values.
每次从压力保持值集合中选择一个目标压力保持值(例如,8.5bar),遍历停放状态数据,从中选择至少一个大于或者等于8.5bar且小于8.6bar的备选压力保持值。进一步判断目标压力保持值与备选压力保持值所对应的采样时段是否合理,若合理,则选取最长的采样时段作为目标地铁列车在目标时段内8.5bar的主风气路压力保持值所对应的压力保持时长。以此类推,从压力保持集合中选择下一个目标压力保持值(例如,8.6bar),按照上述方式确定出目标地铁列车在目标时段内8.6bar的主风气路压力保持值所对应的压力保持时长,直至压力保持集合中的所有压力保持值都遍历后,生成主风气路压力有效数据。Each time a target pressure hold value (eg, 8.5 bar) is selected from the set of pressure hold values, the parked state data is traversed to select at least one candidate pressure hold value greater than or equal to 8.5 bar and less than 8.6 bar. Further judge whether the sampling period corresponding to the target pressure holding value and the alternative pressure holding value is reasonable. If it is reasonable, select the longest sampling period as the target subway train in the target period. How long the pressure stays on. By analogy, the next target pressure holding value (for example, 8.6 bar) is selected from the pressure holding set, and the pressure holding time period corresponding to the main air passage pressure holding value of 8.6 bar of the target subway train in the target period is determined according to the above method. , until all the pressure holding values in the pressure holding set have been traversed, to generate valid data on the pressure of the main air circuit.
在步骤S5中,将主风气路压力有效数据输入预先训练好的泄漏模型中,输出目标地铁列车在目标时段的压力的泄漏状态结果。可以理解,还可以输出该主风气路压力有效数据的数据状态结果。例如,该数据状态结果可以包括数据完整性分析、预处理分析、停放时刻存在性分析、超时点存在性分析和压力保持时长长短性分析等。In step S5, the effective data of the pressure of the main air passage is input into the pre-trained leakage model, and the leakage state result of the pressure of the target subway train in the target time period is output. It can be understood that the data status result of the valid data of the main air passage pressure can also be output. For example, the data status results may include data integrity analysis, preprocessing analysis, parking time existence analysis, time-out point existence analysis, and pressure holding duration analysis, and the like.
在一个可实施的方案中,如图2所示,该停放确认参数包括列车速度、司机室激活系数和空压机工作系数;步骤S3具体包括:In an implementable solution, as shown in FIG. 2 , the parking confirmation parameters include train speed, cab activation coefficient and air compressor working coefficient; step S3 specifically includes:
S31、根据列车速度、司机室激活系数和空压机工作系数,从目标时段中截取至少一个备选停放时间段。S31. Intercept at least one alternative parking time period from the target time period according to the train speed, the activation coefficient of the driver's cab and the working coefficient of the air compressor.
S34、从备选停放时间段中筛选出最长时段作为最长停放时间段。S34. Screen out the longest time period from the alternative parking time periods as the longest parking time period.
S35、从运行状态数据中截取最长停放时间段对应的停放状态数据。S35. Intercept the parking state data corresponding to the longest parking time period from the running state data.
在步骤S31中,将运行状态数据中各个时段的列车速度为零、前后两个司机室激活系数均为零且空压机工作系数为零的时段,作为目标地铁列车的备选停放时间段。In step S31 , the time period when the train speed of each time period in the running state data is zero, the activation coefficients of the front and rear cabs are both zero, and the working coefficient of the air compressor is zero is taken as the alternative parking time period of the target subway train.
在另一个可实施的方案中,如图2所示,运行状态数据还包括时间参数和基准参数,基准参数包括制动主风气路压力;停放确认参数包括列车速度、司机室激活系数和空压机工作系数;步骤S3具体包括:In another feasible solution, as shown in FIG. 2 , the running state data further includes a time parameter and a reference parameter, and the reference parameter includes the brake main air pressure; the parking confirmation parameter includes the train speed, the driver's cab activation coefficient and the air pressure. machine operating coefficient; step S3 specifically includes:
S32、根据列车速度、司机室激活系数和空压机工作系数,从目标时段中截取至少一个初选停放时间段。S32. Intercept at least one primary parking time period from the target period according to the train speed, the activation coefficient of the driver's cab and the working coefficient of the air compressor.
S33、将制动主风气路压力中每两个相邻气压变化值与第一阈值进行对比,根据对比结果从初选停放时段中确定至少一个备选停放时间段。S33. Compare every two adjacent air pressure change values in the pressure of the main brake air air path with the first threshold value, and determine at least one alternative parking time period from the primary selection parking time period according to the comparison result.
S34、从备选停放时间段中筛选出最长时段作为最长停放时间段。S34. Screen out the longest time period from the alternative parking time periods as the longest parking time period.
S35、从运行状态数据中截取最长停放时间段对应的停放状态数据。S35. Intercept the parking state data corresponding to the longest parking time period from the running state data.
在步骤S32中,将运行状态数据中各个时段的列车速度为零、前后两个司机室激活系数均为零且空压机工作系数为零的时段,作为目标地铁列车的初选停放时间段。In step S32, the time period when the train speed in each time period in the running state data is zero, the activation coefficients of the front and rear cabs are both zero, and the air compressor operating coefficient is zero is used as the primary parking time period of the target subway train.
在步骤S33-步骤S35中,将多个初选停放时间段对应的制动主风气路压力进行预设数据处理。具体地,去除掉制动主风气路压力中相邻气压变化差值大于第一阈值(0.1bar)的无效初选停放时间段后,将剩余的初选停放时间段作为备选停放时间段,从备选停放时间段中筛选出最长停放时间段,进一步获取最长停放时间段对应的停放状态数据。若所有的初选停放时间段都不满足条件,则可以返回获取停放状态数据失败的提示信息。In step S33-step S35, preset data processing is performed on the pressure of the main brake air passage corresponding to the plurality of preliminary selected parking time periods. Specifically, after removing the invalid primary selection parking time period in which the difference between adjacent air pressure changes in the pressure of the main brake air circuit is greater than the first threshold (0.1 bar), the remaining primary selection parking time period is used as the alternative parking time period, The longest parking time period is filtered out from the alternative parking time periods, and the parking status data corresponding to the longest parking time period is further obtained. If all the primary parking time periods do not meet the conditions, a prompt message of failure to obtain the parking status data may be returned.
在一个可实施的方案中,如图3所示,步骤S4具体包括:In an implementable solution, as shown in FIG. 3 , step S4 specifically includes:
S41、提取停放状态数据中多个不同的气压值,并删除最大和最小的气压值,生成初始气压数组。S41 , extracting multiple different air pressure values in the parking state data, and deleting the maximum and minimum air pressure values to generate an initial air pressure array.
S42、从初始气压数组中剔除采样时刻间隔大于第二阈值所对应的气压值,生成压力保持集合和超时判断信息。S42 , remove the air pressure value corresponding to the sampling time interval greater than the second threshold from the initial air pressure array, and generate a pressure holding set and timeout judgment information.
S43、根据压力保持集合和停放状态数据生成备选压力保持样本集合和压力保持预设判断信息。S43. Generate an alternative pressure maintenance sample set and pressure maintenance preset judgment information according to the pressure maintenance set and the parking state data.
S44、将备选压力保持样本集合中的样本数量与预设数量进行比对。若样本数量不大于预设数量,执行步骤S45,若样本数量大于预设数量,执行步骤S46。S44. Compare the number of samples in the candidate pressure maintenance sample set with the preset number. If the number of samples is not greater than the preset number, step S45 is performed, and if the number of samples is greater than the preset number, step S46 is performed.
S45、直接将备选压力保持样本集合作为有效压力保持样本集合,并生成备选压力保持样本判断信息和主风气路压力有效数据。S45. Directly use the candidate pressure holding sample set as the effective pressure holding sample set, and generate the judgment information of the candidate pressure holding sample and the valid data of the pressure of the main air circuit.
S46、将备选压力保持集合中的样本按照压力保持时长从大到小的顺序进行排序后,筛选获得符合预设数量的有效压力保持样本集合,并生成备选压力保持样本判断信息和主风气路压力有效数据。S46 , after sorting the samples in the candidate pressure maintenance set in descending order of the pressure maintenance duration, filter to obtain a set of valid pressure maintenance samples that meet the preset number, and generate the judgment information and main atmosphere of the candidate pressure maintenance samples Road pressure valid data.
其中,有效压力保持样本集合包括压力保持值、保持温度值、压力保持时长和起始时间点中的至少一种。Wherein, the effective pressure maintaining sample set includes at least one of a pressure maintaining value, a maintaining temperature value, a pressure maintaining duration and a starting time point.
在步骤S41中,统计停放状态数据中所有非重复主风气路压力的气压值。非重复的气压值为[8.6bar、8.7bar、8.8bar、8.9bar],去除非重复的气压值中的最大值为8.9bar和最小值为8.6bar,生成初始气压数组为[8.7bar、8.8bar]。In step S41, the air pressure values of all non-repetitive main air air path pressures in the parking state data are counted. The non-repeated air pressure values are [8.6bar, 8.7bar, 8.8bar, 8.9bar], the maximum value of the non-repeated air pressure values is 8.9bar and the minimum value is 8.6bar, and the initial air pressure array is generated as [8.7bar, 8.8 bar].
在步骤S42中,从初始气压数组中将采样时刻间隔大于第二阈值(例如,10min)的两个气压值进行剔除后,生成压力保持集合为[8.7bar、8.8bar],以及超时信息。该超时信息可以包括初始气压数组中是否存在采用时刻间隔异常数据点,也即超时数据气压点。In step S42, after removing two air pressure values whose sampling time interval is greater than the second threshold (for example, 10 min) from the initial air pressure array, the pressure holding set is [8.7bar, 8.8bar] and timeout information is generated. The time-out information may include whether there are abnormal data points with time intervals in the initial air pressure array, that is, time-out data air pressure points.
在步骤S43-步骤S46中,将备选压力保持集合样本中的样本数量与预设数量N进行对比,根据对比的结果确定有效压力保持样本集合,再进一步的根据有效压力保持样本集合生成主风气路压力有效数据和备选压力保持样本判断信息。该备选压力保持样本判断信息包括样本数量是否存在样本数量过多、样本数量过少或者样本数量合理的信息。In step S43-step S46, the number of samples in the candidate pressure maintenance set samples is compared with the preset number N, the effective pressure maintenance sample set is determined according to the comparison result, and the main atmosphere is further generated according to the effective pressure maintenance sample set Road pressure valid data and alternative pressure hold sample judgment information. The alternative pressure-holding sample judgment information includes information on whether there is an excessive number of samples, an excessively small number of samples, or a reasonable number of samples in the number of samples.
需要说明的是,主风气路压力有效数据还包括预处理判断信息、所述超时判断信息、压力保持预设判断信息和备选压力保持样本判断信息。It should be noted that the valid data of the main air path pressure also includes preprocessing judgment information, the timeout judgment information, the pressure maintenance preset judgment information, and the alternative pressure maintenance sample judgment information.
在一个可实施的方案中,如图4所示,步骤S43具体包括:In an implementable solution, as shown in FIG. 4 , step S43 specifically includes:
S431、从压力保持值集合中选择至少一个目标压力保持值。S431. Select at least one target pressure maintaining value from the pressure maintaining value set.
S432、将停放状态数据中气压值与目标压力保持值的差值与第三阈值进行比对后,根据比对结果从最长停放时段中截取多个备选目标压力保持时段。S432. After comparing the difference between the air pressure value and the target pressure holding value in the parking state data with the third threshold, intercept multiple candidate target pressure holding periods from the longest parking period according to the comparison result.
S433、从备选目标压力时段中筛选出最长目标压力保持时段,并判断最长目标压力保持时段是否满足预设条件。若满足,则执行步骤S434,若不满足,则执行步骤S431,直至压力保持值集合中的所有压力保持值遍历完为止。S433. Screen out the longest target pressure holding period from the candidate target pressure periods, and determine whether the longest target pressure holding period satisfies a preset condition. If satisfied, go to step S434, if not, go to step S431 until all pressure holding values in the pressure holding value set are traversed.
S434、根据从停放状态数据中截取的最长目标压力保持时段所对应的目标压力保持状态数据,生成备选压力保持样本集合。S434 , according to the target pressure maintaining state data corresponding to the longest target pressure maintaining period intercepted from the parking state data, generate a set of candidate pressure maintaining samples.
在步骤S431中从该压力保持集合中每次可以选择一个目标压力保持值(例如,8.7bar),在步骤S432中从停放状态数据中筛出大于或者等于8.7bar且不超过一个灵敏单位(第三阈值,例如,0.1bar)的多个备选目标压力保持值。In step S431, a target pressure holding value (eg, 8.7 bar) can be selected from the pressure holding set at a time, and in step S432, a sensitivity unit greater than or equal to 8.7 bar and no more than one sensitive unit (the first one is screened out from the parking state data) Multiple alternative target pressure holding values for three thresholds, eg, 0.1 bar).
在步骤S433中,在每个备选目标压力保持时段中筛选出最长目标压力保持时段后,判断最长目标压力保持时段对应的采样时刻是否始于目标地铁列车的开始停放时刻或者终于目标地铁列车的终止停放时刻。若是,则将该最长目标压力保持时段的进行剔除,若否,则继续判断最长目标压力保持时段对应的压力保持时段的长度是否小于1分钟,若是,则将该最长目标压力保持时段的进行剔除,若否,则将该最长目标压力保持时段进行保留。In step S433, after the longest target pressure holding period is selected from each candidate target pressure holding period, it is determined whether the sampling time corresponding to the longest target pressure holding period starts from the parking time of the target subway train or ends at the target subway train The stop time of the train. If yes, then remove the longest target pressure holding period, if not, continue to judge whether the length of the pressure holding period corresponding to the longest target pressure holding period is less than 1 minute, if so, then the longest target pressure holding period If not, then keep the longest target pressure holding period.
在一个可实施的方案中,该预测方法通过以下步骤训练得到泄漏模型,包括:In an implementable solution, the prediction method is trained to obtain a leakage model through the following steps, including:
采集地铁列车在一历史时段的多个正常的主风气路压力的压力保持数据。The pressure retention data of multiple normal main air circuit pressures of subway trains in a historical period are collected.
将压力保持数据输入初始模型中进行训练,以得到泄漏模型。The pressure-holding data is fed into the initial model for training, resulting in a leak model.
具体地,采集某地铁列车在2018年12月21日-2019年2月28日和2019年6月29日-2019年7月9日期间,处于健康状态下(无泄漏或少量合理泄漏)的主风气路压力的压力保持数据,将该两个时段的压力保持数据以天为单位输入初始模型中进行训练。可以理解的,该初始模型的初始状态阈值数组均设定为0,属性数组均设定为假。Specifically, during the period from December 21, 2018 to February 28, 2019 and from June 29, 2019 to July 9, 2019, a subway train in a healthy state (no leakage or a small amount of reasonable leakage) was collected. The pressure holding data of the main air circuit pressure, the pressure holding data of the two periods are input into the initial model for training in units of days. It can be understood that the initial state threshold array of the initial model is all set to 0, and the attribute array is all set to false.
该压力保持数据包括标准参数,将压力保持数据输入初始模型中进行训练,以得到泄漏模型的步骤包括:The pressure holding data includes standard parameters, and the steps of inputting the pressure holding data into the initial model for training to obtain the leakage model include:
选择标准参数位于设定范围内的压力保持数据作为有效压力保持数据;Select the pressure holding data with the standard parameters within the set range as the effective pressure holding data;
基于有效压力保持数据中的压力保持时间,对初始模型中二维阈值数组的压力保持时间阈值进行修正,生成泄漏模型。Based on the pressure holding time in the effective pressure holding data, the pressure holding time threshold of the two-dimensional threshold array in the initial model is corrected to generate a leak model.
具体地,在标准参数可以包括温度和压力的情况下,预先设置温度变化范围为-10-50℃,间隔为1℃,设置压力变化范围为7.5-9bar,间隔为0.1bar;将压力保持数据中同时符合上述标准参数设置条件的数据,作为有效压力保持数据。Specifically, in the case where the standard parameters can include temperature and pressure, the preset temperature change range is -10-50°C, the interval is 1°C, and the pressure change range is set to 7.5-9bar, and the interval is 0.1bar; keep the pressure data The data that meet the above standard parameter setting conditions at the same time are regarded as the effective pressure holding data.
将有效压力保持数据中设定温度和设定压力条件下的多个压力保持时间,与初始模型中在二维阈值数组(相应温度和压力构成的数组)的压力保持时间阈值依次进行对比。将设定压力和设定温度下,最小的压力保持时间更新为对应的二维阈值数组的压力保持时间阈值,并将对应的二维属性数组的属性值更新为真。按照上述训练方式,将有效压力保持数据中其余所有的温度和压力条件下的压力保持时间与初始模型中的进行比对,完成模型训练,生成泄漏模型。The multiple pressure holding times under the set temperature and set pressure conditions in the effective pressure holding data are compared with the pressure holding time thresholds in the two-dimensional threshold array (an array of corresponding temperature and pressure) in the initial model in turn. Update the minimum pressure holding time under the set pressure and set temperature to the pressure holding time threshold of the corresponding two-dimensional threshold array, and update the attribute value of the corresponding two-dimensional attribute array to true. According to the above training method, the pressure holding time under all the remaining temperature and pressure conditions in the effective pressure holding data is compared with that in the initial model, the model training is completed, and the leakage model is generated.
本实施例提供一种制动主风气路压力泄漏的预测方法,通过基于地铁列车制动主风气路相关参数,训练得到泄漏模型,基于地铁列车的运行状态数据计算得到主风气路压力有效数据,将主风气路压力有效数据输入泄漏模型中预测列车的气压泄漏情况。本发明在传感器精度受限的条件下,计算得到主风气路压力有效数据;提高了压力泄漏预测数据的可靠性和有效性,增强了地铁列车的主风气路压力预测的效率和准确性;及时指导地铁列车的主风气路维保工作,降低了维修保养的成本。The present embodiment provides a method for predicting the pressure leakage of the braking main air path. The leakage model is obtained by training based on the relevant parameters of the subway train braking main air path, and the effective data of the main air path pressure is calculated based on the running state data of the subway train. Input the effective data of the main air path pressure into the leakage model to predict the air pressure leakage of the train. Under the condition of limited sensor accuracy, the invention calculates and obtains effective data of the main air gas path pressure; improves the reliability and validity of the pressure leakage prediction data, and enhances the efficiency and accuracy of the main air air path pressure prediction of subway trains; It guides the maintenance work of the main air road of subway trains and reduces the cost of maintenance.
实施例2Example 2
如图5所示,本实施例提供一种制动主风气路压力泄漏的预测系统,该预测系统包括:获取模块210、预处理模块220、筛选模块230、计算模块240和预测模块250。As shown in FIG. 5 , this embodiment provides a system for predicting the pressure leakage of the brake main air circuit. The prediction system includes an
其中,获取模块210,用于获取目标地铁列车在目标时段的运行状态数据;运行状态数据包括停放确认参数。Wherein, the obtaining
预处理模块220,用于对运行状态数据进行预处理;预处理包括对运行状态数据进行完整性检测和异常数据修正;并生成预处理判断信息。The
筛选模块230,用于根据停放确认参数,从运行状态数据中筛选出目标地铁列车的最长停放时间段对应的停放状态数据。The
计算模块240,用于基于停放状态数据计算获得在最长停放时间段的主风气路压力有效数据。The
预测模块250,用于将主风气路压力有效数据输入泄漏模型,输出目标地铁列车在目标时段的制动主风气路压力的泄漏状态。该泄漏模型为二维阈值数组和二维属性数组构造的数学模型,二维阈值数组的维度包括温度和压力,二维阈值数组中每个阈值表征主风气路压力在设定温度和设定压力下的保持时间阈值,二维属性数组的属性值包括真值和假值。The
获取模块210定时接收目标地铁列车上的传感器等电子设备采集到的与列车运行相关的行车数据。获取模块210从该行车数据中获取目标时段(2021年12月1日凌晨至2021年12月2日24时)与主风气路压力相关的运行状态数据。该运行状态数据可以包括当前时刻、主风气路压力值、车外环境温度值和停放确认参数等。The
预处理模块220首先检查运行状态数据的完整性,若数据完整,则进一步检测数据格式是否满足预设要求(例如,pkl或者csv文件),若符合数据格式的要求的情况下,最后确定该数据量是否满足最低数据量的限制。若以上中任何一个检查结果不通过,可以返回数据获取失败的提示信息。识别运行状态数据中的主风气路压力对应的异常数据点,例如,单次突变的数据点和超出预设范围数据点(例如,预设范围为7.5bar~9.0bar)。预处理模块220将异常数据点通过近邻值替代、平均值修正、缺省值修正等方式进行修正。若修正失败时,可以返回修正失败的提示信息。The
根据停放确认参数从运行状态数据中选择出多个停放时间段,从多个停放时间段中选择最长停放时间段。进一步筛选模块230从运行状态数据中筛选出最长停放时间段对应的停放状态数据。According to the parking confirmation parameter, a plurality of parking time periods are selected from the running state data, and the longest parking time period is selected from the plurality of parking time periods. The
可以理解,可以将停放确认参数作为筛选条件一,为了保证压力变化的平稳性,还可以将主风气路压力变化间隔小于或者等于0.1bar作为筛选条件二,从而确定目标地铁列车在目标时段中的最长停放时间段。It can be understood that the parking confirmation parameter can be used as the screening condition 1. In order to ensure the stability of the pressure change, the pressure change interval of the main air circuit can be less than or equal to 0.1 bar as the screening condition 2, so as to determine the target subway train in the target period. Maximum parking time period.
根据停放状态数据中出现的非重复主风气路压力对应的压力值后,将最大的压力值和最小的压力值去除,最后计算模块240将异常采样时刻对应的主风气路压力等无效数据筛出掉,生成压力保持值集合。According to the pressure value corresponding to the non-repetitive main air circuit pressure in the parking state data, the maximum pressure value and the minimum pressure value are removed. Finally, the
每次从压力保持值集合中选择一个目标压力保持值(例如,8.5bar),遍历停放状态数据,从中选择至少一个大于或者等于8.5bar且小于8.6bar的备选压力保持值。进一步判断目标压力保持值与备选压力保持值所对应的采样时段是否合理,若合理,则选取最长的采样时段作为目标地铁列车在目标时段内8.5bar的主风气路压力保持值所对应的压力保持时长。以此类推,从压力保持集合中选择下一个目标压力保持值(例如,8.6bar),按照上述方式确定出目标地铁列车在目标时段内8.6bar的主风气路压力保持值所对应的压力保持时长,直至压力保持集合中的所有压力保持值都遍历后,生成主风气路压力有效数据。Each time a target pressure hold value (eg, 8.5 bar) is selected from the set of pressure hold values, the parked state data is traversed to select at least one candidate pressure hold value greater than or equal to 8.5 bar and less than 8.6 bar. Further judge whether the sampling period corresponding to the target pressure holding value and the alternative pressure holding value is reasonable. If it is reasonable, select the longest sampling period as the target subway train in the target period. How long the pressure stays on. By analogy, the next target pressure holding value (for example, 8.6 bar) is selected from the pressure holding set, and the pressure holding time period corresponding to the main air passage pressure holding value of 8.6 bar of the target subway train in the target period is determined according to the above method. , until all the pressure holding values in the pressure holding set have been traversed, to generate valid data on the pressure of the main air circuit.
将主风气路压力有效数据输入预先训练好的泄漏模型中,预测模块250输出目标地铁列车在目标时段的压力的泄漏状态结果。可以理解,预测模块250还可以输出该主风气路压力有效数据的数据状态结果。例如,该数据状态结果可以包括数据完整性分析、预处理分析、停放时刻存在性分析、超时点存在性分析和压力保持时长长短性分析等。The effective data of the main air passage pressure is input into the pre-trained leakage model, and the
在一个可实施的方案中,该停放确认参数包括列车速度、司机室激活系数和空压机工作系数;筛选模块230包括:In an implementable solution, the parking confirmation parameters include train speed, cab activation coefficient and air compressor working coefficient; the
第一截取单元231,用于根据列车速度、司机室激活系数和空压机工作系数,从目标时段中截取至少一个备选停放时间段。The first intercepting
第一筛选单元234,用于从备选停放时间段中筛选出最长时段作为最长停放时间段。The
第三截取单元235,用于从运行状态数据中截取最长停放时间段对应的停放状态数据。The third intercepting
第一截取单元231将运行状态数据中各个时段的列车速度为零、前后两个司机室激活系数均为零且空压机工作系数为零的时段,作为目标地铁列车的备选停放时间段。The first intercepting
在另一个可实施的方案中,如图5所示,运行状态数据还包括时间参数和基准参数,基准参数包括制动主风气路压力;停放确认参数包括列车速度、司机室激活系数和空压机工作系数;筛选模块230包括:In another implementable solution, as shown in FIG. 5 , the running state data further includes a time parameter and a reference parameter, and the reference parameter includes the brake main air pressure; the parking confirmation parameter includes the train speed, the driver's cab activation coefficient and the air pressure. machine operating coefficient; the
第二截取单元232,用于根据列车速度、司机室激活系数和空压机工作系数,从目标时段中截取至少一个初选停放时间段。The second intercepting
第一对比单元233,用于将制动主风气路压力中每两个相邻气压变化值与第一阈值进行对比,根据对比结果从初选停放时段中确定至少一个备选停放时间段。The
第一筛选单元234,用于从备选停放时间段中筛选出最长时段作为最长停放时间段。The
第三截取单元235,用于从运行状态数据中截取最长停放时间段对应的停放状态数据。The third intercepting
第二截取单元232将运行状态数据中各个时段的列车速度为零、前后两个司机室激活系数均为零且空压机工作系数为零的时段,作为目标地铁列车的初选停放时间段。The second intercepting
将多个初选停放时间段对应的制动主风气路压力进行预设数据处理。具体地,第一对比单元233去除掉制动主风气路压力中相邻气压变化差值大于第一阈值(0.1bar)的无效初选停放时间段后,将剩余的初选停放时间段作为备选停放时间段,从备选停放时间段中筛选出最长停放时间段,进一步获取最长停放时间段对应的停放状态数据。若所有的初选停放时间段都不满足条件,则可以返回获取停放状态数据失败的提示信息。Preset data processing is performed on the pressure of the main brake air circuit corresponding to the plurality of preliminary selected parking time periods. Specifically, the
在一个可实施的方案中,计算模块240包括:In one possible implementation, the
提取单元241,用于提取停放状态数据中多个不同的气压值,并删除最大和最小的气压值,生成初始气压数组。The
剔除单元242,用于从初始气压数组中剔除采样时刻间隔大于第二阈值所对应的气压值,生成压力保持集合和超时判断信息。The removing
生成单元243,用于根据压力保持集合和停放状态数据生成备选压力保持样本集合和压力保持预设判断信息。The generating
第二对比单元244,用于将备选压力保持样本集合中的样本数量与预设数量进行比对。The
第一处理单元245,用于若样本数量不大于预设数量,则直接将备选压力保持样本集合作为有效压力保持样本集合,并生成备选压力保持样本判断信息和主风气路压力有效数据。The
第二处理单元246,用于若样本数量大于预设数量,则将备选压力保持集合中的样本按照压力保持时长从大到小的顺序进行排序后,筛选获得符合预设数量的有效压力保持样本集合,并生成备选压力保持样本判断信息和主风气路压力有效数据。The
其中,有效压力保持样本集合包括压力保持值、保持温度值、压力保持时长和起始时间点中的至少一种。Wherein, the effective pressure maintaining sample set includes at least one of a pressure maintaining value, a maintaining temperature value, a pressure maintaining duration and a starting time point.
提取单元241统计停放状态数据中所有非重复主风气路压力的气压值。非重复的气压值为[8.6bar、8.7bar、8.8bar、8.9bar],去除非重复的气压值中的最大值8.9bar和最小值8.6bar,生成初始气压数组为[8.7bar、8.8bar]。The
剔除单元242从初始气压数组中将采样时刻间隔大于第二阈值(例如,10min)的两个气压值进行剔除后,生成压力保持集合为[8.7bar、8.8bar],以及超时信息。该超时信息可以包括初始气压数组中是否存在采用时刻间隔异常数据点,也即超时数据气压点。After removing two air pressure values whose sampling time interval is greater than the second threshold (for example, 10 min) from the initial air pressure array, the
将备选压力保持集合样本中的样本数量与预设数量N进行对比,根据对比的结果确定有效压力保持样本集合,第一处理单元245或者第二处理单元246再进一步的根据有效压力保持样本集合生成主风气路压力有效数据和备选压力保持样本判断信息。该备选压力保持样本判断信息包括样本数量是否存在样本数量过多、样本数量过少或者样本数量合理的信息。The number of samples in the candidate pressure holding set samples is compared with the preset number N, and the effective pressure holding sample set is determined according to the comparison result, and the
需要说明的是,主风气路压力有效数据还包括预处理判断信息、所述超时判断信息、压力保持预设判断信息和备选压力保持样本判断信息。It should be noted that the valid data of the main air path pressure also includes preprocessing judgment information, the timeout judgment information, the pressure maintenance preset judgment information, and the alternative pressure maintenance sample judgment information.
在一个可实施的方案中,生成单元243具体用于:In an implementable solution, the generating
从压力保持值集合中选择至少一个目标压力保持值。Select at least one target pressure hold value from a set of pressure hold values.
将停放状态数据中气压值与目标压力保持值的差值与第三阈值进行比对后,根据比对结果从最长停放时段中截取多个备选目标压力保持时段。After comparing the difference between the air pressure value and the target pressure holding value in the parking state data with the third threshold, a plurality of candidate target pressure holding periods are intercepted from the longest parking period according to the comparison result.
从备选目标压力时段中筛选出最长目标压力保持时段,并判断最长目标压力保持时段是否满足预设条件。The longest target pressure holding period is selected from the candidate target pressure periods, and it is judged whether the longest target pressure holding period satisfies the preset condition.
若满足根据从停放状态数据中截取的最长目标压力保持时段所对应的目标压力保持状态数据,生成备选压力保持样本集合。If the target pressure maintaining state data corresponding to the longest target pressure maintaining period intercepted from the parking state data is satisfied, a set of candidate pressure maintaining samples is generated.
若不满足,则再执行从压力保持值集合中选择至少一个目标压力保持值的步骤,直至压力保持值集合中的所有压力保持值遍历完为止。If not, the step of selecting at least one target pressure holding value from the pressure holding value set is performed again until all pressure holding values in the pressure holding value set are traversed.
生成单元243从该压力保持集合中每次可以选择一个目标压力保持值(例如,8.7bar),在步骤S432中从停放状态数据中筛出大于或者等于8.7bar且不超过一个灵敏单位(第三阈值,例如,0.1bar)的多个备选目标压力保持值。The generating
生成单元243还在每个备选目标压力保持时段中筛选出最长目标压力保持时段后,判断最长目标压力保持时段对应的采样时刻是否始于目标地铁列车的开始停放时刻或者终于目标地铁列车的终止停放时刻。若是,则将该最长目标压力保持时段的进行剔除,若否,则继续判断最长目标压力保持时段对应的压力保持时段的长度是否小于1分钟,若是,则将该最长目标压力保持时段的进行剔除,若否,则将该最长目标压力保持时段进行保留。The generating
在一个可实施的方案中,该预测系统通过以下模块训练得到泄漏模型,包括:In an implementable solution, the prediction system is trained to obtain a leakage model through the following modules, including:
采集模块,用于采集地铁列车在一历史时段的多个正常的主风气路压力的压力保持数据。The collection module is used to collect the pressure maintenance data of multiple normal main air path pressures of the subway train in a historical period.
训练模块,用于将压力保持数据输入初始模型中进行训练,以得到泄漏模型。The training module is used to input the pressure holding data into the initial model for training to obtain the leakage model.
具体地,采集模块采集某地铁列车在2018年12月21日-2019年2月28日和2019年6月29日-2019年7月9日期间,处于健康状态下(无泄漏或少量合理泄漏)的主风气路压力的压力保持数据。将该两个时段的压力保持数据以天为单位,通过训练模块输入初始模型中进行训练。可以理解的,该初始模型的初始状态阈值数组均设定为0,属性数组均设定为假。Specifically, the collection module collects a subway train in a healthy state (no leakage or a small amount of reasonable leakage) during the period from December 21, 2018 to February 28, 2019 and from June 29, 2019 to July 9, 2019. ) of the main air circuit pressure holding data. The pressure maintenance data of the two periods is in days, and is input into the initial model through the training module for training. It can be understood that the initial state threshold array of the initial model is all set to 0, and the attribute array is all set to false.
该压力保持数据包括标准参数,训练模块包括:The pressure holding data includes standard parameters, and the training module includes:
选择单元,用于选择标准参数位于设定范围内的压力保持数据作为有效压力保持数据。The selection unit is used to select the pressure holding data whose standard parameters are within the set range as the effective pressure holding data.
修正单元,用于基于有效压力保持数据中的压力保持时间,对初始模型中二维阈值数组的压力保持时间阈值进行修正,生成泄漏模型。The correction unit is used for correcting the pressure holding time threshold of the two-dimensional threshold array in the initial model based on the pressure holding time in the effective pressure holding data to generate a leakage model.
具体地,在标准参数可以包括温度和压力的情况下,预先设置温度变化范围为-10-50℃,间隔为1℃,设置压力变化范围为7.5-9bar,间隔为0.1bar;选择单元将压力保持数据中同时符合上述标准参数设置条件的数据,作为有效压力保持数据。Specifically, in the case where the standard parameters can include temperature and pressure, the preset temperature change range is -10-50°C, the interval is 1°C, and the pressure change range is set to 7.5-9bar, and the interval is 0.1bar; The data in the holding data that also meets the above standard parameter setting conditions are regarded as the effective pressure holding data.
将有效压力保持数据中设定温度和设定压力条件下的多个压力保持时间,与初始模型(如图6所示)中在二维阈值数组(相应温度和压力构成的数组)的压力保持时间阈值依次进行对比。修正单元将设定压力和设定温度下,最小的压力保持时间更新为对应的二维阈值数组的压力保持时间阈值,并将对应的二维属性数组的属性值更新为真。按照上述训练方式,将有效压力保持数据中其余所有的温度和压力条件下的压力保持时间与初始模型中的进行比对,完成模型训练(如图7所示),生成泄漏模型。Compare the multiple pressure holding times under the set temperature and set pressure conditions in the effective pressure holding data with the pressure holdings in the two-dimensional threshold array (an array of corresponding temperatures and pressures) in the initial model (as shown in Figure 6) The time thresholds are compared in turn. The correction unit updates the minimum pressure holding time under the set pressure and set temperature to the pressure holding time threshold of the corresponding two-dimensional threshold array, and updates the attribute value of the corresponding two-dimensional attribute array to true. According to the above training method, compare the pressure holding time under all other temperature and pressure conditions in the effective pressure holding data with the initial model, complete the model training (as shown in Figure 7), and generate a leak model.
本实施例提供一种制动主风气路压力泄漏的预测系统,通过基于地铁列车制动主风气路相关参数,训练得到泄漏模型,计算模块基于地铁列车的运行状态数据计算得到主风气路压力有效数据,预测模块将主风气路压力有效数据输入泄漏模型中预测列车的气压泄漏情况。本发明在传感器精度受限的条件下,计算得到主风气路压力有效数据;提高了压力泄漏预测数据的可靠性和有效性,增强了地铁列车的主风气路压力预测的效率和准确性;及时指导地铁列车的主风气路维保工作,降低了维修保养的成本。This embodiment provides a system for predicting the pressure leakage of the main air path of the braking system. The leakage model is obtained by training based on the relevant parameters of the main air path for braking the subway train. The prediction module inputs the effective data of the main air air path pressure into the leakage model to predict the air pressure leakage of the train. Under the condition of limited sensor accuracy, the invention calculates and obtains effective data of the main air gas path pressure; improves the reliability and validity of the pressure leakage prediction data, and enhances the efficiency and accuracy of the main air air path pressure prediction of subway trains; It guides the maintenance work of the main air road of subway trains and reduces the cost of maintenance.
实施例3Example 3
图8为本实施例提供的一种电子设备的结构示意图。所述电子设备包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现实施例1的制动主风气路压力泄漏的预测方法,图8显示的电子设备60仅仅是一个示例,不应对本发明实施例的功能和使用范围带来任何限制。FIG. 8 is a schematic structural diagram of an electronic device provided in this embodiment. The electronic device includes a memory, a processor, and a computer program stored on the memory and executable on the processor, and the processor implements the method for predicting the pressure leakage of the brake main air passage according to Embodiment 1 when the processor executes the program, The
电子设备60可以以通用计算设备的形式表现,例如其可以为服务器设备。电子设备60的组件可以包括但不限于:上述至少一个处理器61、上述至少一个存储器62、连接不同系统组件(包括存储器62和处理器61)的总线63。The
总线63包括数据总线、地址总线和控制总线。The
存储器62可以包括易失性存储器,例如随机存取存储器(RAM)621和/或高速缓存存储器622,还可以进一步包括只读存储器(ROM)623。
存储器62还可以包括具有一组(至少一个)程序模块624的程序/实用工具625,这样的程序模块624包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。The
处理器61通过运行存储在存储器62中的计算机程序,从而执行各种功能应用以及数据处理,例如本发明实施例1的制动主风气路压力泄漏的预测方法。The
电子设备60也可以与一个或多个外部设备64(例如键盘、指向设备等)通信。这种通信可以通过输入/输出(I/O)接口65进行。并且,模型生成的设备630还可以通过网络适配器66与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。如图所示,网络适配器66通过总线63与模型生成的设备60的其它模块通信。应当明白,尽管图中未示出,可以结合模型生成的设备60使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理器、外部磁盘驱动阵列、RAID(磁盘阵列)系统、磁带驱动器以及数据备份存储系统等。The
应当注意,尽管在上文详细描述中提及了电子设备的若干单元/模块或子单元/模块,但是这种划分仅仅是示例性的并非强制性的。实际上,根据本发明的实施方式,上文描述的两个或更多单元/模块的特征和功能可以在一个单元/模块中具体化。反之,上文描述的一个单元/模块的特征和功能可以进一步划分为由多个单元/模块来具体化。It should be noted that although several units/modules or sub-units/modules of the electronic device are mentioned in the above detailed description, this division is merely exemplary and not mandatory. Indeed, the features and functions of two or more units/modules described above may be embodied in one unit/module according to embodiments of the present invention. Conversely, the features and functions of one unit/module described above may be further divided into multiple units/modules to be embodied.
实施例4Example 4
本实施例提供了一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现实施例1的制动主风气路压力泄漏的预测方法的步骤。This embodiment provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, implements the steps of the method for predicting the pressure leakage of the brake main air path according to Embodiment 1.
其中,可读存储介质可以采用的更具体可以包括但不限于:便携式盘、硬盘、随机存取存储器、只读存储器、可擦拭可编程只读存储器、光存储器件、磁存储器件或上述的任意合适的组合。Wherein, the readable storage media may include, but are not limited to, portable disks, hard disks, random access memories, read-only memories, erasable programmable read-only memories, optical storage devices, magnetic storage devices, or any of the above suitable combination.
在可能的实施方式中,本发明还可以实现为一种程序产品的形式,其包括程序代码,当所述程序产品在终端设备上运行时,所述程序代码用于使所述终端设备执行实现实施例1的制动主风气路压力泄漏的预测方法的步骤。In a possible implementation manner, the present invention can also be implemented in the form of a program product, which includes program codes, when the program product runs on a terminal device, the program code is used to cause the terminal device to execute the implementation The steps of the method for predicting the pressure leakage of the main air circuit of the brake according to the first embodiment.
其中,可以以一种或多种程序设计语言的任意组合来编写用于执行本发明的程序代码,所述程序代码可以完全地在用户设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户设备上部分在远程设备上执行或完全在远程设备上执行。Wherein, the program code for executing the present invention can be written in any combination of one or more programming languages, and the program code can be completely executed on the user equipment, partially executed on the user equipment, as an independent The software package executes on the user's device, partly on the user's device, partly on the remote device, or entirely on the remote device.
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改,但这些变更和修改均落入本发明的保护范围。Although the specific embodiments of the present invention are described above, those skilled in the art should understand that this is only an illustration, and the protection scope of the present invention is defined by the appended claims. Those skilled in the art can make various changes or modifications to these embodiments without departing from the principle and essence of the present invention, but these changes and modifications all fall within the protection scope of the present invention.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210121767.4A CN114386715B (en) | 2022-02-09 | 2022-02-09 | Prediction method, system, equipment and medium for brake main air path pressure leakage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210121767.4A CN114386715B (en) | 2022-02-09 | 2022-02-09 | Prediction method, system, equipment and medium for brake main air path pressure leakage |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114386715A true CN114386715A (en) | 2022-04-22 |
CN114386715B CN114386715B (en) | 2024-12-10 |
Family
ID=81205333
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210121767.4A Active CN114386715B (en) | 2022-02-09 | 2022-02-09 | Prediction method, system, equipment and medium for brake main air path pressure leakage |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114386715B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114964656A (en) * | 2022-05-26 | 2022-08-30 | 三一专用汽车有限责任公司 | Vehicle air tightness detection method and device and vehicle |
CN115754416A (en) * | 2022-11-16 | 2023-03-07 | 国能大渡河瀑布沟发电有限公司 | Edge calculation-based partial discharge analysis system and method for hydraulic generator |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109625033A (en) * | 2018-12-13 | 2019-04-16 | 交控科技股份有限公司 | ATO controls accurate shutdown phase stopping accuracy prediction technique and device when vehicle |
CN113378896A (en) * | 2021-05-26 | 2021-09-10 | 河北科技大学 | Motor train unit relay valve gas leakage fault prediction method based on neural network |
CN113933001A (en) * | 2020-06-29 | 2022-01-14 | 广州地铁集团有限公司 | Main air duct pressure leakage evaluation method and device based on big data and electronic equipment |
-
2022
- 2022-02-09 CN CN202210121767.4A patent/CN114386715B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109625033A (en) * | 2018-12-13 | 2019-04-16 | 交控科技股份有限公司 | ATO controls accurate shutdown phase stopping accuracy prediction technique and device when vehicle |
CN113933001A (en) * | 2020-06-29 | 2022-01-14 | 广州地铁集团有限公司 | Main air duct pressure leakage evaluation method and device based on big data and electronic equipment |
CN113378896A (en) * | 2021-05-26 | 2021-09-10 | 河北科技大学 | Motor train unit relay valve gas leakage fault prediction method based on neural network |
Non-Patent Citations (1)
Title |
---|
张李军;专祥涛;: "重载列车运行控制的研究", 铁路计算机应用, no. 02, 25 February 2011 (2011-02-25), pages 20 - 22 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114964656A (en) * | 2022-05-26 | 2022-08-30 | 三一专用汽车有限责任公司 | Vehicle air tightness detection method and device and vehicle |
CN115754416A (en) * | 2022-11-16 | 2023-03-07 | 国能大渡河瀑布沟发电有限公司 | Edge calculation-based partial discharge analysis system and method for hydraulic generator |
Also Published As
Publication number | Publication date |
---|---|
CN114386715B (en) | 2024-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114386715A (en) | Prediction method, system, equipment and medium for main braking air path pressure leakage | |
CN110658308B (en) | Method for evaluating safety and reliability of online flue gas monitoring system by considering common cause failure | |
CN102568209B (en) | Commercial vehicle gathering event early warning method based on floating vehicle technology | |
CN104597811A (en) | Automobile mileage processing method and device | |
CN103473459A (en) | Method of processing and fusing multisystem big data | |
CN113901043B (en) | Pollution source intelligent supervision and data fusion analysis method and system | |
CN116758762A (en) | Control method based on big data | |
CN115452255A (en) | Vehicle coolant leakage prediction method and device | |
CN118280121B (en) | Target monitoring and early warning method and system based on unmanned aerial vehicle | |
CN114494695A (en) | Intelligent water conservancy urban and rural waterlogging level monitoring and early warning method and device | |
CN112524077A (en) | Method, device and system for detecting fan fault | |
CN111523609A (en) | Vehicle data processing method and device, computer equipment and storage medium | |
CN117472032A (en) | Vehicle fault information processing method, device and system | |
CN114495244B (en) | Electrographic calculation data anomaly detection method, device, equipment and storage medium | |
CN115902637A (en) | Power battery stability evaluation method based on projection correlation | |
CN114488994A (en) | Optimization method and device for improving vehicle fault diagnosis robustness | |
CN115163266A (en) | Method, device, equipment and medium for determining ash load of particle catcher | |
CN115277098B (en) | Network flow abnormality detection device and method based on intelligent learning | |
CN111339142A (en) | Data monitoring response method, computer readable storage medium and data driving platform | |
CN118506474B (en) | New energy automobile data real-time acquisition method based on Internet of things | |
CN117719440B (en) | Automobile signal detection method, system and readable storage medium | |
CN116543594B (en) | Smart city analysis management system and method applying data analysis technology | |
CN114384887B (en) | Emission diagnosis method and device and electronic equipment | |
CN116993473A (en) | Accounting clearing method, device, equipment and medium based on Internet of things | |
CN119472599A (en) | A diagnostic service fault storage method and system for new energy vehicles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |