CN114386574A - Nonlinear neural network based on DNA fulcrum-mediated strand displacement reaction technology - Google Patents
Nonlinear neural network based on DNA fulcrum-mediated strand displacement reaction technology Download PDFInfo
- Publication number
- CN114386574A CN114386574A CN202210012614.6A CN202210012614A CN114386574A CN 114386574 A CN114386574 A CN 114386574A CN 202210012614 A CN202210012614 A CN 202210012614A CN 114386574 A CN114386574 A CN 114386574A
- Authority
- CN
- China
- Prior art keywords
- reaction
- training
- dna strand
- neural network
- strand displacement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 48
- 238000006073 displacement reaction Methods 0.000 title claims abstract description 46
- 230000001404 mediated effect Effects 0.000 title claims description 8
- 108020004414 DNA Proteins 0.000 claims abstract description 100
- 238000006243 chemical reaction Methods 0.000 claims abstract description 77
- 102000053602 DNA Human genes 0.000 claims abstract description 54
- 238000006555 catalytic reaction Methods 0.000 claims abstract description 25
- 238000006731 degradation reaction Methods 0.000 claims abstract description 14
- 238000012549 training Methods 0.000 claims description 73
- 238000011156 evaluation Methods 0.000 claims description 4
- 238000010606 normalization Methods 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 3
- 239000004576 sand Substances 0.000 claims 1
- 238000012887 quadratic function Methods 0.000 abstract description 8
- 208000012826 adjustment disease Diseases 0.000 abstract description 5
- 238000012360 testing method Methods 0.000 description 18
- 230000006870 function Effects 0.000 description 12
- 238000000034 method Methods 0.000 description 8
- 230000004913 activation Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 238000013473 artificial intelligence Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 210000004556 brain Anatomy 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241001272996 Polyphylla fullo Species 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005842 biochemical reaction Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000003925 brain function Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/048—Activation functions
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/061—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using biological neurons, e.g. biological neurons connected to an integrated circuit
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B40/00—ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Theoretical Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Data Mining & Analysis (AREA)
- Computing Systems (AREA)
- Computational Linguistics (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Organic Chemistry (AREA)
- Medical Informatics (AREA)
- Neurology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biotechnology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Microbiology (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Evolutionary Biology (AREA)
- Epidemiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Bioinformatics & Computational Biology (AREA)
- Immunology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Bioethics (AREA)
- Public Health (AREA)
- Databases & Information Systems (AREA)
Abstract
Description
技术领域technical field
本发明涉及生物计算及人工智能领域,涉及一种基于DNA支点介导链置换反应技术的非线性神经网络。The invention relates to the fields of biological computing and artificial intelligence, and relates to a nonlinear neural network based on the technology of DNA fulcrum-mediated strand displacement reaction.
背景技术Background technique
近年来,半导体器件的尺寸已经达到了几纳米级别,但由于物理限制,集成电路在不久的将来将无法按照摩尔定律继续发展下去。正是在这样的背景下,具有更小微观尺寸的计算机成为计算需求的主要对象。目前,人工智能实现的主要平台为电子计算机,因此,人工智能的发展必然受到了电子计算机自身性能发展的限制。电子计算机采用线性的数据放置模式和串行的信息处理方式,而这种信息存储和处理方式会限制计算机的运算速度,而生物计算机由于生化反应本身的优势,可实现信息的并行处理和运算,对于解决大规模NP问题具有巨大优势。In recent years, the size of semiconductor devices has reached the scale of several nanometers, but due to physical constraints, integrated circuits will not be able to continue to develop according to Moore's Law in the near future. It is in this context that computers with smaller microscopic dimensions have become the main object of computing demands. At present, the main platform for the realization of artificial intelligence is the electronic computer. Therefore, the development of artificial intelligence is bound to be limited by the development of the electronic computer's own performance. The electronic computer adopts a linear data placement mode and a serial information processing method, and this information storage and processing method will limit the computing speed of the computer, while the biological computer can realize the parallel processing and operation of information due to the advantages of the biochemical reaction itself. It has huge advantages for solving large-scale NP problems.
半合成生物学作为一种新的半导体技术,由于DNA或RNA具有出色的信息存储和处理能力,可能会引导一种全新的存储和计算模式。DNA由四种核苷酸A、T、G、C组成,它们将DNA转化为具有复杂结构的多种DNA链。在无生物酶的催化作用下,在室温下即可触发DNA链置换反应。DNA支点介导的链置换反应的动力学性质严格遵循Watson–Crick碱基配对原理,因此其动力学行为是可预测和可控的,并具有高度的可编程性和级联性,可实现多种复杂功能,如逻辑计算、模拟计算、生物传感器和分子步行器等。DNA链置换反应可以忠实地模拟任何抽象化学反应网络的动力学构造具有计算功能的逻辑门和运算模块,并实现分布式计算,成为实现生物计算机的重要基底。As a new semiconductor technology, semi-synthetic biology may lead to a whole new storage and computing paradigm due to the excellent information storage and processing capabilities of DNA or RNA. DNA consists of four nucleotides A, T, G, C, which convert DNA into various DNA strands with complex structures. Under the catalysis of no biological enzymes, the DNA strand displacement reaction can be triggered at room temperature. The kinetic properties of the DNA fulcrum-mediated strand displacement reaction strictly follow the Watson–Crick base pairing principle, so its kinetic behavior is predictable and controllable, and is highly programmable and cascaded to achieve multiple complex functions, such as logic computing, analog computing, biosensors, and molecular walkers. The DNA strand displacement reaction can faithfully simulate the dynamics of any abstract chemical reaction network, construct logic gates and operation modules with computing functions, and realize distributed computing, becoming an important basis for realizing biological computers.
人工智能通过对神经元之间信息传递方式的生物特性的模拟,实现人脑的推理、判断及归类等功能,与电子器件相比,DNA计算则是利用分子器件自身的生物特性实现人脑的部分功能,因此,利用DNA计算的方法实现人工智能的方法可能更接近人脑的学习本质,也更有可能实现真正的人脑功能。Artificial intelligence realizes the functions of reasoning, judgment and classification of the human brain by simulating the biological characteristics of information transmission between neurons. Compared with electronic devices, DNA computing uses the biological characteristics of molecular devices to realize the human brain. Therefore, the method of using DNA computing to realize artificial intelligence may be closer to the learning essence of the human brain, and it is more likely to realize the real human brain function.
发明内容SUMMARY OF THE INVENTION
本发明设计了基于DNA支点介导链置换反应技术的非线性神经网络,该神经网络具有类似于BP神经网络的框架结构,利用DNA链置换反应的可编译性,构造了多个带有荧光标记的反应模块,并将多个反应模块级联成网络的输入层、隐藏层和输出层,进而搭建完整的神经网络,实现标准二次型函数的学习功能。The present invention designs a non-linear neural network based on DNA fulcrum-mediated strand displacement reaction technology, the neural network has a framework structure similar to BP neural network, and utilizes the compilability of DNA strand displacement reaction to construct a plurality of fluorescent markers. and cascade multiple reaction modules into the input layer, hidden layer and output layer of the network, and then build a complete neural network to realize the learning function of the standard quadratic function.
第一部分:基于理想化反应的非线性神经网络的设计Part 1: Design of Nonlinear Neural Networks Based on Idealized Responses
基于DNA支点介导链置换反应技术的非线性神经网络,描述如下形式:The nonlinear neural network based on the DNA fulcrum-mediated strand displacement reaction technology is described in the following form:
其中n=1,2,…,L;j=1,2,…,M;Xi、Yj、Win和Vnj为信号参与物,Xi和Yj的浓度表征输入数据,Win和Vnj的浓度代表输入层和隐藏层部分的权值;ks,s=1,…,14为反应速率。如图2所示,非线性神经网络由输入层、隐藏层和输出层三部分组成,其中反应(1)、(2)、(9)和(11)构成了输入层,反应(3)、(4)、(5)、(6)、(10)和(12)构成了隐藏层,反应(7)、(8)和(13)构成了输出层。where n=1,2,...,L; j =1,2,...,M; Xi, Yj , Win and Vnj are signal participants, the concentrations of Xi and Yj characterize the input data, Win The concentrations of and V nj represent the weights of the input layer and the hidden layer part; k s , s=1, . . . , 14 are the reaction rates. As shown in Figure 2, the nonlinear neural network consists of three parts: the input layer, the hidden layer and the output layer, in which the responses (1), (2), (9) and (11) constitute the input layer, and the responses (3), (4), (5), (6), (10) and (12) constitute the hidden layer, and reactions (7), (8) and (13) constitute the output layer.
根据理想化反应(1)-(13),In、I′n、I″n和的微分方程为:According to idealized reactions (1)-(13), In, I′n, I″n and The differential equation of is:
当In、I′n、I″n和达到反应平衡时,有When In, I′n, I″n and When the reaction equilibrium is reached, there is
可得到如下方程组(15):The following equations (15) can be obtained:
其中y=ψ(*)代表激活函数,由于二次函数的右半只满足激活函数的要求,而且易于被DNA链置换反应实现,因此本发明中激活函数选取为二次函数y=x2的右半部分。Among them, y=ψ(*) represents the activation function. Since the right half of the quadratic function only meets the requirements of the activation function, and is easily realized by DNA strand displacement reaction, the activation function in the present invention is selected as the quadratic function y=x 2 . right half.
第二部分:非线性神经网络的DNA实现Part II: DNA Implementation of Nonlinear Neural Networks
反应方程(1)-(13)由不同的反应模块构成,其中方程(1)和(5)属于催化反应模块1;方程(1)和(5)属于催化反应模块1;方程(2)、(4)、(6)和(8)属于降解反应模块;方程(9)和(10)属于调节反应模块1;方程(11)-(13)属于催化反应模块2。上述反应模块可由如下的DNA链置换反应实现:Reaction equations (1)-(13) are composed of different reaction modules, wherein equations (1) and (5) belong to
(I)催化反应模块1:(1) catalytic reaction module 1:
催化反应模块1的理想化反应方程为:它可由如下DNA链置换反应得到:The idealized reaction equation of
其中Ii被催化,Xi为信号DNA链,Wi为权值报告链Ai、Pai、Pci和Pdi为辅助DNA链,且辅助DNA链的初始浓度为Cm,并满足Cm≥[Xi]0,[Wi]0,[Ii]0,[*]0表示*的初始浓度。反应速率qi和ki满足qi≤qm,ki=qi,qm表示最大反应速率。Wherein I i is catalyzed, X i is the signal DNA strand, Wi is the weight report chain A i , Pa i , Pci i and Pd i are the auxiliary DNA strands, and the initial concentration of the auxiliary DNA strands is C m , and satisfies C m ≥ [X i ] 0 , [W i ] 0 , [I i ] 0 , [*] 0 represents the initial concentration of *. The reaction rates qi and ki satisfy qi ≤ q m , ki = qi , and q m represents the maximum reaction rate .
(II)催化反应模块2:(II) Catalytic reaction module 2:
催化反应模块2的理想化反应方程为:它可由如下DNA链置换反应得到:The idealized reaction equation of
其中Ii被催化,Xi为信号DNA链,Gai,Ei,Fi,Gdi,Gei,Ji及Ki为辅助DNA链,且辅助DNA链的初始浓度为Cm,并满足Cm≥[Yi]0,[Ii]0;反应速率qi满足qi≤qm,ki=qi。wherein I i is catalyzed, X i is the signal DNA strand, Ga i , E i , F i , Gd i , Ge i , Ji and Ki are the auxiliary DNA strands, and the initial concentration of the auxiliary DNA strands is C m , and Satisfy C m ≥[Y i ] 0 , [I i ] 0 ; the reaction rate qi satisfies qi ≤ q m , and ki = qi .
(III)降解反应模块:(III) Degradation reaction module:
降解反应模块2的理想化反应方程为:它可由如下DNA链置换反应得到:The idealized reaction equation of
其中Ii被降解,Fai,Ci,Fci及Fdi为辅助DNA链,且辅助DNA链的初始浓度为Cm,并满足Cm≥[Yi]0,[Ii]0;反应速率qi满足qi≤qm,ki=qi。Wherein I i is degraded, Fa i , C i , Fc i and Fd i are auxiliary DNA chains, and the initial concentration of the auxiliary DNA chains is C m , and satisfies C m ≥ [Y i ] 0 , [I i ] 0 ; The reaction rate qi satisfies qi ≤q m , and ki = qi .
(IV)调节反应模块1:(IV) Regulating reaction module 1:
调节反应模块1的理想化反应方程为:它可由如下DNA链置换反应得到:The idealized reaction equation for
其中Wi的浓度被调节,Eai及Ebi为信号DNA链,且它们之间的浓度满足[Wi]0<<[Ebi]0和[Eai]0<<[Ebi]0;反应速率满足kai=qai和kbi=qbi。The concentration of Wi is adjusted, Ea i and Ebi are signal DNA strands, and the concentrations between them satisfy [W i ] 0 << [Eb i ] 0 and [Ea i ] 0 << [ Eb i ] 0 ; the reaction rate satisfies ka i =qa i and kb i =qb i .
(V)调节反应模块2:(V) Adjustment reaction module 2:
调节反应模块2的理想化反应方程为:它可由如下DNA链置换反应得到:The idealized reaction equation of the
其中Yi的浓度被调节,Lai及Lbi为信号DNA链,且它们之间的浓度满足[Yi]0,[Lai]0<<[Lbi]0;反应速率满足kxi=qxi和kyi=qyi。The concentration of Yi is adjusted, La i and Lb i are signal DNA strands, and the concentration between them satisfies [Y i ] 0 , [La i ] 0 <<[Lb i ] 0 ; the reaction rate satisfies kx i = qx i and ky i =qy i .
第三部分:线性神经网络的训练Part 3: Training of Linear Neural Networks
本发明利用非线性神经网络学习标准二次型函数 其中权值wi及输入xi(i=1,2,…,N)皆为实数,由于权值和输入的数值由DNA链的浓度表示,因此wi,xi≥0。The present invention utilizes nonlinear neural network to learn standard quadratic function The weight wi and the input xi ( i =1, 2 , .
(1)训练数据的归一化处理(1) Normalization of training data
神经网络的训练由多轮训练构成,一轮训练由K组训练数据组成,打乱训练数据组,得到另一轮训练数据。第一轮训练数据由Xi=[xi(1,1),xi(2,1),…,xi(K,1)]表示,则可按如下方法进行数据归一化:The training of the neural network consists of multiple rounds of training. One round of training consists of K groups of training data, and the training data group is disrupted to obtain another round of training data. The first round of training data is represented by X i =[ xi (1,1), xi (2,1),..., xi (K,1)], then the data can be normalized as follows:
中middle
xi(k,l)表示第l次训练的第k组数据的第i个数据,其中k=1,2,…,K,l=1,2,…,Λ,ρ>0为调节参数,及为神经网络的输入信号DNA链的初始浓度设定。x i (k,l) represents the i-th data of the k-th group of data of the l-th training, where k=1,2,...,K, l=1,2,...,Λ, ρ>0 are adjustment parameters , and Set the initial concentration of DNA strands for the input signal to the neural network.
(2)神经网络的训练评估(2) Training evaluation of neural network
在第l次训练中,定义相对误差el(k)如下:In the lth training, the relative error e l (k) is defined as follows:
其中in
及表示经过第l次训练以后,得到的输入层和隐藏层的权值。 and Indicates the weights of the input layer and the hidden layer obtained after the lth training.
为评估本次训练结果,定义平均相对误差如下:To evaluate the results of this training, the average relative error is defined as follows:
进过多次训练以后,当平均相对误差达到目标值以后,则停止训练。After many training sessions, when the average relative error reaches the target value, the training is stopped.
表1 DNA链的浓度和反应速率的设定。Table 1 The concentration of DNA strands and the setting of the reaction rate.
表2非线性神经网络的结构,及各部分所对应的理想化反应和DNA实现。Table 2 The structure of the nonlinear neural network, and the idealized reactions and DNA realizations corresponding to each part.
本发明的有益效果:Beneficial effects of the present invention:
在以往的基于DNA计算的神经网络设计中,权值的设定需要电子计算机的参与或已知的数据库来完成,网络本身并不能实现权值的更新和计算,只是实现了某种神经网络的功能。本发明利用DNA链置换反应网络本身的动力学特征及自适应特点,而且不依赖某种算法,实现权值的更新及神经网络的学习功能。In the previous neural network design based on DNA computing, the setting of weights requires the participation of electronic computers or a known database to complete. The network itself cannot realize the updating and calculation of weights, but only realizes some kind of neural network. Function. The invention utilizes the dynamic characteristics and self-adaptive characteristics of the DNA strand displacement reaction network itself, and does not rely on a certain algorithm to realize the update of the weight value and the learning function of the neural network.
附图说明Description of drawings
图1本发明的流程图。Figure 1 is a flow chart of the present invention.
图2非线性神经网络的框架图。Figure 2. Framework diagram of nonlinear neural network.
图3催化反应模块1的主要DNA链置换反应。Figure 3 Catalyzes the main DNA strand displacement reaction of
图4催化反应模块2的主要DNA链置换反应。Figure 4 Catalyzes the main DNA strand displacement reaction of
图5降解反应模块的主要DNA链置换反应。Figure 5. The main DNA strand displacement reaction of the degradation reaction module.
图6调节反应模块1的DNA链置换反应。Figure 6 Modulates the DNA strand displacement reaction of
图7调节反应模块2的DNA链置换反应。Figure 7 Modulates the DNA strand displacement reaction of
图8数据链Ii、Xi、Wi、Ai和Pdi的DNA编码。Figure 8 DNA encoding of data chains I i , Xi , Wi , A i and Pd i .
图9数据链Yi、Ki、Gai和Gei的DNA编码。Figure 9 DNA coding of data chains Yi, Ki , Gai and Gei .
图10数据链Fai和Fdi的DNA编码。Figure 10 DNA coding of data links Fa i and Fd i .
图11数据链Eai和Lai的DNA编码。Figure 11 DNA coding of data links Ea i and La i .
图12权值的更新轨迹。Figure 12. Update trajectory of weights.
图13平均相对误差随训练次数的演化。Figure 13 Evolution of the mean relative error with the number of training sessions.
图14在不同轮训练中需要的总训练次数。Figure 14. Total number of training sessions required in different rounds of training.
图15相对误差随测试数据的演化。Figure 15 Evolution of relative error with test data.
具体实施方式Detailed ways
本发明的实施是在以本发明技术方案为前提下进行实施的,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述实施例。The implementation of the present invention is carried out on the premise of the technical solution of the present invention, and a detailed implementation manner and a specific operation process are given, but the protection scope of the present invention is not limited to the following examples.
详细步骤如下:The detailed steps are as follows:
一、基于理想化反应的非线性神经网络的设计1. Design of Nonlinear Neural Network Based on Idealized Response
本发明提出的非线性神经网络的理想化化学反应网络可描述成如下形式:The idealized chemical reaction network of the nonlinear neural network proposed by the present invention can be described in the following form:
其中n=1,2,…,L;j=1,2,…,M;Xi、Yj、Win和Vnj为信号参与物,Xi和Yj的浓度表征输入数据,Win和Vnj的浓度代表输入层和隐藏层部分的权值;ks,s=1,…,14为反应速率。如图2所示,非线性神经网络由输入层、隐藏层和输出层三部分组成,其中反应(1)、(2)、(9)和(11)构成了输入层,反应(3)、(4)、(5)、(6)、(10)和(12)构成了隐藏层,反应(7)、(8)和(13)构成了输出层。where n=1,2,...,L; j =1,2,...,M; Xi, Yj , Win and Vnj are signal participants, the concentrations of Xi and Yj characterize the input data, Win The concentrations of and V nj represent the weights of the input layer and the hidden layer part; k s , s=1, . . . , 14 are the reaction rates. As shown in Figure 2, the nonlinear neural network consists of three parts: the input layer, the hidden layer and the output layer, in which the responses (1), (2), (9) and (11) constitute the input layer, and the responses (3), (4), (5), (6), (10) and (12) constitute the hidden layer, and reactions (7), (8) and (13) constitute the output layer.
根据理想化反应(1)-(13),In、I′n、I″n和的微分方程为:According to idealized reactions (1)-(13), In, I′n, I″n and The differential equation of is:
当In、I′n、I″n和达到反应平衡时,有When In, I′n, I″n and When the reaction equilibrium is reached, there is
可得到如下方程组(15):The following equations (15) can be obtained:
其中y=ψ(*)代表激活函数,由于二次函数的右半只满足激活函数的要求,而且易于被DNA链置换反应实现,因此本发明中激活函数选取为二次函数y=x2的右半部分。Among them, y=ψ(*) represents the activation function. Since the right half of the quadratic function only meets the requirements of the activation function, and is easily realized by DNA strand displacement reaction, the activation function in the present invention is selected as the quadratic function y=x 2 . right half.
二、数据链及反应模块的设计2. Design of data chain and reaction module
(I)催化反应模块1:(1) catalytic reaction module 1:
催化反应模块1的理想化反应方程为:它可由如下DNA链置换反应得到:The idealized reaction equation of
其中Ii被催化,Xi为信号DNA链,Wi为权值报告链Ai、Pai、Pci和Pdi为辅助DNA链,且辅助DNA链的初始浓度为Cm,并满足Cm≥[Xi]0,[Wi]0,[Ii]0,[*]0表示*的初始浓度。反应速率qi和ki满足qi≤qm,ki=qi,qm表示最大反应速率。数据链Ii、Xi、Wi、Ai和Pdi的DNA编码如图8所示,催化反应模块1的主要DNA链置换反应过程如图3所示。Wherein I i is catalyzed, X i is the signal DNA strand, Wi is the weight report chain A i , Pa i , Pci i and Pd i are the auxiliary DNA strands, and the initial concentration of the auxiliary DNA strands is C m , and satisfies C m ≥ [X i ] 0 , [W i ] 0 , [I i ] 0 , [*] 0 represents the initial concentration of *. The reaction rates qi and ki satisfy qi ≤ q m , ki = qi , and q m represents the maximum reaction rate . The DNA codes of the data chains I i , Xi , Wi , A i and Pd i are shown in Figure 8 , and the main DNA strand displacement reaction process of the catalytic reaction module 1 is shown in Figure 3 .
(II)催化反应模块2:(II) Catalytic reaction module 2:
催化反应模块2的理想化反应方程为:它可由如下DNA链置换反应得到:The idealized reaction equation of
其中Ii被催化,Yi为信号DNA链,Gai,Ei,Fi,Gdi,Gei,Ji及Ki为辅助DNA链,且辅助DNA链的初始浓度为Cm,并满足Cm≥[Yi]0,[Ii]0;反应速率qi满足qi≤qm,ki=qi。数据链Yi、Ki、Gai和Gei的DNA编码如图9所示,催化反应模块2的主要DNA链置换反应过程如图4所示。where I i is catalyzed, Y i is the signal DNA strand, Ga i , E i , F i , Gd i , Ge i , Ji and Ki are the auxiliary DNA strands, and the initial concentration of the auxiliary DNA strands is C m , and Satisfy C m ≥[Y i ] 0 , [I i ] 0 ; the reaction rate qi satisfies qi ≤ q m , and ki = qi . The DNA codes of the data chains Yi , Ki, Ga i and Ge i are shown in Figure 9, and the main DNA strand displacement reaction process of the
(III)降解反应模块:(III) Degradation reaction module:
降解反应模块的理想化反应方程为:它可由如下DNA链置换反应得到:The idealized reaction equation of the degradation reaction module is: It can be obtained by the following DNA strand displacement reaction:
其中Ii被降解,Fai,Ci,Fci及Fdi为辅助DNA链,且辅助DNA链的初始浓度为Cm,并满足Cm≥[Yi]0,[Ii]0;反应速率qi满足qi≤qm,ki=qi。数据链Fai和Fdi的DNA编码如图10所示,降解反应模块的主要DNA链置换反应过程如图5所示。Wherein I i is degraded, Fa i , C i , Fc i and Fd i are auxiliary DNA chains, and the initial concentration of the auxiliary DNA chains is C m , and satisfies C m ≥ [Y i ] 0 , [I i ] 0 ; The reaction rate qi satisfies qi ≤q m , and ki = qi . The DNA codes of the data chains Fa i and Fd i are shown in Figure 10, and the main DNA strand displacement reaction process of the degradation reaction module is shown in Figure 5.
(IV)调节反应模块1:(IV) Regulating reaction module 1:
调节反应模块1的理想化反应方程为:它可由如下DNA链置换反应得到:The idealized reaction equation for tuning
其中Wi的浓度被调节,Eai及Ebi为信号DNA链,且它们之间的浓度满足[Wi]0<<[Ebi]0和[Eai]0<<[Ebi]0;反应速率满足kai=qai和kbi=qbi。数据链Eai的DNA编码如图11(a)所示,降解反应模块的主要DNA链置换反应过程如图6所示。The concentration of Wi is adjusted, Ea i and Ebi are signal DNA strands, and the concentrations between them satisfy [W i ] 0 << [Eb i ] 0 and [Ea i ] 0 << [ Eb i ] 0 ; the reaction rate satisfies ka i =qa i and kb i =qb i . The DNA code of the data chain Ea i is shown in Figure 11(a), and the main DNA strand displacement reaction process of the degradation reaction module is shown in Figure 6.
(V)调节反应模块2:(V) Adjustment reaction module 2:
调节反应模块2的理想化反应方程为:它可由如下DNA链置换反应得到:The idealized reaction equation of the
其中Yi的浓度被调节,Lai及Lbi为信号DNA链,且它们之间的浓度满足[Yi]0,[Lai]0<<[Lbi]0;反应速率满足kxi=qxi和kyi=qyi。数据链Lai的DNA编码如图11(b)所示,降解反应模块的主要DNA链置换反应过程如图7所示。The concentration of Yi is adjusted, La i and Lb i are signal DNA strands, and the concentration between them satisfies [Y i ] 0 , [La i ] 0 <<[Lb i ] 0 ; the reaction rate satisfies kx i = qx i and ky i =qy i . The DNA code of the data chain La i is shown in Figure 11(b), and the main DNA strand displacement reaction process of the degradation reaction module is shown in Figure 7.
反应方程(1)-(13)由不同的反应模块构成,其中方程(1)和(5)属于催化反应模块1;方程(1)和(5)属于催化反应模块1;方程(2)、(4)、(6)和(8)属于降解反应模块;方程(9)和(10)属于调节反应模块1;方程(11)-(13)属于催化反应模块2.Reaction equations (1)-(13) are composed of different reaction modules, wherein equations (1) and (5) belong to
三、非线性神经网络的训练与测试3. Training and testing of nonlinear neural networks
本发明利用非线性神经网络学习标准二次型函数 其中权值wi及输入xi(i=1,2,…,N)皆为实数,由于权值和输入的数值由DNA链的浓度表示,因此wi,xi≥0。The present invention utilizes nonlinear neural network to learn standard quadratic function The weight wi and the input xi ( i =1, 2 , .
(1)训练数据的归一化处理(1) Normalization of training data
神经网络的训练由多轮训练构成,完成一次训练目标称为一轮训练,其中一轮训练包含多次训练,一次训练由K组训练数据组成,随机打乱训练数据组,得到另一次或另一轮训练数据。某一轮训练的第一次训练数据由Xi=[xi(1,1),xi(2,1),…,xi(K,1)]表示,则可按如下方法进行数据归一化:The training of the neural network consists of multiple rounds of training. Completing one training target is called one round of training. One round of training includes multiple trainings. One training consists of K groups of training data. One round of training data. The first training data of a certain round of training is represented by X i =[x i (1,1), xi (2,1),..., xi (K,1)], then the data can be processed as follows Normalized:
其中in
xi(k,l)表示第l次训练的第k组数据的第i个数据,其中k=1,2,…,K,l=1,2,…,Λ,ρ>0为调节参数,及为神经网络的输入信号DNA链的初始浓度设定。x i (k,l) represents the i-th data of the k-th group of data of the l-th training, where k=1,2,...,K, l=1,2,...,Λ, ρ>0 are adjustment parameters , and Set the initial concentration of DNA strands for the input signal to the neural network.
(2)神经网络的训练评估(2) Training evaluation of neural network
在第l次训练中,定义相对误差el(k)如下:In the lth training, the relative error e l (k) is defined as follows:
其中in
及表示经过第l次训练以后,得到的输入层和隐藏层的权值。 and Indicates the weights of the input layer and the hidden layer obtained after the lth training.
为评估本次训练结果,定义平均相对误差如下:To evaluate the results of this training, the average relative error is defined as follows:
进过多次训练以后,当平均相对误差达到目标值以后,则停止训练。After many training sessions, when the average relative error reaches the target value, the training is stopped.
以3个输入节点的非线性神经网络为例,说明基于DNA链置换反应的神经网络的训练和评估:Taking a nonlinear neural network with 3 input nodes as an example, the training and evaluation of a neural network based on DNA strand displacement reaction are described:
测试的原始数据为X1=[0.23,0.26,0.29,…,2.30]、X2=[0.31,0.32,0.33,…,1.00]和X3=[0.23,0.26,0.29,…,2.30]共70组数据,ρ的取值为ρ=2。DNA链的初始浓度及反应速率的初始设定如表1所示。图12表示在30轮训练中,权值的更新轨迹。The original data of the test are X 1 =[0.23,0.26,0.29,...,2.30], X 2 =[0.31,0.32,0.33,...,1.00] and X 3 =[0.23,0.26,0.29,...,2.30] in total 70 groups of data, the value of ρ is ρ=2. The initial concentration of DNA strands and the initial settings of the reaction rate are shown in Table 1. Figure 12 shows the updated trajectory of the weights in 30 rounds of training.
如图13所示,在30轮训练中,经过前30次训练,平均相对误差均高于目标值5%,但经过31次训练以后,部分轮训练的平均相对误差达到目标值,在经过43次训练以后,所有轮训练的平均相对误差均达到或低于目标值,即实现了训练目标。As shown in Figure 13, in the 30 rounds of training, after the first 30 trainings, the average relative error was higher than the target value by 5%, but after 31 trainings, the average relative error of some rounds of training reached the target value, after 43 training After training times, the average relative error of all rounds of training is at or below the target value, that is, the training target is achieved.
图14展示了30轮训练中,为达到训练目标所需要的总训练次数,显然训练次数集中在30次至40次。Figure 14 shows the total number of training times required to achieve the training goal in 30 rounds of training. Obviously, the training times are concentrated in 30 to 40 times.
(3)神经网络的测试(3) Test of neural network
为使测试数据和训练数据落在相同的范围,训练数据需要经过公式(24)所示的归一化处理:In order to make the test data and training data fall in the same range, the training data needs to be normalized as shown in formula (24):
其中in
x′i(k)表示第k组数据中的第i个数据,测试数据由X′i=[x′i(1),x′i(2),…,x′i(K′)]表示,共K′组测试数据,每次测试所用的数据相同,但所用的权值更新不同,即第p次测试用的是第p轮训练以后得到的权值更新,显然测试的次数与训练的轮数是相同的。x' i (k) represents the i-th data in the k-th group of data, and the test data consists of X' i =[x' i (1),x' i (2),...,x' i (K')] It means that there are K' groups of test data. The data used in each test is the same, but the weight update used is different. That is, the p-th test uses the weight update obtained after the p-th round of training. Obviously, the number of tests is different from that of training. The number of rounds is the same.
定义测试相对误差为:The test relative error is defined as:
其中in
e′k(p)表示第p次测试中的第k组数据的相对误差,Win(p)和Vn1(p)为对应的第p轮训练以后得到的权值更新结果。e′ k (p) represents the relative error of the k-th group of data in the p-th test, and Win (p) and V n1 (p) are the weight update results obtained after the corresponding p-th round of training.
仍以3个输入节点的非线性神经网络为例,说明基于DNA链置换反应的神经网络的测试结果:Still take the nonlinear neural network with 3 input nodes as an example to illustrate the test results of the neural network based on DNA strand displacement reaction:
选取原始测试数据为X′1=[0.5,0.7,0.9,…,6.5]、X′2=[0.25,0.30,0.35,…,1.70]和X′3=[0.4,0.7,1.0,…,9.1],共30组测试数据,如图15所示,在30次测试中,除第一组测试数据以后,其余29组数据的相对误差的均值都在误差允许范围内,表明基于DNA链置换反应的神经网络具有较好的测试结果。Select the original test data as X′ 1 =[0.5,0.7,0.9,…,6.5], X′ 2 =[0.25,0.30,0.35,…,1.70] and X′ 3 =[0.4,0.7,1.0,…, 9.1], a total of 30 sets of test data, as shown in Figure 15, in the 30 tests, except for the first set of test data, the average relative errors of the remaining 29 sets of data are all within the allowable error range, indicating that the DNA strand replacement is based on DNA strand replacement. The reactive neural network has better test results.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210012614.6A CN114386574A (en) | 2022-01-07 | 2022-01-07 | Nonlinear neural network based on DNA fulcrum-mediated strand displacement reaction technology |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210012614.6A CN114386574A (en) | 2022-01-07 | 2022-01-07 | Nonlinear neural network based on DNA fulcrum-mediated strand displacement reaction technology |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114386574A true CN114386574A (en) | 2022-04-22 |
Family
ID=81200229
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210012614.6A Pending CN114386574A (en) | 2022-01-07 | 2022-01-07 | Nonlinear neural network based on DNA fulcrum-mediated strand displacement reaction technology |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114386574A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115834788A (en) * | 2022-11-16 | 2023-03-21 | 安阳师范学院 | A Color Image Encryption Method for Visualizing DNA Pivot-Mediated Strand Displacement Reaction |
CN116844642A (en) * | 2023-07-03 | 2023-10-03 | 燕山大学 | Novel linear machine learning method based on DNA hybridization reaction technology |
CN117057405A (en) * | 2023-08-22 | 2023-11-14 | 燕山大学 | DNA molecular learning machine method based on novel excitation function |
-
2022
- 2022-01-07 CN CN202210012614.6A patent/CN114386574A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115834788A (en) * | 2022-11-16 | 2023-03-21 | 安阳师范学院 | A Color Image Encryption Method for Visualizing DNA Pivot-Mediated Strand Displacement Reaction |
CN115834788B (en) * | 2022-11-16 | 2023-06-09 | 安阳师范学院 | Color image encryption method for visualized DNA pivot point-mediated strand displacement reaction |
CN116844642A (en) * | 2023-07-03 | 2023-10-03 | 燕山大学 | Novel linear machine learning method based on DNA hybridization reaction technology |
CN116844642B (en) * | 2023-07-03 | 2024-03-29 | 燕山大学 | A new linear machine learning method based on DNA hybridization reaction technology |
CN117057405A (en) * | 2023-08-22 | 2023-11-14 | 燕山大学 | DNA molecular learning machine method based on novel excitation function |
CN117057405B (en) * | 2023-08-22 | 2024-04-12 | 燕山大学 | DNA molecular learning machine method based on a new activation function |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114386574A (en) | Nonlinear neural network based on DNA fulcrum-mediated strand displacement reaction technology | |
CN111767711B (en) | Compression method and platform of pre-trained language model based on knowledge distillation | |
CN108846472A (en) | A kind of optimization method of Adaptive Genetic Particle Swarm Mixed Algorithm | |
Cui et al. | Training artificial neural networks using APPM | |
CN112153617B (en) | Terminal equipment transmission power control method based on integrated neural network | |
CN109388779A (en) | A kind of neural network weight quantization method and neural network weight quantization device | |
KR20220159762A (en) | Construction method of artificial neural network model using genetic algorithm and variable optimization method using the same | |
Kieffer et al. | Molecular computation for molecular classification | |
CN102054199A (en) | BP (Back Propagation) neural network algorithm based method for analyzing coating aging | |
Giri et al. | A modified invasive weed optimization algorithm for training of feed-forward neural networks | |
Ji et al. | Accuracy versus simplification in an approximate logic neural model | |
Dušek et al. | Modeling of polymer network formation from preformed precursors | |
CN113762513B (en) | DNA neuron learning method based on DNA strand displacement | |
CN114626550A (en) | Distributed model collaborative training method and system | |
CN107392315A (en) | A kind of method for optimizing brain emotion learning model | |
WO2020253547A1 (en) | Genetic circuit simulating artificial neural network and construction method therefor | |
JP2021189608A (en) | Design method for extreme learning machine based on dna strand substitution | |
Zhang et al. | Optimization of neural network based on genetic algorithm and BP | |
Pakravesh et al. | Optimization of industrial CSTR for vinyl acetate polymerization using novel shuffled frog leaping based hybrid algorithms and dynamic modeling | |
Shao et al. | A non-uniform clustering based evolutionary algorithm for solving large-scale sparse multi-objective optimization problems | |
Xie et al. | Biclustering of gene expression data using PSO-GA hybrid | |
CN109871953B (en) | A Wavelet Neural Network Modeling Method for Heavy Oil Cracking Process Based on fpRNA Genetic Algorithm | |
CN116844642B (en) | A new linear machine learning method based on DNA hybridization reaction technology | |
Li et al. | [Retracted] Evaluation of Ideological and Political Education under Deep Learning Neural Network | |
Oh | Potential of disease prediction using deep learning algorithms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |