CN114386511A - 基于多维度特征融合和模型集成的恶意软件家族分类方法 - Google Patents
基于多维度特征融合和模型集成的恶意软件家族分类方法 Download PDFInfo
- Publication number
- CN114386511A CN114386511A CN202210035910.8A CN202210035910A CN114386511A CN 114386511 A CN114386511 A CN 114386511A CN 202210035910 A CN202210035910 A CN 202210035910A CN 114386511 A CN114386511 A CN 114386511A
- Authority
- CN
- China
- Prior art keywords
- feature
- features
- malware
- file
- fusion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000004927 fusion Effects 0.000 title claims abstract description 42
- 238000000034 method Methods 0.000 title claims abstract description 36
- 230000010354 integration Effects 0.000 title claims abstract description 26
- 238000012545 processing Methods 0.000 claims abstract description 31
- 238000012549 training Methods 0.000 claims abstract description 15
- 239000000284 extract Substances 0.000 claims description 22
- 230000008676 import Effects 0.000 claims description 18
- 238000000605 extraction Methods 0.000 claims description 8
- 101100436078 Caenorhabditis elegans asm-2 gene Proteins 0.000 abstract 1
- 239000013598 vector Substances 0.000 description 13
- 230000006870 function Effects 0.000 description 12
- 238000013473 artificial intelligence Methods 0.000 description 8
- 238000013145 classification model Methods 0.000 description 7
- 238000001514 detection method Methods 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000004422 calculation algorithm Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 238000013135 deep learning Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 241000700605 Viruses Species 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000007500 overflow downdraw method Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Software Systems (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Mathematical Physics (AREA)
- Computational Linguistics (AREA)
- Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Biology (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210035910.8A CN114386511B (zh) | 2022-01-11 | 2022-01-11 | 基于多维度特征融合和模型集成的恶意软件家族分类方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210035910.8A CN114386511B (zh) | 2022-01-11 | 2022-01-11 | 基于多维度特征融合和模型集成的恶意软件家族分类方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114386511A true CN114386511A (zh) | 2022-04-22 |
CN114386511B CN114386511B (zh) | 2023-06-23 |
Family
ID=81202075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210035910.8A Active CN114386511B (zh) | 2022-01-11 | 2022-01-11 | 基于多维度特征融合和模型集成的恶意软件家族分类方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114386511B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115080974A (zh) * | 2022-08-17 | 2022-09-20 | 杭州安恒信息技术股份有限公司 | 一种恶意pe文件检测方法、装置、设备及介质 |
CN115603978A (zh) * | 2022-09-30 | 2023-01-13 | 深信服科技股份有限公司(Cn) | 一种攻击识别方法、装置及相关设备 |
CN117150485A (zh) * | 2022-05-20 | 2023-12-01 | 中企网络通信技术有限公司 | 用于检测恶意软件的系统和方法 |
CN117332419A (zh) * | 2023-11-29 | 2024-01-02 | 武汉大学 | 一种基于预训练的恶意代码分类方法及装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103177215A (zh) * | 2013-03-05 | 2013-06-26 | 四川电力科学研究院 | 基于软件控制流特征的计算机恶意软件检测新方法 |
CN105138913A (zh) * | 2015-07-24 | 2015-12-09 | 四川大学 | 一种基于多视集成学习的恶意软件检测方法 |
US20190036273A1 (en) * | 2016-01-29 | 2019-01-31 | Robert Bosch Gmbh | Electrical plug connection |
CN112000952A (zh) * | 2020-07-29 | 2020-11-27 | 暨南大学 | Windows平台恶意软件的作者组织特征工程方法 |
CN113434858A (zh) * | 2021-05-25 | 2021-09-24 | 天津大学 | 基于反汇编代码结构和语义特征的恶意软件家族分类方法 |
-
2022
- 2022-01-11 CN CN202210035910.8A patent/CN114386511B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103177215A (zh) * | 2013-03-05 | 2013-06-26 | 四川电力科学研究院 | 基于软件控制流特征的计算机恶意软件检测新方法 |
CN105138913A (zh) * | 2015-07-24 | 2015-12-09 | 四川大学 | 一种基于多视集成学习的恶意软件检测方法 |
US20190036273A1 (en) * | 2016-01-29 | 2019-01-31 | Robert Bosch Gmbh | Electrical plug connection |
CN112000952A (zh) * | 2020-07-29 | 2020-11-27 | 暨南大学 | Windows平台恶意软件的作者组织特征工程方法 |
CN113434858A (zh) * | 2021-05-25 | 2021-09-24 | 天津大学 | 基于反汇编代码结构和语义特征的恶意软件家族分类方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117150485A (zh) * | 2022-05-20 | 2023-12-01 | 中企网络通信技术有限公司 | 用于检测恶意软件的系统和方法 |
CN115080974A (zh) * | 2022-08-17 | 2022-09-20 | 杭州安恒信息技术股份有限公司 | 一种恶意pe文件检测方法、装置、设备及介质 |
CN115080974B (zh) * | 2022-08-17 | 2022-11-08 | 杭州安恒信息技术股份有限公司 | 一种恶意pe文件检测方法、装置、设备及介质 |
CN115603978A (zh) * | 2022-09-30 | 2023-01-13 | 深信服科技股份有限公司(Cn) | 一种攻击识别方法、装置及相关设备 |
CN117332419A (zh) * | 2023-11-29 | 2024-01-02 | 武汉大学 | 一种基于预训练的恶意代码分类方法及装置 |
CN117332419B (zh) * | 2023-11-29 | 2024-02-20 | 武汉大学 | 一种基于预训练的恶意代码分类方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN114386511B (zh) | 2023-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Legoy et al. | Automated retrieval of att&ck tactics and techniques for cyber threat reports | |
CN114386511B (zh) | 基于多维度特征融合和模型集成的恶意软件家族分类方法 | |
Long et al. | Collecting indicators of compromise from unstructured text of cybersecurity articles using neural-based sequence labelling | |
Gao et al. | A review on cyber security named entity recognition | |
Guo et al. | Detecting and augmenting missing key aspects in vulnerability descriptions | |
Yang et al. | Automated cyber threat intelligence reports classification for early warning of cyber attacks in next generation SOC | |
Wang et al. | Explainable apt attribution for malware using nlp techniques | |
CN113434858A (zh) | 基于反汇编代码结构和语义特征的恶意软件家族分类方法 | |
CN117195220A (zh) | 基于Tree-LSTM和BiLSTM的智能合约漏洞检测方法及系统 | |
CN110362995A (zh) | 一种基于逆向与机器学习的恶意软件检测及分析系统 | |
Zhang et al. | Slowing down the aging of learning-based malware detectors with api knowledge | |
CN116361788A (zh) | 一种基于机器学习的二进制软件漏洞预测方法 | |
Yang et al. | MDADroid: A novel malware detection method by constructing functionality-API mapping | |
Zhao et al. | Image‐Based Malware Classification Method with the AlexNet Convolutional Neural Network Model | |
Li et al. | Automated discovery and mapping ATT&CK tactics and techniques for unstructured cyber threat intelligence | |
Zhang et al. | AttacKG+: Boosting attack knowledge graph construction with large language models | |
Zhang et al. | An optimized positive-unlabeled learning method for detecting a large scale of malware variants | |
CN118862086A (zh) | 一种基于深度学习的电力物联网系统容器漏洞检测方法 | |
US20240296231A1 (en) | Automated attribute scraping for security feature implementation prediction | |
Zhu et al. | FSNet: android malware detection with only one feature | |
CN113420127B (zh) | 威胁情报处理方法、装置、计算设备及存储介质 | |
CN116522337A (zh) | 一种基于api语义的恶意软件家族无偏检测方法 | |
Chen et al. | Deepcall: A fast and robust malware classification system with dgcnn and function call graph | |
Han et al. | Few-Shot Log Anomaly Detection Based on Matching Networks | |
Sun et al. | MGAP 3: Malware Group Attribution Based on PerceiverIO and Polytype Pre-Training |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Li Shudong Inventor after: Fang Binxing Inventor after: Tian Zhihong Inventor after: Gu Zhaoquan Inventor after: Yin Lihua Inventor after: Li Yuan Inventor after: Wu Xiaobo Inventor after: Li Zhengyang Inventor after: Han Weihong Inventor after: Zhang Haipeng Inventor after: Xiao Linhe Inventor after: Xu Na Inventor after: Zhao Chuanyu Inventor before: Li Shudong Inventor before: Fang Binxing Inventor before: Tian Zhihong Inventor before: Gu Zhaoquan Inventor before: Yin Lihua Inventor before: Li Yuan Inventor before: Wu Xiaobo Inventor before: Li Zhengyang Inventor before: Han Weihong Inventor before: Zhang Haipeng Inventor before: Xiao Linhe Inventor before: Xu Na Inventor before: Zhao Chuanyu |
|
GR01 | Patent grant | ||
GR01 | Patent grant |