CN114385619A - Multi-channel ocean observation time sequence scalar data missing value prediction method and system - Google Patents

Multi-channel ocean observation time sequence scalar data missing value prediction method and system Download PDF

Info

Publication number
CN114385619A
CN114385619A CN202210285171.8A CN202210285171A CN114385619A CN 114385619 A CN114385619 A CN 114385619A CN 202210285171 A CN202210285171 A CN 202210285171A CN 114385619 A CN114385619 A CN 114385619A
Authority
CN
China
Prior art keywords
sequence
scalar data
attention module
channel
observation time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210285171.8A
Other languages
Chinese (zh)
Other versions
CN114385619B (en
Inventor
常文庆
董火民
李响
王英龙
赵志刚
王春晓
武鲁
王金伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Supercomputing Center in Jinan
Original Assignee
National Supercomputing Center in Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Supercomputing Center in Jinan filed Critical National Supercomputing Center in Jinan
Priority to CN202210285171.8A priority Critical patent/CN114385619B/en
Publication of CN114385619A publication Critical patent/CN114385619A/en
Application granted granted Critical
Publication of CN114385619B publication Critical patent/CN114385619B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/21Design, administration or maintenance of databases
    • G06F16/215Improving data quality; Data cleansing, e.g. de-duplication, removing invalid entries or correcting typographical errors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/245Query processing
    • G06F16/2458Special types of queries, e.g. statistical queries, fuzzy queries or distributed queries
    • G06F16/2474Sequence data queries, e.g. querying versioned data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • Computational Linguistics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Biophysics (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Quality & Reliability (AREA)
  • Health & Medical Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Probability & Statistics with Applications (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The invention belongs to the field of computer systems based on specific calculation models, and provides a method and a system for predicting missing values of multi-channel ocean observation time sequence scalar data, which are used for acquiring ocean observation time sequence scalar data with ocean missing values; obtaining a marine missing value prediction result by adopting a TA-RNN model based on the marine observation time sequence scalar data; the TA-RNN model comprises a convolution attention module, a space attention module and a time attention module, wherein the convolution attention module is used for refining the ocean observation time series scalar data; the space attention module is used for capturing dynamic space correlation of the refined ocean observation time sequence scalar data; the temporal attention module is configured to capture dynamic temporal correlations between different time intervals in the spatial attention module output data.

Description

一种多通道海洋观测时序标量数据缺失值预测方法及系统A method and system for predicting missing values of multi-channel ocean observation time series scalar data

技术领域technical field

本发明属于基于特定计算模型的计算机系统领域,尤其涉及一种多通道海洋观测时序标量数据缺失值预测方法及系统。The invention belongs to the field of computer systems based on specific calculation models, and in particular relates to a method and system for predicting missing values of multi-channel ocean observation time series scalar data.

背景技术Background technique

本部分的陈述仅仅是提供了与本发明相关的背景技术信息,不必然构成在先技术。The statements in this section merely provide background information related to the present invention and do not necessarily constitute prior art.

海洋监测依靠广泛部署的海洋浮标和观测站,这些浮标和观测站集成了各种类型的海洋传感器。海洋生态系统结构复杂,使得海洋观测数据具有复杂性和多样性。缺失值是指原始数据由于缺少信息而造成的数据聚类、分组、删失或截断,它指的是数据中的某个或某些特征值是不完整的。由于叶绿素、风速、溶解氧、盐分、温度、含氧量、风速、浊度等海洋观测数据,采用浮标系统、导航系统和数据库系统共同协作采集,各个采集系统容易受到外界环境因素的干扰,这使得数据存在缺失值。这些数据对下游应用的准确性造成了影响,如海洋数据同化和智能数据挖掘。传统的数理统计和经验预测等方法,对于具有多因子、不规则、复杂等特点的海洋观测数据无法达到预期的目标。因此,以数据为驱动,研究精准的海洋观测数据预测模型,对于海洋观测时序标量数据缺失值填补发挥着不可替代的作用。Ocean monitoring relies on widely deployed ocean buoys and observatories that integrate various types of ocean sensors. The complex structure of marine ecosystems makes marine observation data complex and diverse. Missing value refers to the data clustering, grouping, censoring or truncation of the original data due to lack of information, which means that one or some feature values in the data are incomplete. Because the marine observation data such as chlorophyll, wind speed, dissolved oxygen, salinity, temperature, oxygen content, wind speed, and turbidity are collected by the buoy system, navigation system and database system, each collection system is easily interfered by external environmental factors. The data has missing values. These data have implications for the accuracy of downstream applications, such as marine data assimilation and intelligent data mining. Traditional methods such as mathematical statistics and empirical prediction cannot achieve the expected goals for ocean observation data with multi-factor, irregular and complex characteristics. Therefore, data-driven research on accurate prediction models of ocean observation data plays an irreplaceable role in filling missing values in ocean observation time series scalar data.

发明内容SUMMARY OF THE INVENTION

为了解决上述背景技术中存在的技术问题,本发明提供一种多通道海洋观测时序标量数据缺失值预测方法及系统,其通过多通道海洋观测时序标量数据的历史数据来预测它的未来变化趋势,并将预测出的数据用于缺失值的填充中。In order to solve the technical problems existing in the above background technology, the present invention provides a method and system for predicting missing values of multi-channel ocean observation time series scalar data, which predicts its future change trend through the historical data of multi-channel ocean observation time series scalar data, The predicted data is used to fill in missing values.

为了实现上述目的,本发明采用如下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:

本发明的第一个方面提供一种多通道海洋观测时序标量数据缺失值预测方法。A first aspect of the present invention provides a method for predicting missing values of multi-channel ocean observation time series scalar data.

一种多通道海洋观测时序标量数据缺失值预测方法,包括:A method for predicting missing values of multi-channel ocean observation time series scalar data, comprising:

获取带有海洋缺失值的海洋观测时序标量数据;Obtain ocean observation time series scalar data with ocean missing values;

基于所述海洋观测时序标量数据,采用TA-RNN模型,得到海洋缺失值预测结果;Based on the ocean observation time series scalar data, the TA-RNN model is used to obtain the ocean missing value prediction result;

所述TA-RNN模型包括卷积注意模块、空间注意模块和时间注意模块,所述卷积注意模块用于将所述海洋观测时序标量数据进行细化;所述空间注意模块用于捕获细化后的所述海洋观测时序标量数据的动态空间相关性;所述时间注意模块用于捕获空间注意模块输出数据中不同时间间隔之间的动态时间相关性。The TA-RNN model includes a convolutional attention module, a spatial attention module and a temporal attention module, the convolutional attention module is used to refine the ocean observation time series scalar data; the spatial attention module is used to capture the refinement The dynamic spatial correlation of the ocean observation time series scalar data; the time attention module is used to capture the dynamic time correlation between different time intervals in the output data of the spatial attention module.

本发明的第二个方面提供一种多通道海洋观测时序标量数据缺失值预测系统。A second aspect of the present invention provides a multi-channel ocean observation time series scalar data missing value prediction system.

一种多通道海洋观测时序标量数据缺失值预测系统,包括:A multi-channel ocean observation time series scalar data missing value prediction system, comprising:

数据获取模块,其被配置为:获取带有海洋缺失值的海洋观测时序标量数据;a data acquisition module, which is configured to: acquire ocean observation time series scalar data with ocean missing values;

预测模块,其被配置为:基于所述海洋观测时序标量数据,采用TA-RNN模型,得到海洋缺失值预测结果;A prediction module, which is configured to: based on the ocean observation time series scalar data, using a TA-RNN model to obtain a prediction result of ocean missing values;

所述TA-RNN模型包括卷积注意模块、空间注意模块和时间注意模块,所述卷积注意模块用于将所述海洋观测时序标量数据进行细化;所述空间注意模块用于捕获细化后的所述海洋观测时序标量数据的动态空间相关性;所述时间注意模块用于捕获空间注意模块输出数据中不同时间间隔之间的动态时间相关性。The TA-RNN model includes a convolutional attention module, a spatial attention module and a temporal attention module, the convolutional attention module is used to refine the ocean observation time series scalar data; the spatial attention module is used to capture the refinement The dynamic spatial correlation of the ocean observation time series scalar data; the time attention module is used to capture the dynamic time correlation between different time intervals in the output data of the spatial attention module.

与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:

本发明提出的基于三阶段注意的递归神经网络(TA-RNN)模型,在第一阶段,采用卷积注意模块,将输入序列进行细化操作,使新的输入序列具有更强的表征能力;在第二阶段,采用空间注意模块,使模型能够选择性地捕获不同输入序列之间的动态相关性;第三阶段,采用时间注意模块,使模型能够自适应捕获输入序列中不同时间间隔之间的动态时间相关性。The three-stage attention-based recurrent neural network (TA-RNN) model proposed by the present invention adopts a convolutional attention module to refine the input sequence in the first stage, so that the new input sequence has stronger representation ability; In the second stage, a spatial attention module is adopted, which enables the model to selectively capture dynamic correlations between different input sequences; in the third stage, a temporal attention module is adopted, which enables the model to adaptively capture the differences between different time intervals in the input sequence. dynamic time correlation.

本发明能够对缺失值进行精准的填补,从而避免了缺失值填补不精准,误差较大等问题。The present invention can accurately fill in missing values, thereby avoiding the problems of inaccurate filling of missing values and large errors.

本发明解决了目前缺失值填补只能依赖单通道数据进行填补的缺陷,本发明针对海洋多通道观测时序标量数据,通过叶绿素和深度、温度、导电率、盐度、氧含量、溶解氧浓度、叶绿素(含缺失值)、浊度、PH值、风速等海洋观测时序标量数据之间的相关性,对叶绿素序列存在的缺失值进行填补。由于海洋数据丰富多样,在大多数场景下,目标序列往往不是单独存在,而是和众多的时间序列同时存在,共同组成了特定的场景数据集,对多通道海洋观测时序标量数据集进行缺失值填补,这样更贴近海洋采集系统采集上的数据集的实际情况。The invention solves the defect that the current missing value filling can only rely on single-channel data. The invention aims at ocean multi-channel observation time series scalar data, through chlorophyll and depth, temperature, conductivity, salinity, oxygen content, dissolved oxygen concentration, The correlation between ocean observation time series scalar data such as chlorophyll (including missing values), turbidity, pH value, wind speed, etc., fills in the missing values in the chlorophyll sequence. Due to the richness and variety of marine data, in most scenarios, the target sequence often does not exist alone, but coexists with many time series, which together form a specific scene dataset, and the multi-channel ocean observation time series scalar dataset is missing values. Fill, so that it is closer to the actual situation of the data set collected by the marine acquisition system.

附图说明Description of drawings

构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。The accompanying drawings forming a part of the present invention are used to provide further understanding of the present invention, and the exemplary embodiments of the present invention and their descriptions are used to explain the present invention, and do not constitute an improper limitation of the present invention.

图1是本发明实施例示出的多通道海洋观测时序标量数据缺失值预测方法的流程图;1 is a flowchart of a method for predicting missing values of multi-channel ocean observation time series scalar data according to an embodiment of the present invention;

图2是本发明实施例示出的缺失值填补流程图;2 is a flowchart of missing value filling shown in an embodiment of the present invention;

图3是本发明实施例示出的基于三阶段注意的递归神经网络模型框架图;3 is a framework diagram of a recurrent neural network model based on three-stage attention shown in an embodiment of the present invention;

图4是本发明实施例示出的卷积注意模块(CBAM)示意图;FIG. 4 is a schematic diagram of a convolutional attention module (CBAM) shown in an embodiment of the present invention;

图5是本发明实施例示出的通道注意模块示意图;5 is a schematic diagram of a channel attention module shown in an embodiment of the present invention;

图6是本发明实施例示出的空间注意模块示意图;6 is a schematic diagram of a spatial attention module shown in an embodiment of the present invention;

图7是本发明实施例示出的带有缺失值的叶绿素序列图;7 is a chlorophyll sequence diagram with missing values shown in an embodiment of the present invention;

图8是本发明实施例示出的在没有缺失值的样本集的叶绿素序列预测效果图;Fig. 8 is the chlorophyll sequence prediction effect diagram in the sample set with no missing value shown in the embodiment of the present invention;

图9是本发明实施例示出的经过填补后的叶绿素序列图;Fig. 9 is the chlorophyll sequence diagram after filling shown in the embodiment of the present invention;

图10是本发明实施例示出的取其中一部分长度为50的含缺失值的叶绿素序列图;FIG. 10 is a chlorophyll sequence diagram with a part of the length of 50 containing missing values shown in the embodiment of the present invention;

图11是本发明实施例示出的经过线性插值处理后的叶绿素序列图;11 is a chlorophyll sequence diagram after linear interpolation processing shown in an embodiment of the present invention;

图12是本发明实施例示出的经过模型预测后的叶绿素缺失填补效果图。FIG. 12 is a diagram showing the effect of filling in chlorophyll deficiency after model prediction according to an embodiment of the present invention.

具体实施方式Detailed ways

下面结合附图与实施例对本发明作进一步说明。The present invention will be further described below with reference to the accompanying drawings and embodiments.

应该指出,以下详细说明都是例示性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。It should be noted that the following detailed description is exemplary and intended to provide further explanation of the invention. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.

需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。It should be noted that the terminology used herein is for the purpose of describing specific embodiments only, and is not intended to limit the exemplary embodiments according to the present invention. As used herein, unless the context clearly dictates otherwise, the singular is intended to include the plural as well, furthermore, it is to be understood that when the terms "comprising" and/or "including" are used in this specification, it indicates that There are features, steps, operations, devices, components and/or combinations thereof.

需要注意的是,附图中的流程图和框图示出了根据本公开的各种实施例的方法和系统的可能实现的体系架构、功能和操作。应当注意,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,所述模块、程序段、或代码的一部分可以包括一个或多个用于实现各个实施例中所规定的逻辑功能的可执行指令。也应当注意,在有些作为备选的实现中,方框中所标注的功能也可以按照不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,或者它们有时也可以按照相反的顺序执行,这取决于所涉及的功能。同样应当注意的是,流程图和/或框图中的每个方框、以及流程图和/或框图中的方框的组合,可以使用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以使用专用硬件与计算机指令的组合来实现。It is noted that the flowchart and block diagrams in the figures illustrate the architecture, functionality, and operation of possible implementations of methods and systems according to various embodiments of the present disclosure. It should be noted that each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which may include one or more components used in implementing various embodiments Executable instructions for the specified logical function. It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may in fact be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It should also be noted that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented using dedicated hardware-based systems that perform the specified functions or operations , or can be implemented using a combination of dedicated hardware and computer instructions.

正如背景技术中所介绍的目前常见的海洋多通道观测标量数据缺失值填补的方法大多采用定值、中位数、众数来填补缺失值,但这会出现填补的缺失值不精准,存在较大误差等问题。本发明提出的基于三阶段注意的递归神经网络(TA-RNN)模型,在第一阶段,采用卷积注意模块,将输入序列进行细化操作,使新的输入序列具有更强的表征能力;在第二阶段,采用空间注意模块,使模型能够选择性地捕获不同输入序列之间的动态相关性;第三阶段,采用时间注意模块。使模型能够自适应捕获输入序列中不同时间间隔之间的动态时间相关性。本发明能够对缺失值进行精准的填补,从而避免了缺失值填补不精准,误差较大等问题。As described in the Background Art, the current common methods for filling missing values in marine multi-channel observation scalar data mostly use fixed values, medians and modes to fill in missing values, but this will result in inaccurate filling of missing values, and there are more problems. large errors, etc. The three-stage attention-based recurrent neural network (TA-RNN) model proposed by the present invention adopts a convolutional attention module to refine the input sequence in the first stage, so that the new input sequence has stronger representation ability; In the second stage, a spatial attention module is adopted, which enables the model to selectively capture dynamic correlations between different input sequences; in the third stage, a temporal attention module is adopted. Enables the model to adaptively capture dynamic temporal correlations between different time intervals in the input sequence. The present invention can accurately fill in missing values, thereby avoiding the problems of inaccurate filling of missing values and large errors.

针对目前深度学习的缺失值填补算法存在着无法对多通道海洋观测时序标量数据缺失值进行缺失值填补的缺陷。目前对缺失值进行填补的主要方式是E2GAN,但是对于传感器输入至E2GAN进行缺失值填补时,大部分只有两列数据,时间与检测值。这在实际的海洋场景中基本上是不存在的,海洋浮标上集成了多种传感器同时工作,因此海洋传感器采集到的数据基本上都为多通道数据。本发明针对了海洋多通道观测时序标量数据,采用了基于三阶段注意的递归神经网络模型,利用目标序列的过去值和与目标序列相关的其它序列的当前值与过去值,对目标序列的当前值进行预测,并将预测值填充到当前数据集的缺失值位置上。The current deep learning missing value filling algorithm has the defect that it cannot fill the missing value of the multi-channel ocean observation time series scalar data. At present, the main method for filling missing values is E 2 GAN, but when filling missing values with sensor input to E 2 GAN, most of them only have two columns of data, time and detection value. This basically does not exist in the actual ocean scene. Multiple sensors are integrated on the ocean buoy to work at the same time, so the data collected by the ocean sensors are basically multi-channel data. Aiming at the ocean multi-channel observation time series scalar data, the invention adopts a recurrent neural network model based on three-stage attention, and uses the past value of the target sequence and the current and past values of other sequences related to the target sequence to determine the current value of the target sequence. The predicted value is filled in the missing value position of the current data set.

本发明提出了基于三阶段注意的递归神经网络模型对多通道的海洋数据缺失值进行精准的预测,三阶段注意的递归神经网络模型如图3所示,其中三阶段的注意模块分别是:The present invention proposes a recurrent neural network model based on three-stage attention to accurately predict missing values of multi-channel marine data. The recurrent neural network model of three-stage attention is shown in Figure 3, wherein the three-stage attention modules are:

(1)卷积注意模块,卷积注意模块将原始的输入序列进行细化,增加了原始输入序列的表征能力。其中卷积注意模块是在2018年提出的,它将卷积模块中的空间注意力和通道注意力混合,该模块是一个轻量级和通用的模块,具有良好地可移植性,这里我们将它用于处理多通道输入序列。(1) Convolutional attention module, the convolutional attention module refines the original input sequence and increases the representation ability of the original input sequence. Among them, the convolutional attention module was proposed in 2018. It mixes spatial attention and channel attention in the convolutional module. This module is a lightweight and general module with good portability. Here we will It is used to process multi-channel input sequences.

(2)空间注意模块,空间注意模块能够使模型选择性地捕获不同输入序列之间的动态空间相关性。(2) Spatial attention module, which enables the model to selectively capture dynamic spatial correlations between different input sequences.

(3)时间注意模块,时间注意模块能够使模型自适应地捕获输入序列中不同时间间隔之间的动态时间相关性。(3) Temporal Attention Module, which enables the model to adaptively capture dynamic temporal correlations between different time intervals in the input sequence.

如图3所示,卷积注意模块,它将原始的输入序列

Figure 960010DEST_PATH_IMAGE001
进行细化,生成新的输入序列
Figure 807880DEST_PATH_IMAGE002
,经过卷积注意力操作后,增加了原始输入序列的表征能力;空间注意模块,它能够有选择性地捕获不同输入序列之间的动态相关性;门控循环单元,它可以学习到输入序列的隐层表示,并根据输入序列和其上一个时刻隐状态来更新当前时刻的隐状态;时间注意模块。它可以自适应地捕获序列中不同时间间隔之间的动态时间相关性。As shown in Figure 3, the convolutional attention module, which takes the original input sequence
Figure 960010DEST_PATH_IMAGE001
Refinement to generate a new input sequence
Figure 807880DEST_PATH_IMAGE002
, after the convolutional attention operation, increases the representation ability of the original input sequence; the spatial attention module, which can selectively capture the dynamic correlation between different input sequences; the gated recurrent unit, which can learn the input sequence The hidden layer representation of , and update the hidden state of the current moment according to the input sequence and its previous hidden state; temporal attention module. It can adaptively capture dynamic temporal correlations between different time intervals in a sequence.

下面从多种实施方式来介绍本发明的具体实施方案:Specific embodiments of the present invention will be introduced below from various embodiments:

实施例一Example 1

如图1所示,本实施例提供了一种多通道海洋观测时序标量数据缺失值预测方法。As shown in FIG. 1 , this embodiment provides a method for predicting missing values of multi-channel ocean observation time series scalar data.

这里我们采用加拿大海洋网的带有叶绿素缺失值的多通道海洋观测时序标量数据集,该多通道海洋观测时序标量数据集包括:深度、温度、导电率、盐度、氧含量、溶解氧浓度、叶绿素(含缺失值)、浊度、PH值、风速等海洋观测时序标量数据,带有缺失值的叶绿素序列如图7所示,其中x轴表示叶绿素序列的长度,y轴表示叶绿素的数值,缺失值如圆圈所示在此数据集中缺失值使用定值999填补。结合此数据集,本实施例的技术方案为:基于三阶段注意的递归神经网络预测模型的多通道海洋观测时序标量数据缺失值预测,如图2所示,包括以下步骤:Here we use the multi-channel ocean observation time series scalar dataset with missing chlorophyll values from the Canadian Ocean Network, which includes: depth, temperature, conductivity, salinity, oxygen content, dissolved oxygen concentration, Chlorophyll (including missing values), turbidity, pH value, wind speed and other ocean observation time series scalar data, the chlorophyll sequence with missing values is shown in Figure 7, where the x-axis represents the length of the chlorophyll sequence, and the y-axis represents the chlorophyll value. Missing values are shown as circles. Missing values in this dataset were imputed using the fixed value of 999. Combined with this data set, the technical solution of this embodiment is: prediction of missing values of multi-channel ocean observation time series scalar data based on a three-stage attention recurrent neural network prediction model, as shown in Figure 2, including the following steps:

(1)将该数据集作为模型的输入,首先对其进行数据预处理,得到初始序列。预处理阶段包括:(1) Take the dataset as the input of the model, and first perform data preprocessing on it to obtain the initial sequence. The preprocessing stage includes:

(1-1)对待填补的叶绿素数据采用线性插值方式进行处理,得到初始数据;(1-1) The chlorophyll data to be filled is processed by linear interpolation to obtain the initial data;

(1-2)构建没有缺失值的样本集,将没有缺失值的样本集输入到模型中进行训练,并采用损失函数计算对应的数值。(1-2) Construct a sample set without missing values, input the sample set without missing values into the model for training, and use the loss function to calculate the corresponding value.

(2)将叶绿素序列作为我们需要预测的目标序列,通过皮尔逊相关系数来测量其他序列与目标序列之间的相关性。通过计算目标序列与深度、温度、导电率、盐度、氧含量、溶解氧浓度、叶绿素(含缺失值)、浊度、PH值、风速等序列之间的协方差与标准差的商,我们选取深度、风速、氧含量、溶解氧、浊度、温度、盐分这七个序列与叶绿素序列最相关的序列和叶绿素序列一起构成输入序列

Figure 733110DEST_PATH_IMAGE003
,其中n表示不同类型序列的个数,
Figure 19735DEST_PATH_IMAGE004
表示输入序列长度大小,
Figure 346811DEST_PATH_IMAGE005
表示深度、风速、氧含量、溶解氧、浊度、温度、盐分这七个序列构成的多通道序列。(2) The chlorophyll sequence is used as the target sequence we need to predict, and the correlation between other sequences and the target sequence is measured by the Pearson correlation coefficient. By calculating the quotient of the covariance and standard deviation between the target series and the series of depth, temperature, conductivity, salinity, oxygen content, dissolved oxygen concentration, chlorophyll (with missing values), turbidity, pH value, wind speed, etc., we Select the seven sequences of depth, wind speed, oxygen content, dissolved oxygen, turbidity, temperature, and salinity, which are most related to the chlorophyll sequence and form the input sequence together with the chlorophyll sequence.
Figure 733110DEST_PATH_IMAGE003
, where n represents the number of different types of sequences,
Figure 19735DEST_PATH_IMAGE004
represents the length of the input sequence,
Figure 346811DEST_PATH_IMAGE005
It represents a multi-channel sequence composed of seven sequences of depth, wind speed, oxygen content, dissolved oxygen, turbidity, temperature, and salinity.

(3)将(2)后的输入序列进行分解,分解为叶绿素序列

Figure 427900DEST_PATH_IMAGE006
和深度、风速、氧含量、溶解氧、浊度、温度、盐分这七个序列构成的多通道序列
Figure 840427DEST_PATH_IMAGE007
。(3) Decompose the input sequence after (2) into chlorophyll sequences
Figure 427900DEST_PATH_IMAGE006
A multi-channel sequence composed of seven sequences of depth, wind speed, oxygen content, dissolved oxygen, turbidity, temperature, and salinity
Figure 840427DEST_PATH_IMAGE007
.

(4)将该多通道序列

Figure 602846DEST_PATH_IMAGE005
输入到CBAM模块中,CBAM模块如图4所示。首先通过平均池化和最大池化操作来聚合特征映射的空间信息,生成两个不同的空间上下文描述符分别表示平均池特征和最大池特征:
Figure 112325DEST_PATH_IMAGE008
Figure 567577DEST_PATH_IMAGE009
。(4) The multi-channel sequence
Figure 602846DEST_PATH_IMAGE005
Input into the CBAM module, the CBAM module is shown in Figure 4. First, the spatial information of the feature map is aggregated through the average pooling and max pooling operations, and two different spatial context descriptors are generated to represent the average pooling feature and the max pooling feature respectively:
Figure 112325DEST_PATH_IMAGE008
and
Figure 567577DEST_PATH_IMAGE009
.

(5)如图5所示,将这两个描述符输入到由多层感知机和一个隐藏层组成的共享网络中,生成通道注意力映射

Figure 529717DEST_PATH_IMAGE010
即:(5) As shown in Figure 5, these two descriptors are input into a shared network consisting of a multilayer perceptron and a hidden layer to generate a channel attention map
Figure 529717DEST_PATH_IMAGE010
which is:

Figure 95828DEST_PATH_IMAGE011
Figure 95828DEST_PATH_IMAGE011

式中

Figure 131917DEST_PATH_IMAGE012
表示sigmoid函数,
Figure 820387DEST_PATH_IMAGE013
Figure 207506DEST_PATH_IMAGE014
表示多层感知机权重。in the formula
Figure 131917DEST_PATH_IMAGE012
represents the sigmoid function,
Figure 820387DEST_PATH_IMAGE013
and
Figure 207506DEST_PATH_IMAGE014
Represents the multilayer perceptron weights.

(6)将原始输入序列

Figure 311728DEST_PATH_IMAGE005
与经过通道注意力映射的序列进行逐元素相乘操作。得到新的输入序列
Figure 530220DEST_PATH_IMAGE015
,即:(6) Convert the original input sequence
Figure 311728DEST_PATH_IMAGE005
Perform element-wise multiplication with the channel-attention-mapped sequence. get new input sequence
Figure 530220DEST_PATH_IMAGE015
,which is:

Figure 327275DEST_PATH_IMAGE016
Figure 327275DEST_PATH_IMAGE016

式中,

Figure 936111DEST_PATH_IMAGE017
表示逐元素相乘。In the formula,
Figure 936111DEST_PATH_IMAGE017
Represents element-wise multiplication.

(7)如图6所示,将新生成的序列

Figure 171920DEST_PATH_IMAGE015
沿着通道轴应用平均池化和最大池化操作,通过两个池操作聚合特征映射的通道信息,生成两个空间上下文描述符:
Figure 182601DEST_PATH_IMAGE018
Figure 212874DEST_PATH_IMAGE019
。并将它们连接起来以生成有效地特征描述符,在连接的特征描述符上,我们应用卷积层去生成空间注意映射
Figure 309006DEST_PATH_IMAGE020
,即:(7) As shown in Figure 6, the newly generated sequence is
Figure 171920DEST_PATH_IMAGE015
Average pooling and max pooling operations are applied along the channel axis, and the channel information of the feature map is aggregated by the two pooling operations to generate two spatial context descriptors:
Figure 182601DEST_PATH_IMAGE018
and
Figure 212874DEST_PATH_IMAGE019
. and concatenate them to generate effective feature descriptors. On the concatenated feature descriptors, we apply convolutional layers to generate spatial attention maps
Figure 309006DEST_PATH_IMAGE020
,which is:

Figure 755031DEST_PATH_IMAGE021
Figure 755031DEST_PATH_IMAGE021

式中,

Figure 948115DEST_PATH_IMAGE012
表示sigmiod激活函数,
Figure 86972DEST_PATH_IMAGE022
表示滤波器大小为
Figure 732717DEST_PATH_IMAGE023
的卷积运算。In the formula,
Figure 948115DEST_PATH_IMAGE012
represents the sigmiod activation function,
Figure 86972DEST_PATH_IMAGE022
Indicates that the filter size is
Figure 732717DEST_PATH_IMAGE023
convolution operation.

(8)将(6)中得到的新输入序列与经过空间注意力映射的序列进行逐元素相乘操作,得到最终细化的输出

Figure 982433DEST_PATH_IMAGE024
,即:(8) Perform element-wise multiplication of the new input sequence obtained in (6) and the sequence mapped by spatial attention to obtain the final refined output
Figure 982433DEST_PATH_IMAGE024
,which is:

Figure 967706DEST_PATH_IMAGE025
Figure 967706DEST_PATH_IMAGE025

(9)将细化后的输出

Figure 339782DEST_PATH_IMAGE024
,作为空间注意模块的输入,通过空间注意力机制生成新的输入序列
Figure 410506DEST_PATH_IMAGE026
,即:(9) The refined output
Figure 339782DEST_PATH_IMAGE024
, as the input of the spatial attention module, which generates a new input sequence through the spatial attention mechanism
Figure 410506DEST_PATH_IMAGE026
,which is:

Figure 463913DEST_PATH_IMAGE027
Figure 463913DEST_PATH_IMAGE027

式中,

Figure 366010DEST_PATH_IMAGE028
表示第k个输入序列
Figure 846670DEST_PATH_IMAGE029
Figure 139111DEST_PATH_IMAGE030
表示t时刻编码器隐状态的注意权重,对注意权重
Figure 58525DEST_PATH_IMAGE030
进行SoftMax函数标准化处理得到
Figure 752812DEST_PATH_IMAGE031
是t-1时刻编码器隐状态,
Figure 466690DEST_PATH_IMAGE032
Figure 512006DEST_PATH_IMAGE033
是需要学习的参数矩阵,
Figure 907215DEST_PATH_IMAGE034
是衡量在t时刻的第k个输入特征重要性的注意权重。In the formula,
Figure 366010DEST_PATH_IMAGE028
represents the kth input sequence
Figure 846670DEST_PATH_IMAGE029
,
Figure 139111DEST_PATH_IMAGE030
Represents the attention weight of the hidden state of the encoder at time t, and the attention weight
Figure 58525DEST_PATH_IMAGE030
Standardize the SoftMax function to get
Figure 752812DEST_PATH_IMAGE031
is the hidden state of the encoder at time t-1,
Figure 466690DEST_PATH_IMAGE032
and
Figure 512006DEST_PATH_IMAGE033
is the parameter matrix to be learned,
Figure 907215DEST_PATH_IMAGE034
is the attention weight that measures the importance of the kth input feature at time t.

(10)我们取得注意权重,我们可以在t时刻更新输入序列和编码器隐状态,即:(10) We get the attention weights, we can update the input sequence and the encoder hidden state at time t, namely:

Figure 518325DEST_PATH_IMAGE035
Figure 518325DEST_PATH_IMAGE035

(11)将t-1时刻解码器和编码器的隐状态与t时刻编码器的隐状态输入到时间注意模块中,通过时间注意机制,得到上下文向量

Figure 606367DEST_PATH_IMAGE036
,即:(11) Input the hidden state of the decoder and encoder at time t-1 and the hidden state of the encoder at time t into the time attention module, and obtain the context vector through the time attention mechanism
Figure 606367DEST_PATH_IMAGE036
,which is:

Figure 873400DEST_PATH_IMAGE037
Figure 873400DEST_PATH_IMAGE037

Figure 892476DEST_PATH_IMAGE038
Figure 892476DEST_PATH_IMAGE038

式中,

Figure 561354DEST_PATH_IMAGE039
是需要学习的参数矩阵,
Figure 882614DEST_PATH_IMAGE040
Figure 371364DEST_PATH_IMAGE041
时刻解码器的隐状态,
Figure 373955DEST_PATH_IMAGE042
是t-1时刻编码器的隐状态,
Figure 694078DEST_PATH_IMAGE043
是t时刻编码器的隐状态,
Figure 858343DEST_PATH_IMAGE044
表示t时刻解码器的注意权重,对注意权重
Figure 99969DEST_PATH_IMAGE044
进行SoftMax函数标准化处理得到
Figure 968568DEST_PATH_IMAGE045
衡量在t时刻的第i个输入特征重要性的注意权重,
Figure 346460DEST_PATH_IMAGE046
是上下文向量。In the formula,
Figure 561354DEST_PATH_IMAGE039
is the parameter matrix to be learned,
Figure 882614DEST_PATH_IMAGE040
Yes
Figure 371364DEST_PATH_IMAGE041
the hidden state of the decoder at time,
Figure 373955DEST_PATH_IMAGE042
is the hidden state of the encoder at time t-1,
Figure 694078DEST_PATH_IMAGE043
is the hidden state of the encoder at time t,
Figure 858343DEST_PATH_IMAGE044
Represents the attention weight of the decoder at time t, and the attention weight
Figure 99969DEST_PATH_IMAGE044
Standardize the SoftMax function to get
Figure 968568DEST_PATH_IMAGE045
The attention weight that measures the importance of the ith input feature at time t,
Figure 346460DEST_PATH_IMAGE046
is the context vector.

(12)当获得t时刻上下文向量

Figure 947205DEST_PATH_IMAGE046
,将它们与目标时间序列结合起来,并更新t时刻解码器隐状态
Figure 472864DEST_PATH_IMAGE047
,即:(12) When the context vector at time t is obtained
Figure 947205DEST_PATH_IMAGE046
, combine them with the target time series, and update the decoder hidden state at time t
Figure 472864DEST_PATH_IMAGE047
,which is:

Figure 817258DEST_PATH_IMAGE048
Figure 817258DEST_PATH_IMAGE048

式中,

Figure 377552DEST_PATH_IMAGE049
和b是将连接映射到解码器输入的参数矩阵,
Figure 883620DEST_PATH_IMAGE050
是t-1时刻解码器的输入,
Figure 99838DEST_PATH_IMAGE051
是计算出的上下文向量,
Figure 44660DEST_PATH_IMAGE052
表示连接操作,
Figure 397144DEST_PATH_IMAGE053
是经过线性变换后的新的输入,
Figure 74113DEST_PATH_IMAGE040
是t-1时刻解码器的隐状态。In the formula,
Figure 377552DEST_PATH_IMAGE049
and b is the parameter matrix that maps connections to decoder inputs,
Figure 883620DEST_PATH_IMAGE050
is the input of the decoder at time t-1,
Figure 99838DEST_PATH_IMAGE051
is the computed context vector,
Figure 44660DEST_PATH_IMAGE052
represents the connection operation,
Figure 397144DEST_PATH_IMAGE053
is the new input after linear transformation,
Figure 74113DEST_PATH_IMAGE040
is the hidden state of the decoder at time t-1.

(13)最后,将上下文向量

Figure 574364DEST_PATH_IMAGE054
与T时刻解码器的隐状态
Figure 260561DEST_PATH_IMAGE055
连接起来成为新的解码器的隐状态,从中做出最终预测:(13) Finally, the context vector
Figure 574364DEST_PATH_IMAGE054
with the hidden state of the decoder at time T
Figure 260561DEST_PATH_IMAGE055
The concatenation becomes the hidden state of the new decoder, from which the final prediction is made:

Figure 529868DEST_PATH_IMAGE056
Figure 529868DEST_PATH_IMAGE056

式中,矩阵

Figure 643318DEST_PATH_IMAGE057
和向量
Figure 568548DEST_PATH_IMAGE058
映射连接
Figure 855173DEST_PATH_IMAGE059
,最终我们使用线性变化(
Figure 182249DEST_PATH_IMAGE060
Figure 466600DEST_PATH_IMAGE061
)生成最终的叶绿素预测结果。预测效果图如图8所示:In the formula, the matrix
Figure 643318DEST_PATH_IMAGE057
and vector
Figure 568548DEST_PATH_IMAGE058
map connection
Figure 855173DEST_PATH_IMAGE059
, and finally we use a linear variation (
Figure 182249DEST_PATH_IMAGE060
and
Figure 466600DEST_PATH_IMAGE061
) to generate the final chlorophyll prediction result. The prediction effect diagram is shown in Figure 8:

(14)将预测得到的叶绿素数据填补到带有叶绿素缺失值的数据集中,得到最终的填补结果,结果如图9所示,其中,x轴表示叶绿素序列的长度,y轴表示叶绿素浓度的数值,圆圈部分表示缺失值填充后的数值。(14) Fill the predicted chlorophyll data into the data set with missing chlorophyll values to obtain the final filling result. The result is shown in Figure 9, where the x-axis represents the length of the chlorophyll sequence, and the y-axis represents the value of the chlorophyll concentration , the circled part represents the value after the missing value is filled.

在这里我们取其中一部分长度为50的含缺失值的叶绿素序列,如图10所示,其中x轴表示叶绿素序列的长度,y轴表示叶绿素的数值。圆圈部分表示叶绿素序列的缺失值,这里缺失值用999定值表示。Here we take a part of the chlorophyll sequences with missing values of length 50, as shown in Figure 10, where the x-axis represents the length of the chlorophyll sequence, and the y-axis represents the chlorophyll value. The circled part represents the missing value of the chlorophyll sequence, where the missing value is represented by a fixed value of 999.

叶绿素序列经过线性插补后的结果如图11所示,其中x轴表示叶绿素序列的长度,y轴表示叶绿素的数值。圆圈部分表示叶绿素序列的缺失值经过线性插补后填充的结果。The result of the chlorophyll sequence after linear interpolation is shown in Figure 11, where the x-axis represents the length of the chlorophyll sequence, and the y-axis represents the value of the chlorophyll. The circled part represents the result of filling in missing values of chlorophyll sequences after linear interpolation.

叶绿素序列经过模型预测后的结果如图12所示,其中x轴表示叶绿素序列的长度,y轴表示叶绿素的数值。圆圈部分表示叶绿素序列的缺失值经过模型预测后填充的结果。The results of the chlorophyll sequence predicted by the model are shown in Figure 12, where the x-axis represents the length of the chlorophyll sequence, and the y-axis represents the value of the chlorophyll. The circled part represents the result of filling in the missing values of the chlorophyll sequence after model prediction.

将图10、11、12进行对比,我们可以看出基于三阶段注意的递归神经网络模型对于缺失值填补的精准度是要高于线性插值的结果。Comparing Figures 10, 11, and 12, we can see that the accuracy of the recurrent neural network model based on three-stage attention for filling missing values is higher than that of linear interpolation.

本实施例包括以下优点:This embodiment includes the following advantages:

(1)本实施例基于叶绿素序列的先前值以及深度、风速、氧含量、溶解氧、浊度、温度、盐分序列的当前值和过去值来预测其当前值,弥补了目前缺失值填补技术只能针对海洋单通道观测时序标量数据集进行数据填补的缺陷。(1) This embodiment predicts its current value based on the previous value of the chlorophyll sequence and the current and past values of the depth, wind speed, oxygen content, dissolved oxygen, turbidity, temperature, and salinity sequence, making up for the current missing value filling technology only. Defects that can be filled in for ocean single-channel observation time series scalar datasets.

(2)本实施例使用空间注意模块替代原有的输入注意模块,能够有选择性地捕获不同输入序列之间的动态空间相关性,使模型能够有针对地关注对预测任务相关联的特征,提高了模型地预测精准度,降低了模型的训练成本,提高了模型对缺失值填补的精准度。(2) In this embodiment, the spatial attention module is used to replace the original input attention module, which can selectively capture the dynamic spatial correlation between different input sequences, so that the model can focus on the features associated with the prediction task in a targeted manner. The prediction accuracy of the model is improved, the training cost of the model is reduced, and the accuracy of the model for filling missing values is improved.

(3)本实施例使用卷积注意模块对输入序列进行细化处理,与DA-RNN原有的输入注意模块相比它能够细化输入的序列,增强了输入序列的表征能力。克服了模型在训练大批量数据中存在的梯度衰退问题,并且预测性能不会由于数据量的增大,预测精度下降,具有良好的稳定性。模型能够有效地填补具有缺失值的大批量数据集。(3) This embodiment uses the convolution attention module to refine the input sequence. Compared with the original input attention module of DA-RNN, it can refine the input sequence and enhance the representation ability of the input sequence. It overcomes the gradient decay problem of the model in training large batches of data, and the prediction performance will not decrease due to the increase in the amount of data, and the prediction accuracy has good stability. The model is able to effectively impute large datasets with missing values.

实施例二Embodiment 2

本实施例提供了一种多通道海洋观测时序标量数据缺失值预测系统。This embodiment provides a multi-channel ocean observation time series scalar data missing value prediction system.

本实施例的技术方案包括以下几个模块:The technical solution of this embodiment includes the following modules:

1、获取和预处理模块1. Acquisition and preprocessing modules

获取带有叶绿素缺失值的多通道海洋观测时序标量数据集,对该数据集进行预处理,预处理过程如下:Obtain a multi-channel ocean observation time series scalar dataset with missing chlorophyll values, and preprocess the dataset. The preprocessing process is as follows:

(1)对叶绿素序列缺失致部分采用线性插值方式进行处理,构建没有叶绿素缺失值的样本集,将没有缺失值的样本集输入到本发明中模型进行训练,并采用损失函数计算对应的数值。(1) Use linear interpolation to process the missing chlorophyll sequence, construct a sample set with no missing chlorophyll values, input the sample set without missing values into the model in the present invention for training, and use a loss function to calculate the corresponding value.

(2)将叶绿素序列作为我们需要预测的目标序列,通过皮尔逊相关系数来测量海洋多通道数据集中的深度、温度、导电率、盐度、氧含量、溶解氧浓度、叶绿素(含缺失值)、浊度、PH值、风速等序列与叶绿素序列之间的相关性。通过计算目标序列与其他序列之间的协方差与标准差的商,我们选取深度、风速、氧含量、溶解氧、浊度、温度、盐分这七个序列与叶绿素序列最相关的序列和目标序列一起构成输入序列:(2) Take the chlorophyll sequence as the target sequence we need to predict, and use the Pearson correlation coefficient to measure the depth, temperature, conductivity, salinity, oxygen content, dissolved oxygen concentration, chlorophyll (including missing values) in the marine multi-channel dataset. , turbidity, pH, wind speed and other sequences and the correlation between the chlorophyll sequence. By calculating the quotient of the covariance and standard deviation between the target sequence and other sequences, we select the sequence and the target sequence that are most related to the chlorophyll sequence of the seven sequences of depth, wind speed, oxygen content, dissolved oxygen, turbidity, temperature, and salinity Together they form the input sequence:

Figure 410285DEST_PATH_IMAGE062
Figure 410285DEST_PATH_IMAGE062
.

(3)将(2)后的数据进行分解,分解为叶绿素序列

Figure 438284DEST_PATH_IMAGE063
和由深度、风速、氧含量、溶解氧、浊度、温度、盐分组成的新的输入序列
Figure 947763DEST_PATH_IMAGE064
,其中n表示新输入序列中不同类型序列的个数,
Figure 403015DEST_PATH_IMAGE065
表示输入序列长度。(3) Decompose the data after (2) into chlorophyll sequences
Figure 438284DEST_PATH_IMAGE063
and a new input sequence consisting of depth, wind speed, oxygen content, dissolved oxygen, turbidity, temperature, salinity
Figure 947763DEST_PATH_IMAGE064
, where n represents the number of different types of sequences in the new input sequence,
Figure 403015DEST_PATH_IMAGE065
Indicates the input sequence length.

2、卷积注意模块2. Convolution attention module

Figure 302838DEST_PATH_IMAGE066
作为输入,卷积注意模块(CBAM)依次推断出一个一维通道注意力映射
Figure 931265DEST_PATH_IMAGE067
和二维空间注意力映射
Figure 967354DEST_PATH_IMAGE068
。其总过程可以表示如下:Will
Figure 302838DEST_PATH_IMAGE066
As input, the Convolutional Attention Module (CBAM) in turn infers a one-dimensional channel attention map
Figure 931265DEST_PATH_IMAGE067
and 2D spatial attention maps
Figure 967354DEST_PATH_IMAGE068
. The overall process can be expressed as follows:

Figure 593508DEST_PATH_IMAGE069
Figure 593508DEST_PATH_IMAGE069

Figure 777365DEST_PATH_IMAGE070
Figure 777365DEST_PATH_IMAGE070

其中,

Figure 147166DEST_PATH_IMAGE071
表示逐元素相乘,在乘法过程中通道注意值沿着空间维度传播,
Figure 303341DEST_PATH_IMAGE072
是最终细化的输出。in,
Figure 147166DEST_PATH_IMAGE071
represents element-wise multiplication, during which the channel attention value is propagated along the spatial dimension,
Figure 303341DEST_PATH_IMAGE072
is the final refined output.

具体计算过程如下,首先通过平均池化和最大池化操作来聚合特征映射的空间信息,生成两个不同的空间上下文描述符分别表示平均池特征和最大池特征:

Figure 162712DEST_PATH_IMAGE073
Figure 771548DEST_PATH_IMAGE074
,然后这两个描述符发送到一个共享网络中生成通道注意力映射
Figure 741778DEST_PATH_IMAGE075
,共享网络由多层感知机和一个隐藏层组成,将共享层应用于每个描述符号后,我们使用元素求和合并输出特征向量,通道注意力计算公式如下:The specific calculation process is as follows. First, the spatial information of the feature map is aggregated through the average pooling and maximum pooling operations, and two different spatial context descriptors are generated to represent the average pooling feature and the maximum pooling feature:
Figure 162712DEST_PATH_IMAGE073
and
Figure 771548DEST_PATH_IMAGE074
, then these two descriptors are sent to a shared network to generate a channel attention map
Figure 741778DEST_PATH_IMAGE075
, the shared network consists of a multilayer perceptron and a hidden layer. After applying the shared layer to each descriptor, we use element-wise summation to combine the output feature vectors. The channel attention calculation formula is as follows:

Figure 752460DEST_PATH_IMAGE076
Figure 752460DEST_PATH_IMAGE076

其中,

Figure 720416DEST_PATH_IMAGE077
表示sigmoid函数,
Figure 878865DEST_PATH_IMAGE078
Figure 590469DEST_PATH_IMAGE079
表示多层感知机权重。in,
Figure 720416DEST_PATH_IMAGE077
represents the sigmoid function,
Figure 878865DEST_PATH_IMAGE078
and
Figure 590469DEST_PATH_IMAGE079
Represents the multilayer perceptron weights.

计算空间注意,我们首先沿着通道轴应用平均池化和最大池化操作,并将它们连接起来以生成有效地特征描述符。沿通道轴应用池操作可以有效地突出显示信息区域。在连接的特征描述符上,我们应用卷积层去生成空间注意映射

Figure 721236DEST_PATH_IMAGE068
,通过两个池操作聚合特征映射的通道信息,生成两个空间上下文描述符:
Figure 922410DEST_PATH_IMAGE080
Figure 240259DEST_PATH_IMAGE081
,空间注意力的计算如下:Computational spatial attention, we first apply average pooling and max pooling operations along the channel axis and concatenate them to generate efficient feature descriptors. Applying pooling operations along the channel axis can effectively highlight areas of information. On the concatenated feature descriptors, we apply convolutional layers to generate spatial attention maps
Figure 721236DEST_PATH_IMAGE068
, which aggregates the channel information of feature maps through two pooling operations to generate two spatial context descriptors:
Figure 922410DEST_PATH_IMAGE080
and
Figure 240259DEST_PATH_IMAGE081
, the spatial attention is calculated as follows:

Figure 552291DEST_PATH_IMAGE082
Figure 552291DEST_PATH_IMAGE082

其中,

Figure 537565DEST_PATH_IMAGE083
表示sigmiod激活函数,
Figure 847324DEST_PATH_IMAGE084
表示滤波器大小为
Figure 980365DEST_PATH_IMAGE085
的卷积运算。通过卷积注意机制对输入特征进行预处理,细化了输入特征,增强了输入特征的表征能力。in,
Figure 537565DEST_PATH_IMAGE083
represents the sigmiod activation function,
Figure 847324DEST_PATH_IMAGE084
Indicates that the filter size is
Figure 980365DEST_PATH_IMAGE085
convolution operation. The input features are preprocessed through the convolutional attention mechanism, which refines the input features and enhances the representation ability of the input features.

3、空间注意模块3. Spatial attention module

将细化后的输出

Figure 33771DEST_PATH_IMAGE072
,作为空间注意模块的输入,通过空间注意力机制生成新的输入序列
Figure 873551DEST_PATH_IMAGE086
,即:the refined output
Figure 33771DEST_PATH_IMAGE072
, as the input of the spatial attention module, which generates a new input sequence through the spatial attention mechanism
Figure 873551DEST_PATH_IMAGE086
,which is:

Figure 416528DEST_PATH_IMAGE087
Figure 416528DEST_PATH_IMAGE087

式中,

Figure 974548DEST_PATH_IMAGE088
表示第k个输入序列
Figure 566067DEST_PATH_IMAGE089
Figure 588249DEST_PATH_IMAGE090
表示t时刻编码器隐状态的注意权重,对注意权重
Figure 239811DEST_PATH_IMAGE090
进行SoftMax函数标准化处理得到
Figure 81865DEST_PATH_IMAGE091
是t-1时刻编码器隐状态,
Figure 477074DEST_PATH_IMAGE092
Figure 291446DEST_PATH_IMAGE093
是需要学习的参数矩阵,
Figure 910646DEST_PATH_IMAGE094
是衡量在t时刻的第k个输入特征重要性的注意权重。通过空间注意机制,使得模型能够选择性地捕获不同输入特征之间的动态空间相关性。In the formula,
Figure 974548DEST_PATH_IMAGE088
represents the kth input sequence
Figure 566067DEST_PATH_IMAGE089
,
Figure 588249DEST_PATH_IMAGE090
Represents the attention weight of the hidden state of the encoder at time t, and the attention weight
Figure 239811DEST_PATH_IMAGE090
Standardize the SoftMax function to get
Figure 81865DEST_PATH_IMAGE091
is the hidden state of the encoder at time t-1,
Figure 477074DEST_PATH_IMAGE092
and
Figure 291446DEST_PATH_IMAGE093
is the parameter matrix to be learned,
Figure 910646DEST_PATH_IMAGE094
is the attention weight that measures the importance of the kth input feature at time t. Through the spatial attention mechanism, the model can selectively capture the dynamic spatial correlation between different input features.

4、编码器4. Encoder

编码器本质上是一个RNN,在机器翻译中它将输入序列编码为特征表示。对于经过空间注意操作后的输入序列

Figure 177680DEST_PATH_IMAGE095
,编码器用于学习从
Figure 376580DEST_PATH_IMAGE096
Figure 373355DEST_PATH_IMAGE097
(在时间t)的映射:The encoder is essentially an RNN that, in machine translation, encodes the input sequence into feature representations. For the input sequence after spatial attention operation
Figure 177680DEST_PATH_IMAGE095
, the encoder is used to learn from
Figure 376580DEST_PATH_IMAGE096
arrive
Figure 373355DEST_PATH_IMAGE097
Mapping (at time t):

Figure 366718DEST_PATH_IMAGE098
Figure 366718DEST_PATH_IMAGE098

其中,

Figure 121048DEST_PATH_IMAGE099
表示编码器在t时刻的隐状态,m表示隐状态的大小,
Figure 185956DEST_PATH_IMAGE100
表示一个非线性映射函数,这里我们使用门控循环单元(GRU)作为
Figure 709341DEST_PATH_IMAGE101
来捕获序列中的长期依赖。GRU由2个门组成:重置门
Figure 670344DEST_PATH_IMAGE102
,更新门
Figure 911969DEST_PATH_IMAGE103
。GRU的更新过程如下所示:in,
Figure 121048DEST_PATH_IMAGE099
represents the hidden state of the encoder at time t, m represents the size of the hidden state,
Figure 185956DEST_PATH_IMAGE100
represents a nonlinear mapping function, here we use a gated recurrent unit (GRU) as
Figure 709341DEST_PATH_IMAGE101
to capture long-term dependencies in sequences. GRU consists of 2 gates: reset gate
Figure 670344DEST_PATH_IMAGE102
, update gate
Figure 911969DEST_PATH_IMAGE103
. The update process of GRU is as follows:

Figure 452672DEST_PATH_IMAGE104
Figure 452672DEST_PATH_IMAGE104

其中,

Figure 158460DEST_PATH_IMAGE105
为t-1时刻的编码器隐状态
Figure 759205DEST_PATH_IMAGE106
和当前t时刻的输入
Figure 284865DEST_PATH_IMAGE096
的连接,
Figure 629258DEST_PATH_IMAGE107
为需要学习的参数。
Figure 923974DEST_PATH_IMAGE077
表示sigmoid激活函数,
Figure 695620DEST_PATH_IMAGE108
表示逐元素相乘。in,
Figure 158460DEST_PATH_IMAGE105
is the hidden state of the encoder at time t-1
Figure 759205DEST_PATH_IMAGE106
and the current input at time t
Figure 284865DEST_PATH_IMAGE096
Connection,
Figure 629258DEST_PATH_IMAGE107
parameters to be learned.
Figure 923974DEST_PATH_IMAGE077
represents the sigmoid activation function,
Figure 695620DEST_PATH_IMAGE108
Represents element-wise multiplication.

5、时间注意模块5. Time attention module

在解码阶段使用时间注意机制来建模输入序列中不同时间间隔之间的动态时间相关性,将t-1时刻解码器和编码器的隐状态与t时刻编码器的隐状态输入到时间注意模块中,通过时间注意机制,得到上下文向量

Figure 646259DEST_PATH_IMAGE109
,在t时刻每个解码器隐状态的注意权重定义如下:The temporal attention mechanism is used in the decoding stage to model the dynamic temporal correlation between different time intervals in the input sequence, and the hidden states of the decoder and encoder at time t-1 and the hidden state of the encoder at time t are input to the temporal attention module , through the temporal attention mechanism, the context vector is obtained
Figure 646259DEST_PATH_IMAGE109
, the attention weight of each decoder hidden state at time t is defined as follows:

Figure 591081DEST_PATH_IMAGE110
Figure 591081DEST_PATH_IMAGE110

其中,

Figure 943565DEST_PATH_IMAGE111
是需要学习的参数矩阵,
Figure 948430DEST_PATH_IMAGE112
Figure 386365DEST_PATH_IMAGE113
时刻解码器的隐状态,
Figure 72561DEST_PATH_IMAGE114
是t-1时刻编码器的隐状态,
Figure 341868DEST_PATH_IMAGE115
是t时刻编码器的隐状态,
Figure 455318DEST_PATH_IMAGE116
表示t时刻解码器的注意权重,对注意权重
Figure 442865DEST_PATH_IMAGE116
进行SoftMax函数标准化处理得到
Figure 667173DEST_PATH_IMAGE117
衡量在t时刻的第i个输入特征重要性的注意权重,
Figure 790987DEST_PATH_IMAGE118
是上下文向量。in,
Figure 943565DEST_PATH_IMAGE111
is the parameter matrix to be learned,
Figure 948430DEST_PATH_IMAGE112
Yes
Figure 386365DEST_PATH_IMAGE113
the hidden state of the decoder at time,
Figure 72561DEST_PATH_IMAGE114
is the hidden state of the encoder at time t-1,
Figure 341868DEST_PATH_IMAGE115
is the hidden state of the encoder at time t,
Figure 455318DEST_PATH_IMAGE116
Represents the attention weight of the decoder at time t, and the attention weight
Figure 442865DEST_PATH_IMAGE116
Standardize the SoftMax function to get
Figure 667173DEST_PATH_IMAGE117
The attention weight that measures the importance of the ith input feature at time t,
Figure 790987DEST_PATH_IMAGE118
is the context vector.

6、解码器6. Decoder

当获得t时刻的上下文向量

Figure 809759DEST_PATH_IMAGE118
,我们将它们与目标时间序列结合起来,并更t时刻的解码器新的隐状态
Figure 550182DEST_PATH_IMAGE119
。When the context vector at time t is obtained
Figure 809759DEST_PATH_IMAGE118
, we combine them with the target time series and update the new hidden state of the decoder at time t
Figure 550182DEST_PATH_IMAGE119
.

Figure 578181DEST_PATH_IMAGE120
Figure 578181DEST_PATH_IMAGE120

Figure 822080DEST_PATH_IMAGE121
和b是将连接映射到解码器输入的参数矩阵,
Figure 277332DEST_PATH_IMAGE122
是t-1时刻解码器的输入,
Figure 973893DEST_PATH_IMAGE123
是计算出的上下文向量,
Figure 602320DEST_PATH_IMAGE124
表示连接操作,
Figure 966305DEST_PATH_IMAGE125
是经过线性变换后的新的输入,
Figure 654776DEST_PATH_IMAGE112
是t-1时刻解码器的隐状态。我们将上下文向量
Figure 776316DEST_PATH_IMAGE126
与隐状态
Figure 208434DEST_PATH_IMAGE127
连接起来成为新的解码器的隐状态,从中做出最终预测:
Figure 822080DEST_PATH_IMAGE121
and b is the parameter matrix that maps connections to decoder inputs,
Figure 277332DEST_PATH_IMAGE122
is the input of the decoder at time t-1,
Figure 973893DEST_PATH_IMAGE123
is the computed context vector,
Figure 602320DEST_PATH_IMAGE124
represents the connection operation,
Figure 966305DEST_PATH_IMAGE125
is the new input after linear transformation,
Figure 654776DEST_PATH_IMAGE112
is the hidden state of the decoder at time t-1. We will context vector
Figure 776316DEST_PATH_IMAGE126
with hidden state
Figure 208434DEST_PATH_IMAGE127
The concatenation becomes the hidden state of the new decoder, from which the final prediction is made:

Figure 364609DEST_PATH_IMAGE128
Figure 364609DEST_PATH_IMAGE128

其中,矩阵

Figure 958401DEST_PATH_IMAGE129
和向量
Figure 895133DEST_PATH_IMAGE130
映射连接
Figure 803046DEST_PATH_IMAGE131
,最终我们使用线性变化(
Figure 876044DEST_PATH_IMAGE132
Figure 844000DEST_PATH_IMAGE133
)生成最终的叶绿素预测结果。Among them, the matrix
Figure 958401DEST_PATH_IMAGE129
and vector
Figure 895133DEST_PATH_IMAGE130
map connection
Figure 803046DEST_PATH_IMAGE131
, and finally we use a linear variation (
Figure 876044DEST_PATH_IMAGE132
and
Figure 844000DEST_PATH_IMAGE133
) to generate the final chlorophyll prediction result.

7、模型验证7. Model validation

如图11所示,当获得预测结果后,才用均方误差计算预测结果与插值填补后的多通道数据集的真实值之间的损失数值,并对模型的网络参数进行调整,得到最终的叶绿素预测结果。As shown in Figure 11, when the prediction result is obtained, the mean square error is used to calculate the loss value between the prediction result and the real value of the multi-channel data set after interpolation, and the network parameters of the model are adjusted to obtain the final Chlorophyll prediction results.

8、缺失值填补8. Missing value imputation

将最终的叶绿素预测结果填充至多通道数据集的缺失值单元中,得到填补结果。Fill the final chlorophyll prediction result into the missing value unit of the multi-channel dataset to get the filling result.

以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.

Claims (10)

1.一种多通道海洋观测时序标量数据缺失值预测方法,其特征在于,包括:1. A method for predicting missing values of multi-channel ocean observation time series scalar data, characterized in that, comprising: 获取带有海洋缺失值的海洋观测时序标量数据;Obtain ocean observation time series scalar data with ocean missing values; 基于所述海洋观测时序标量数据,采用TA-RNN模型,得到海洋缺失值预测结果;Based on the ocean observation time series scalar data, the TA-RNN model is used to obtain the ocean missing value prediction result; 所述TA-RNN模型包括卷积注意模块、空间注意模块和时间注意模块,所述卷积注意模块用于将所述海洋观测时序标量数据进行细化;所述空间注意模块用于捕获细化后的所述海洋观测时序标量数据的动态空间相关性;所述时间注意模块用于捕获空间注意模块输出数据中不同时间间隔之间的动态时间相关性。The TA-RNN model includes a convolutional attention module, a spatial attention module and a temporal attention module, the convolutional attention module is used to refine the ocean observation time series scalar data; the spatial attention module is used to capture the refinement The dynamic spatial correlation of the ocean observation time series scalar data; the time attention module is used to capture the dynamic time correlation between different time intervals in the output data of the spatial attention module. 2.根据权利要求1所述的多通道海洋观测时序标量数据缺失值预测方法,其特征在于,在所述获取带有海洋缺失值的海洋观测时序标量数据之后包括:对所述带有海洋缺失值的海洋观测时序标量数据进行预处理,得到初始序列。2 . The method for predicting missing values of multi-channel ocean observation time series scalar data according to claim 1 , wherein after acquiring the ocean observation time series scalar data with ocean missing values, the method comprises: The ocean observation time series scalar data of the values are preprocessed to obtain the initial sequence. 3.根据权利要求1所述的多通道海洋观测时序标量数据缺失值预测方法,其特征在于,在所述采用TA-RNN模型之前包括:若带有海洋缺失值的海洋观测时序标量数据为叶绿素序列,则选取深度序列、风速序列、氧含量序列、溶解氧序列、浊度序列、温度序列和盐分序列,根据深度序列、风速序列、氧含量序列、溶解氧序列、浊度序列、温度序列、盐分序列和所述叶绿素序列,构建多通道序列。3. The method for predicting missing values of multi-channel ocean observation time series scalar data according to claim 1, characterized in that, before said adopting the TA-RNN model, it comprises: if the ocean observation time series scalar data with ocean missing values is chlorophyll Sequence, select depth sequence, wind speed sequence, oxygen content sequence, dissolved oxygen sequence, turbidity sequence, temperature sequence and salinity sequence, according to depth sequence, wind speed sequence, oxygen content sequence, dissolved oxygen sequence, turbidity sequence, temperature sequence, The salt sequence and the chlorophyll sequence, construct a multi-channel sequence. 4.根据权利要求3所述的多通道海洋观测时序标量数据缺失值预测方法,其特征在于,根据所述多通道序列,采用卷积注意模块,得到通道注意力映射和空间注意力映射;将多通道序列的通道注意力映射的序列与多通道序列进行逐元素相乘,得到初始细化序列;将所述初始细化序列与初始细化序列的空间注意力映射的序列进行逐元素相乘,得到最终细化序列。4. The method for predicting missing values of multi-channel ocean observation time series scalar data according to claim 3, wherein, according to the multi-channel sequence, a convolution attention module is adopted to obtain a channel attention map and a spatial attention map; The sequence of the channel attention map of the multi-channel sequence is multiplied element by element with the multi-channel sequence to obtain an initial refinement sequence; the sequence of the initial refinement sequence and the sequence of the spatial attention map of the initial refinement sequence are multiplied element by element , to get the final refined sequence. 5.根据权利要求4所述的多通道海洋观测时序标量数据缺失值预测方法,其特征在于,基于所述最终细化序列,采用空间注意模块,捕获最终细化序列中不同输入特征之间的动态空间相关性,得到输入序列。5. The method for predicting missing values of multi-channel ocean observation time series scalar data according to claim 4, characterized in that, based on the final refinement sequence, a spatial attention module is used to capture differences between different input features in the final refinement sequence. Dynamic spatial correlation to get the input sequence. 6.根据权利要求5所述的多通道海洋观测时序标量数据缺失值预测方法,其特征在于,根据所述输入序列,采用编码器,学习从输入序列到编码器在t时刻的隐状态的映射,得到编码器在t时刻的隐状态。6. The method for predicting missing values of multi-channel ocean observation time series scalar data according to claim 5, wherein, according to the input sequence, an encoder is used to learn the mapping from the input sequence to the hidden state of the encoder at time t , get the hidden state of the encoder at time t. 7.根据权利要求6所述的多通道海洋观测时序标量数据缺失值预测方法,其特征在于,根据编码器在t时刻的隐状态,采用时间注意模块,捕获编码器在t时刻的隐状态的序列中,不同时间间隔之间的动态时间相关性;所述采用时间注意模块的具体过程包括:7. The method for predicting missing values of multi-channel ocean observation time series scalar data according to claim 6, characterized in that, according to the hidden state of the encoder at time t, a time attention module is adopted to capture the hidden state of the encoder at time t. In the sequence, the dynamic time correlation between different time intervals; the specific process of using the time attention module includes: 根据编码器在t时刻的隐状态和解码器在t-1时刻的隐状态,确定在t时刻每个输入特征的注意权重;基于在t时刻每个输入特征的注意权重,确定时间t处某个输入特征对预测值的注意权重;基于在t时刻所有输入特征对预测值的注意权重和编码器在t时刻的隐状态,得到所有编码器隐状态的加权和,即上下文向量。According to the hidden state of the encoder at time t and the hidden state of the decoder at time t-1, determine the attention weight of each input feature at time t; The attention weight of each input feature to the predicted value; based on the attention weight of all input features to the predicted value at time t and the hidden state of the encoder at time t, the weighted sum of all the hidden states of the encoder is obtained, that is, the context vector. 8.根据权利要求7所述的多通道海洋观测时序标量数据缺失值预测方法,其特征在于,确定在t时刻的上下文向量和在t-1时刻的目标序列结合起来,更新解码器在t时刻的隐状态。8. The method for predicting missing values of multi-channel ocean observation time series scalar data according to claim 7, characterized in that, it is determined that the context vector at time t is combined with the target sequence at time t-1, and the decoder is updated at time t. the hidden state. 9.根据权利要求8所述的多通道海洋观测时序标量数据缺失值预测方法,其特征在于,将所述在T时刻的上下文向量与更新后解码器在T时刻的隐状态连接起来成为新的解码器的隐状态,预测缺失的叶绿素序列。9. The method for predicting missing values of multi-channel ocean observation time series scalar data according to claim 8, wherein the context vector at time T is connected with the hidden state of the updated decoder at time T to become a new The hidden state of the decoder, predicting missing chlorophyll sequences. 10.一种多通道海洋观测时序标量数据缺失值预测系统,其特征在于,包括:10. A multi-channel ocean observation time series scalar data missing value prediction system, characterized in that it comprises: 数据获取模块,其被配置为:获取带有海洋缺失值的海洋观测时序标量数据;a data acquisition module, which is configured to: acquire ocean observation time series scalar data with ocean missing values; 预测模块,其被配置为:基于所述海洋观测时序标量数据,采用TA-RNN模型,得到海洋缺失值预测结果;A prediction module, which is configured to: based on the ocean observation time series scalar data, using a TA-RNN model to obtain a prediction result of ocean missing values; 所述TA-RNN模型包括卷积注意模块、空间注意模块和时间注意模块,所述卷积注意模块用于将所述海洋观测时序标量数据进行细化;所述空间注意模块用于捕获细化后的所述海洋观测时序标量数据的动态空间相关性;所述时间注意模块用于捕获空间注意模块输出数据中不同时间间隔之间的动态时间相关性。The TA-RNN model includes a convolutional attention module, a spatial attention module and a temporal attention module, the convolutional attention module is used to refine the ocean observation time series scalar data; the spatial attention module is used to capture the refinement The dynamic spatial correlation of the ocean observation time series scalar data; the time attention module is used to capture the dynamic time correlation between different time intervals in the output data of the spatial attention module.
CN202210285171.8A 2022-03-23 2022-03-23 Multi-channel ocean observation time sequence scalar data missing value prediction method and system Active CN114385619B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210285171.8A CN114385619B (en) 2022-03-23 2022-03-23 Multi-channel ocean observation time sequence scalar data missing value prediction method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210285171.8A CN114385619B (en) 2022-03-23 2022-03-23 Multi-channel ocean observation time sequence scalar data missing value prediction method and system

Publications (2)

Publication Number Publication Date
CN114385619A true CN114385619A (en) 2022-04-22
CN114385619B CN114385619B (en) 2022-07-15

Family

ID=81205385

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210285171.8A Active CN114385619B (en) 2022-03-23 2022-03-23 Multi-channel ocean observation time sequence scalar data missing value prediction method and system

Country Status (1)

Country Link
CN (1) CN114385619B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115935139A (en) * 2023-01-09 2023-04-07 吉林大学 A Spatial Field Interpolation Method for Ocean Observation Data

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107577649A (en) * 2017-09-26 2018-01-12 广州供电局有限公司 The interpolation processing method and device of missing data
US20200089650A1 (en) * 2018-09-14 2020-03-19 Software Ag Techniques for automated data cleansing for machine learning algorithms
CN111339234A (en) * 2020-02-26 2020-06-26 上海澜启信息科技有限公司 Method, device and storage medium for repairing missing positioning data samples
US20200349169A1 (en) * 2019-05-03 2020-11-05 Accenture Global Solutions Limited Artificial intelligence (ai) based automatic data remediation
CN112232600A (en) * 2020-11-17 2021-01-15 烟台海颐软件股份有限公司 Short-term power load prediction method and system based on variational modal decomposition
CN112527788A (en) * 2020-12-17 2021-03-19 北京中恒博瑞数字电力科技有限公司 Method and device for detecting and cleaning abnormal value of transformer monitoring data
CN112685950A (en) * 2020-12-02 2021-04-20 山东省计算中心(国家超级计算济南中心) Method, system and equipment for detecting abnormality of ocean time sequence observation data
CN113094357A (en) * 2021-04-23 2021-07-09 大连理工大学 Traffic missing data completion method based on space-time attention mechanism
US11223543B1 (en) * 2020-09-29 2022-01-11 Dell Products L.P. Reconstructing time series datasets with missing values utilizing machine learning
CN113962432A (en) * 2021-09-10 2022-01-21 国网江苏省电力有限公司电力科学研究院 A wind power prediction method and system integrating three-dimensional convolution and lightweight convolution threshold unit
CN113988951A (en) * 2021-11-19 2022-01-28 中核第四研究设计工程有限公司 Commodity recommendation learning model construction method based on tensor decomposition and collaborative filtering

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107577649A (en) * 2017-09-26 2018-01-12 广州供电局有限公司 The interpolation processing method and device of missing data
US20200089650A1 (en) * 2018-09-14 2020-03-19 Software Ag Techniques for automated data cleansing for machine learning algorithms
US20200349169A1 (en) * 2019-05-03 2020-11-05 Accenture Global Solutions Limited Artificial intelligence (ai) based automatic data remediation
CN111339234A (en) * 2020-02-26 2020-06-26 上海澜启信息科技有限公司 Method, device and storage medium for repairing missing positioning data samples
US11223543B1 (en) * 2020-09-29 2022-01-11 Dell Products L.P. Reconstructing time series datasets with missing values utilizing machine learning
CN112232600A (en) * 2020-11-17 2021-01-15 烟台海颐软件股份有限公司 Short-term power load prediction method and system based on variational modal decomposition
CN112685950A (en) * 2020-12-02 2021-04-20 山东省计算中心(国家超级计算济南中心) Method, system and equipment for detecting abnormality of ocean time sequence observation data
CN112527788A (en) * 2020-12-17 2021-03-19 北京中恒博瑞数字电力科技有限公司 Method and device for detecting and cleaning abnormal value of transformer monitoring data
CN113094357A (en) * 2021-04-23 2021-07-09 大连理工大学 Traffic missing data completion method based on space-time attention mechanism
CN113962432A (en) * 2021-09-10 2022-01-21 国网江苏省电力有限公司电力科学研究院 A wind power prediction method and system integrating three-dimensional convolution and lightweight convolution threshold unit
CN113988951A (en) * 2021-11-19 2022-01-28 中核第四研究设计工程有限公司 Commodity recommendation learning model construction method based on tensor decomposition and collaborative filtering

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIANG LI等: ""ECNN: One Online Deep Learning Model for Streaming Ocean Data Prediction"", 《ACM ICEA "21: PROCEEDINGS OF THE 2021 ACM INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND ITS EMERGING APPLICATIONS》, 31 December 2021 (2021-12-31), pages 170 - 175, XP058872467, DOI: 10.1145/3491396.3506519 *
孙晓丽 等: ""基于改进神经过程的缺失数据填充算法"", 《中国科学院大学学报》, 15 March 2021 (2021-03-15), pages 280 - 287 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115935139A (en) * 2023-01-09 2023-04-07 吉林大学 A Spatial Field Interpolation Method for Ocean Observation Data

Also Published As

Publication number Publication date
CN114385619B (en) 2022-07-15

Similar Documents

Publication Publication Date Title
CN111311685B (en) An unsupervised method for moving scene reconstruction based on IMU and monocular images
CN114372116B (en) A Vehicle Trajectory Prediction Method Based on LSTM and Spatiotemporal Attention Mechanism
CN111428789A (en) Network traffic anomaly detection method based on deep learning
CN112233179B (en) Visual odometer measuring method
CN107369166A (en) A kind of method for tracking target and system based on multiresolution neutral net
CN113128558A (en) Target detection method based on shallow space feature fusion and adaptive channel screening
CN114329826A (en) A Generative Adversarial Network-Based Steady Flow Prediction Method for Planar Cascades
CN117575111B (en) A method for spatiotemporal series prediction of agricultural remote sensing images based on transfer learning
CN114399073A (en) A deep learning-based prediction method for ocean surface temperature field
CN115390164A (en) A radar echo extrapolation forecasting method and system
CN114385619B (en) Multi-channel ocean observation time sequence scalar data missing value prediction method and system
CN117649526A (en) High-precision semantic segmentation method for automatic driving road scene
CN118536407A (en) Sea surface wind speed prediction algorithm and system based on symbol dynamic analysis
CN113920165A (en) Robot pose estimation method and system based on multi-sensor feature fusion
CN107437112B (en) A kind of mixing RVM model prediction methods based on the multiple dimensioned kernel function of improvement
CN118629047A (en) Method and system for recognizing readings of water meters using Meter-YOLO model
CN116393188B (en) Microfluidic chip and method suitable for capturing circulating tumor cells
CN116825200A (en) Glycopeptide mass spectrogram prediction device based on deep learning
Li et al. Research on YOLOv3 pedestrian detection algorithm based on channel attention mechanism
CN116883885A (en) A weakly supervised visual abnormal event detection method guided by attention mechanism
Yang et al. T3DNet: Compressing Point Cloud Models for Lightweight 3-D Recognition
CN118378178B (en) Transformer fault identification method and system based on residual map convolution neural network
CN115880486B (en) Target detection network distillation method and device, electronic equipment and storage medium
CN119439316A (en) Approaching rainfall prediction method based on physical constraint
US20230237675A1 (en) Method, electronic device, and computer program product for processing video

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant