CN114385611A - A precipitation prediction method and system based on artificial intelligence algorithm and knowledge graph - Google Patents

A precipitation prediction method and system based on artificial intelligence algorithm and knowledge graph Download PDF

Info

Publication number
CN114385611A
CN114385611A CN202111625218.2A CN202111625218A CN114385611A CN 114385611 A CN114385611 A CN 114385611A CN 202111625218 A CN202111625218 A CN 202111625218A CN 114385611 A CN114385611 A CN 114385611A
Authority
CN
China
Prior art keywords
data
precipitation
radar
prediction
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111625218.2A
Other languages
Chinese (zh)
Inventor
于静
马亮
周鹏飞
张新壮
王晓林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Huichen Capital Information Co ltd
Original Assignee
Beijing Huichen Capital Information Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Huichen Capital Information Co ltd filed Critical Beijing Huichen Capital Information Co ltd
Priority to CN202111625218.2A priority Critical patent/CN114385611A/en
Publication of CN114385611A publication Critical patent/CN114385611A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/21Design, administration or maintenance of databases
    • G06F16/215Improving data quality; Data cleansing, e.g. de-duplication, removing invalid entries or correcting typographical errors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/14Rainfall or precipitation gauges
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/245Query processing
    • G06F16/2458Special types of queries, e.g. statistical queries, fuzzy queries or distributed queries
    • G06F16/2474Sequence data queries, e.g. querying versioned data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/30Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F16/36Creation of semantic tools, e.g. ontology or thesauri
    • G06F16/367Ontology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Computational Linguistics (AREA)
  • Fuzzy Systems (AREA)
  • Probability & Statistics with Applications (AREA)
  • Mathematical Physics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Hydrology & Water Resources (AREA)
  • Software Systems (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Quality & Reliability (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The invention discloses a precipitation prediction method and system based on an artificial intelligence algorithm and a knowledge graph, belonging to the technical field of weather forecast and comprising the following steps: constructing a multi-mode data container, inputting different types of meteorological data into the multi-mode data container according to the structural characteristics of the multi-mode data container to obtain multi-mode data, and performing space-time alignment, data cleaning and preprocessing and data sequence segmentation on the multi-mode data; constructing a knowledge graph about precipitation prediction; and (3) creating a multi-modal precipitation prediction model based on an artificial intelligence algorithm, and intelligently correcting the predicted precipitation data. The method not only makes full use of different types of multi-modal meteorological data, improves the precision of precipitation prediction through a multi-modal precipitation prediction method, but also constructs a precipitation prediction knowledge map, and can intelligently correct the result of model prediction so as to reduce the uncertainty of an artificial intelligence algorithm and improve the accuracy and reliability of model prediction.

Description

一种基于人工智能算法和知识图谱的降水预测方法和系统A precipitation prediction method and system based on artificial intelligence algorithm and knowledge graph

技术领域technical field

本发明属于天气预报技术领域,具体涉及一种基于人工智能算法和知识图谱的降水预测方法和系统。The invention belongs to the technical field of weather forecasting, and in particular relates to a precipitation prediction method and system based on an artificial intelligence algorithm and a knowledge map.

背景技术Background technique

近年来,全球各地降水大幅度增加,无论在市区交通中还是在农业系统中,甚至是在水资源规划、防洪预警中,降水预测都扮演着重要的角色。当前,利用气象大数据实现对临近降水的预测是国内防灾减灾的热点和难点,对高时空分辨率的临近降水预测具有重要的价值和社会意义。In recent years, precipitation has increased significantly around the world. Precipitation prediction plays an important role in urban traffic, agricultural systems, and even in water resources planning and flood control early warning. At present, the use of meteorological big data to realize the prediction of impending precipitation is a hot spot and a difficulty in disaster prevention and mitigation in China, and it has important value and social significance for impending precipitation prediction with high temporal and spatial resolution.

从整个降水预测发展来看,最开始,气象工作者主要使用天气图的方法,这种方法历史悠久、理论成熟,但比较主观,是一种定性分析。随着气象学和计算机技术的不断发展,数值预测方法逐渐发展起来,其主要是对大气动力学方程组进行求解,来预测降水变化的方法。这种方法也是近几年在实践中用的比较多的方法,但这种方法在应用时存在一定的局限性。首先,该方法短期(尤其1-2小时内)的预测准确度往往比较低。主要由于短期预测的结果比较依赖大气动力学这个方程组的初始值,而目前获取的大气信息有限,很难对这个方程的初始值进行准确的估算。其次,需要超级计算机的配合,其体积比较庞大,需要昂贵的计算成本和维护成本。除此之外,在时效上,数值模式所花费的时间往往很长,从获取数据到同化再到预报,往往计算出结果就需要花费几个小时,对于特定领域,预报可能已经失去了时效性。From the perspective of the entire development of precipitation forecasting, at the beginning, meteorologists mainly used the method of weather maps. This method has a long history and mature theory, but it is relatively subjective and is a qualitative analysis. With the continuous development of meteorology and computer technology, numerical prediction methods have gradually developed, which are mainly methods for predicting precipitation changes by solving atmospheric dynamic equations. This method is also a method used in practice in recent years, but this method has certain limitations in its application. First, the prediction accuracy of this method in the short term (especially within 1-2 hours) is often low. The main reason is that the results of short-term predictions are more dependent on the initial value of the equation system of atmospheric dynamics, and the currently obtained atmospheric information is limited, so it is difficult to accurately estimate the initial value of this equation. Secondly, it requires the cooperation of supercomputers, which are relatively bulky and require expensive computing and maintenance costs. In addition, in terms of timeliness, numerical models often take a long time. From data acquisition to assimilation to forecasting, it often takes several hours to calculate the results. For certain fields, forecasting may have lost timeliness .

近几年,随着气象数据的种类和数量成倍的增加,将人工智能技术与降水预测相结合成为必然趋势,可以从海量的多模态的气象大数据中挖掘有用的信息,发现气候特征和大气运动,进而对降水有较精准的预测。但同时,人工智能算法具有一定的不确定性,可能对一些罕见的场景预测有一定的误差。In recent years, with the exponential increase in the type and quantity of meteorological data, it has become an inevitable trend to combine artificial intelligence technology with precipitation prediction. Useful information can be mined from massive multimodal meteorological big data to discover climate characteristics. and atmospheric motion, and thus have a more accurate prediction of precipitation. But at the same time, artificial intelligence algorithms have certain uncertainties and may have certain errors in the prediction of some rare scenarios.

发明内容SUMMARY OF THE INVENTION

针对现有技术存在的不足,本发明的目的在于提供一种基于人工智能算法和知识图谱的降水预测方法和系统,以解决上述背景技术中存在的问题。Aiming at the deficiencies of the prior art, the purpose of the present invention is to provide a precipitation prediction method and system based on an artificial intelligence algorithm and a knowledge graph, so as to solve the problems existing in the above background technology.

本发明是这样实现的,一种基于人工智能算法和知识图谱的降水预测方法,所述方法包括以下步骤:The present invention is realized in this way, a kind of precipitation prediction method based on artificial intelligence algorithm and knowledge graph, described method comprises the following steps:

构建多模态数据集装箱,将不同类型的气象数据按照自身结构特点,输入到多模态数据集装箱得到多模态数据,对多模态数据进行时空对齐、数据清洗和预处理以及数据序列分割;Build a multi-modal data container, input different types of meteorological data into the multi-modal data container according to their own structural characteristics to obtain multi-modal data, perform spatio-temporal alignment, data cleaning and preprocessing, and data sequence segmentation for the multi-modal data;

构建关于降水预测的知识图谱;Build a knowledge graph about precipitation forecasting;

创建基于人工智能算法的多模态降水预测模型,具体为:构建多模态雷达回波预测模型,将各类历史气象数据进行时空融合,利用深度神经网络模型来预测未来的雷达序列图;构建雷达降水智能转化模型,结合地理位置数据,利用对抗生成网络,对雷达数据和降水量进行相互转化,即可将预测的雷达序列图转换为降水量数据;基于构建的降水预测知识图谱,利用神经网络算法进行知识推理,对预测的降水量数据进行智能修正;Create a multi-modal precipitation prediction model based on artificial intelligence algorithms, specifically: building a multi-modal radar echo prediction model, integrating various historical meteorological data in time and space, and using a deep neural network model to predict future radar sequence diagrams; The radar precipitation intelligent transformation model, combined with geographic location data, uses the adversarial generation network to convert radar data and precipitation to each other, and the predicted radar sequence diagram can be converted into precipitation data; based on the constructed precipitation prediction knowledge map, the neural network The network algorithm conducts knowledge reasoning and intelligently corrects the predicted precipitation data;

对修正的降水量数据进行分类可视化。Classified visualization of corrected precipitation data.

作为本发明进一步的方案:所述对多模态数据进行时空对齐的步骤,具体包括:As a further scheme of the present invention: the step of performing spatiotemporal alignment on the multimodal data specifically includes:

将时间误差小于2分钟的历史雷达回波序列数据与卫星云图数据进行合并和对齐;对气象站数据进行双线性插值,将双线性插值处理后得到的数据与雷达数据和卫星数据进行融合,依照经纬度,对雷达数据、卫星数据、气象站数据以及海拔数据进行空间匹配和对齐;Merge and align historical radar echo sequence data with a time error of less than 2 minutes and satellite cloud image data; perform bilinear interpolation on weather station data, and fuse the data obtained after bilinear interpolation with radar data and satellite data , to spatially match and align radar data, satellite data, weather station data and altitude data according to latitude and longitude;

将雷达序列数据和地理位置大数据与降水量数据进行时空对齐,所述地理位置大数据包括经纬度数据和海拔数据。The radar sequence data and geographic location big data, including latitude and longitude data and altitude data, are aligned in space and time with precipitation data.

作为本发明进一步的方案:所述构建关于降水预测的知识图谱的步骤,具体包括:As a further solution of the present invention: the step of constructing a knowledge map about precipitation prediction specifically includes:

获取与降水相关的数据,包括从公开网站和研究中获得的非结构化降水数据以及半结构化降水数据,和从雷达与卫星中获取的结构化降水数据;Obtain precipitation-related data, including unstructured and semi-structured precipitation data from publicly available websites and research, and structured precipitation data from radar and satellites;

针对非结构化降水数据和半结构化降水数据,利用基于注意力机制的卷积神经网络进行降水预测的实体、关系和属性抽取得到抽取降水信息,所述实体包括经纬度、海拔、时间、温度、风向、湿度和降水量等;For unstructured precipitation data and semi-structured precipitation data, use the attention mechanism-based convolutional neural network to extract the entities, relationships and attributes of precipitation prediction to obtain the extracted precipitation information, the entities include latitude and longitude, altitude, time, temperature, Wind direction, humidity and precipitation, etc.;

将结构化降水数据和抽取降水信息进行融合,融合过程包括降水实体消歧和对齐;Fusion of structured precipitation data and extracted precipitation information, the fusion process includes precipitation entity disambiguation and alignment;

对抽取降水信息进行进一步加工,利用机器学习相关性分析算法,分析经纬度、海拔、时间、温度、风向和湿度与降水量之间的关系,即给定气象因素具体的取值,得到该区域的最大降水量和最小降水量;The extracted precipitation information is further processed, and the machine learning correlation analysis algorithm is used to analyze the relationship between latitude and longitude, altitude, time, temperature, wind direction, humidity and precipitation, that is, given the specific values of meteorological factors, to obtain the area's latitude and longitude. maximum and minimum precipitation;

根据抽取降水信息,构建降水预测知识图谱,将降水预测知识图谱存储到图数据库。According to the extracted precipitation information, the precipitation prediction knowledge map is constructed, and the precipitation prediction knowledge map is stored in the map database.

作为本发明进一步的方案:所述构建多模态雷达回波预测模型的步骤,具体包括:As a further solution of the present invention: the step of constructing a multi-modal radar echo prediction model specifically includes:

创建由Data Integration模块、CNN+LSTM模块、DS+LSTM模块、US+LSTM模块、CNN+LSTM模块和Data Generation模块构成的多模态雷达回波预测模型,为更好的预测中心区域的降水,所述多模态雷达回波预测模型利用了512km*512km区域的气象数据以及预测中心区256km*256km的雷达图像;多模态雷达回波预测模型用于对历史多模态气象大数据进行融合,历史多模态气象大数据包括雷达数据、卫星云图、经纬度数据、海拔数据、温度、风向和湿度,利用多个神经网络模块进行训练学习,用以对未来高分辨率雷达回波图进行准确的预测;多模态雷达回波预测模型使用的损失函数为:Create a multimodal radar echo prediction model consisting of Data Integration module, CNN+LSTM module, DS+LSTM module, US+LSTM module, CNN+LSTM module and Data Generation module, in order to better predict the precipitation in the central area, The multimodal radar echo prediction model utilizes the meteorological data in the area of 512km*512km and the radar image in the prediction center area of 256km*256km; the multimodal radar echo prediction model is used to fuse historical multimodal meteorological big data , Historical multi-modal meteorological big data includes radar data, satellite cloud images, latitude and longitude data, altitude data, temperature, wind direction and humidity, using multiple neural network modules for training and learning to accurately analyze future high-resolution radar echo images The prediction of ; the loss function used by the multimodal radar echo prediction model is:

Figure BDA0003439469730000031
Figure BDA0003439469730000031

其中,

Figure BDA0003439469730000032
表示模型预测的雷达图数据,yk表示真实的雷达图数据,ωk和μk表示对不同强度的雷达图的加权值;in,
Figure BDA0003439469730000032
represents the radar map data predicted by the model, y k represents the real radar map data, ω k and μ k represent the weighted values of radar maps of different intensities;

利用评估函数对多模态雷达回波预测模型进行评估,评估函数为:The evaluation function is used to evaluate the multimodal radar echo prediction model. The evaluation function is:

Figure BDA0003439469730000033
Figure BDA0003439469730000033

Value评估结果值在-1和1之间,Value评估结果值值越大效果越好,其中,M为预测的雷达图序列长度,Valuei为单张雷达图的评分,即:The value of the Value evaluation result is between -1 and 1. The larger the Value evaluation result value, the better the effect. Among them, M is the length of the predicted radar map sequence, and Value i is the score of a single radar map, namely:

Figure BDA0003439469730000034
Figure BDA0003439469730000034

其中,L为预测的类别,N为总的样本数,ωj为第j个类别的权重,p(Ri,Tj)表示预测类别为i的像素点中真实类别为j的像素点总数,p(Ri)表示预测为类别i的像素点总数,p(Tj)表示真实类别为j的像素点总数。Among them, L is the predicted category, N is the total number of samples, ω j is the weight of the j-th category, and p(R i , T j ) represents the total number of pixels with the real category j in the pixels of the predicted category i. , p(R i ) represents the total number of pixels predicted as category i, and p(T j ) represents the total number of pixels with true category j.

作为本发明进一步的方案:所述构建雷达降水智能转化模型的步骤,具体包括:构建包含R2P生成器、P2R生成器、P判别器和R判别器四个模块的转换模型,结合经纬度和海拔地理位置数据,利用历史的雷达数据与降水量数据,在gpu集群上对转换模型进行训练优化,得到雷达降水智能转化模型;雷达降水智能转化模型使用的损失函数为:As a further scheme of the present invention: the step of constructing a radar precipitation intelligent transformation model specifically includes: constructing a transformation model comprising four modules of an R2P generator, a P2R generator, a P discriminator and an R discriminator, combined with latitude and longitude and altitude geography For location data, using historical radar data and precipitation data, the conversion model is trained and optimized on the gpu cluster to obtain the radar precipitation intelligent conversion model; the loss function used by the radar precipitation intelligent conversion model is:

Loss=Loss1+Loss2+Loss3Loss=Loss1+Loss2+Loss3

其中:in:

Figure BDA0003439469730000035
Figure BDA0003439469730000035

Figure BDA0003439469730000036
Figure BDA0003439469730000036

Figure BDA0003439469730000041
Figure BDA0003439469730000041

本发明的另一目的在于提供一种基于人工智能算法和知识图谱的降水预测系统,所述系统包括:Another object of the present invention is to provide a precipitation prediction system based on an artificial intelligence algorithm and a knowledge graph, the system comprising:

多模型数据集装箱,用于将不同类型的气象数据按照自身结构特点,输入到多模态数据集装箱得到多模态数据,对多模态数据进行时空对齐、数据清洗和预处理以及数据序列分割;The multi-model data container is used to input different types of meteorological data into the multi-modal data container according to its own structural characteristics to obtain multi-modal data, and perform spatio-temporal alignment, data cleaning and preprocessing, and data sequence segmentation for the multi-modal data;

降水预测知识图谱构建模块,用于构建关于降水预测的知识图谱;The precipitation prediction knowledge map building module is used to build a knowledge map about precipitation prediction;

基于人工智能算法的多模态降水预测和修正模块,用于创建基于人工智能算法的多模态降水预测模型,具体包括:雷达回波预测模型构建单元,用于构建多模态雷达回波预测模型,将各类历史气象数据进行时空融合,利用深度神经网络模型来预测未来的雷达序列图;智能转化模型构建单元,用于构建雷达降水智能转化模型,结合地理位置数据,利用对抗生成网络,对雷达数据和降水量进行相互转化,即可将预测的雷达序列图转换为降水量数据;智能修正单元,基于构建的降水预测知识图谱,利用神经网络算法进行知识推理,对预测的降水量数据进行智能修正;以及A multimodal precipitation prediction and correction module based on artificial intelligence algorithms, used to create a multimodal precipitation prediction model based on artificial intelligence algorithms, including: a radar echo prediction model building unit for constructing multimodal radar echo predictions The model, which integrates various historical meteorological data in time and space, uses the deep neural network model to predict the future radar sequence diagram; the intelligent transformation model building unit is used to construct the intelligent transformation model of radar precipitation, combined with geographic location data, using the adversarial generation network, The radar data and precipitation can be converted into each other, and the predicted radar sequence diagram can be converted into precipitation data; the intelligent correction unit, based on the constructed precipitation prediction knowledge map, uses the neural network algorithm to perform knowledge inference, and analyzes the predicted precipitation data. make smart corrections; and

区域降水可视化模块,用于对修正的降水量数据进行分类可视化。A regional precipitation visualization module for classifying and visualizing corrected precipitation data.

有益效果:本发明提出了一种基于人工智能算法和知识图谱的降水预测方法和系统,不仅充分利用了不同种类的多模态气象数据,通过多模态降水预测方法,提高了降水预测的精度,解决了现有技术中存在的问题,而且构建了一个降水预测知识图谱,可对模型预测的结果进行智能修正,以减少人工智能算法的不确定性,进一步提升模型预测的准确度和可靠性。Beneficial effects: The present invention proposes a precipitation prediction method and system based on an artificial intelligence algorithm and a knowledge map, which not only makes full use of different types of multi-modal meteorological data, but also improves the accuracy of precipitation prediction through the multi-modal precipitation prediction method , solves the problems existing in the existing technology, and builds a precipitation prediction knowledge map, which can intelligently correct the results of the model prediction to reduce the uncertainty of the artificial intelligence algorithm and further improve the accuracy and reliability of the model prediction .

附图说明Description of drawings

为了更清楚地说明本发明技术方案和实施例,下面将对技术方案和实施例中所用的附图进行简单介绍。In order to illustrate the technical solutions and embodiments of the present invention more clearly, the accompanying drawings used in the technical solutions and embodiments will be briefly introduced below.

图1为一种基于人工智能算法和知识图谱的降水预测方法的流程图。Fig. 1 is a flow chart of a precipitation prediction method based on artificial intelligence algorithm and knowledge graph.

图2为本发明实施例中构建关于降水预测的知识图谱的流程图。FIG. 2 is a flowchart of constructing a knowledge graph about precipitation prediction in an embodiment of the present invention.

图3为本发明实施例中多模态雷达回波预测模型的结构示意图。FIG. 3 is a schematic structural diagram of a multi-modal radar echo prediction model in an embodiment of the present invention.

图4为本发明实施例中雷达降水智能转化模型的结构示意图。FIG. 4 is a schematic structural diagram of a radar precipitation intelligent conversion model in an embodiment of the present invention.

图5为一种基于人工智能算法和知识图谱的降水预测系统的架构图。Figure 5 is an architecture diagram of a precipitation prediction system based on artificial intelligence algorithms and knowledge graphs.

具体实施方式Detailed ways

为了使本发明的目的、技术方案及优点更加清晰,以下结合附图及具体实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.

以下结合具体实施例对本发明的具体实现进行详细描述。The specific implementation of the present invention will be described in detail below with reference to specific embodiments.

如图1所示,本发明实施例提供了一种基于人工智能算法和知识图谱的降水预测方法,所述方法包括以下步骤:As shown in FIG. 1 , an embodiment of the present invention provides a precipitation prediction method based on an artificial intelligence algorithm and a knowledge graph, and the method includes the following steps:

S100,构建多模态数据集装箱,将不同类型的气象数据按照自身结构特点,输入到多模态数据集装箱得到多模态数据,对多模态数据进行时空对齐、数据清洗和预处理以及数据序列分割;S100, constructing a multimodal data container, inputting different types of meteorological data into the multimodal data container according to their own structural characteristics to obtain multimodal data, performing spatiotemporal alignment, data cleaning and preprocessing, and data sequence on the multimodal data segmentation;

S200,构建关于降水预测的知识图谱,利用自然语言处理技术对公开网站和研究中与降水量相关知识进行抽取得到降水相关信息,将降水相关信息与雷达、卫星和气象站采集的降水数据进行融合,利用深度学习算法,构建一个降水预测知识图谱;S200, build a knowledge map about precipitation prediction, use natural language processing technology to extract precipitation-related knowledge from public websites and research to obtain precipitation-related information, and fuse the precipitation-related information with the precipitation data collected by radar, satellite and weather stations , using deep learning algorithms to build a precipitation prediction knowledge map;

S300,创建基于人工智能算法的多模态降水预测模型,具体为:S300, creating a multimodal precipitation prediction model based on an artificial intelligence algorithm, specifically:

S301,构建多模态雷达回波预测模型,将各类历史气象数据进行时空融合,利用深度神经网络模型来预测未来的雷达序列图;S301, construct a multi-modal radar echo prediction model, fuse various historical meteorological data in time and space, and use a deep neural network model to predict future radar sequence diagrams;

S302,构建雷达降水智能转化模型,结合地理位置数据,利用对抗生成网络,对雷达数据和降水量进行相互转化,即可将预测的雷达序列图转换为降水量数据;S302, build a radar precipitation intelligent transformation model, combine geographic location data, and use the confrontation generation network to mutually transform radar data and precipitation, so that the predicted radar sequence diagram can be converted into precipitation data;

S303,基于构建的降水预测知识图谱,利用神经网络算法进行知识推理,对预测的降水量数据进行智能修正;S303, based on the constructed precipitation prediction knowledge map, use a neural network algorithm to perform knowledge inference, and intelligently correct the predicted precipitation data;

S400,对修正的降水量数据进行分类可视化,便于使用人员观察对比分析,为更直观的进行观察,将降水量进行分类,共分为8类,即0、(0,2.5]、(2.5,5]、(5,10]、(10,25]、(25,50]、(50,100]、(100,+∞)(单位:mm/h),然后,基于经纬度数据,将降水量数据在地图上显示。S400, classify and visualize the modified precipitation data, which is convenient for users to observe, compare and analyze. For more intuitive observation, the precipitation is classified into 8 categories, namely 0, (0, 2.5], (2.5, 5], (5,10], (10,25], (25,50], (50,100], (100,+∞) (unit: mm/h), then, based on the latitude and longitude data, the precipitation data is displayed on the map.

在本发明实施例中,在获取和降水相关的多模态气象数据之前,需要获取同一地区一时间段内,包括历史雷达回波序列数据、卫星云图数据、气象站数据(温度、湿度、风向等)、地理位置大数据(包括经纬度数据、海拔数据等)、降水量数据等气象数据,将这些数据按照类别保存到多模态数据集装箱。接着需要对获取的多模态数据进行时空对齐,这样,处理后的数据即可用于构建多模态雷达回波预测模型以及雷达降水智能转化模型;另外,还需要对所有数据进行清洗和预处理,引入平滑因子对历史数据进行地物剔除,然后利用二维小波变换进行去燥,对缺省的数据使用双线性插值进行填充,除此之外,剔除一些异常序列或者缺失值过多的序列,防止这些噪音对模型进行干扰,最后,将预处理好的所有数据存入数据集装箱,供后续建模使用。In this embodiment of the present invention, before acquiring multimodal meteorological data related to precipitation, it is necessary to acquire historical radar echo sequence data, satellite cloud image data, and weather station data (temperature, humidity, wind direction, etc.) within a period of time in the same area. etc.), geographic location big data (including latitude and longitude data, altitude data, etc.), meteorological data such as precipitation data, and save these data into multimodal data containers according to categories. Then, it is necessary to align the acquired multimodal data in space and time, so that the processed data can be used to build a multimodal radar echo prediction model and a radar precipitation intelligent transformation model; in addition, all data needs to be cleaned and preprocessed , introduce a smoothing factor to remove the historical data, then use the two-dimensional wavelet transform to remove the noise, and use bilinear interpolation to fill the default data. In addition, remove some abnormal sequences or too many missing values. sequence, to prevent these noises from interfering with the model, and finally, store all the preprocessed data into the data container for subsequent modeling.

在本发明实施例中,所述对多模态数据进行时空对齐的步骤,具体包括:In the embodiment of the present invention, the step of performing spatiotemporal alignment on the multimodal data specifically includes:

S101,将时间误差小于2分钟的历史雷达回波序列数据与卫星云图数据进行合并和对齐;对气象站数据进行双线性插值,将双线性插值处理后得到的数据与雷达数据和卫星数据进行融合,依照经纬度,对雷达数据、卫星数据、气象站数据以及海拔数据进行空间匹配和对齐;需要说明的是,在时间上,历史雷达回波序列数据时间间隔一般为6分钟,卫星云图数据时间间隔一般为5分钟,以雷达图时间为基准,将二者时间相距最近的(误差小于2分钟)数据进行整合;其次,气象站数据(温度、湿度、风向等)时间间隔一般为1个小时,将其进行双线性插值,即可和雷达、卫星数据进行融合;在空间上,依照经纬度,对雷达数据、卫星数据、气象站数据(温度、湿度、风向等)以及海拔数据进行空间对齐,融合后的数据即可用于构建多模态雷达回波预测模型。S101, merge and align the historical radar echo sequence data with a time error of less than 2 minutes and the satellite cloud image data; perform bilinear interpolation on the weather station data, and combine the data obtained after the bilinear interpolation with the radar data and satellite data For fusion, the radar data, satellite data, weather station data and altitude data are spatially matched and aligned according to latitude and longitude; it should be noted that in terms of time, the time interval of historical radar echo sequence data is generally 6 minutes, and the satellite cloud image data The time interval is generally 5 minutes. Based on the radar map time, the data with the closest time distance (with an error of less than 2 minutes) are integrated; secondly, the time interval of weather station data (temperature, humidity, wind direction, etc.) is generally 1 In the space, according to the latitude and longitude, the radar data, satellite data, weather station data (temperature, humidity, wind direction, etc.) and altitude data can be spatially fused by bilinear interpolation. After alignment, the fused data can be used to build a multimodal radar echo prediction model.

S102,将雷达序列数据和地理位置大数据与降水量数据进行时空对齐,所述地理位置大数据包括经纬度数据和海拔数据。相似地,目前获取的降水量数据的时间间隔一般也1个小时,以该数据为基础,将雷达序列数据和地理位置大数据(包括经纬度数据、海拔数据等)和降水量数据进行时空对齐,融合后的数据即可用于构建雷达降水智能转化模型。S102 , align the radar sequence data and the geographic location big data with the precipitation data in space and time, where the geographic location big data includes latitude and longitude data and altitude data. Similarly, the time interval of currently obtained precipitation data is generally 1 hour. Based on this data, the radar sequence data and geographic location big data (including latitude and longitude data, altitude data, etc.) and precipitation data are aligned in time and space. The fused data can be used to build a radar precipitation intelligent transformation model.

如图2所示,在本发明实施例中,所述构建关于降水预测的知识图谱的步骤,具体包括:As shown in FIG. 2, in the embodiment of the present invention, the step of constructing a knowledge graph about precipitation prediction specifically includes:

S201,获取与降水相关的数据,包括从公开网站和研究中获得的非结构化降水数据以及半结构化降水数据,和从雷达与卫星中获取的结构化降水数据;S201, obtain precipitation-related data, including unstructured precipitation data and semi-structured precipitation data obtained from public websites and research, and structured precipitation data obtained from radar and satellites;

S202,针对非结构化降水数据和半结构化降水数据,利用基于注意力机制的卷积神经网络进行降水预测的实体、关系和属性抽取得到抽取降水信息,所述实体包括经纬度、海拔、时间、温度、风向、湿度和降水量等;S202, for the unstructured precipitation data and the semi-structured precipitation data, use the attention mechanism-based convolutional neural network to extract the entities, relationships and attributes of the precipitation prediction to obtain the extracted precipitation information, where the entities include latitude and longitude, altitude, time, temperature, wind direction, humidity and precipitation, etc.;

S203,将结构化降水数据和抽取降水信息进行融合,融合过程包括降水实体消歧和对齐。S203, fuse the structured precipitation data and the extracted precipitation information, and the fusion process includes precipitation entity disambiguation and alignment.

S204,对抽取降水信息进行进一步加工,利用机器学习相关性分析算法,分析经纬度、海拔、时间、温度、风向和湿度与降水量之间的关系,即给定气象因素具体的取值,得到该区域的最大降水量和最小降水量;S204, further processing the extracted precipitation information, using a machine learning correlation analysis algorithm to analyze the relationship between longitude and latitude, altitude, time, temperature, wind direction, humidity and precipitation, that is, given the specific values of meteorological factors, to obtain the Maximum and minimum precipitation in the area;

S205,根据抽取降水信息,构建降水预测知识图谱,将降水预测知识图谱存储到图数据库。S205 , constructing a precipitation prediction knowledge map according to the extracted precipitation information, and storing the precipitation prediction knowledge map in a map database.

在本发明实施例中,首先从公开网页和论文中,通过爬虫等技术,并对页面和数据进行解析,获得非结构化数据和半结构化数据,例如:“2021年7月20日,下午4点至5点,郑州站一小时累计降水量达201.9毫米,创下了全球大中小城市单小时降水量记录”,从雷达卫星等产品中,获取降水相关的结构化数据。针对非结构化和半结构化降水数据进行知识抽取,首先进行实体抽取,例如经度、纬度、温度、海拔、风向、湿度、降水量等与降水有关的实体。由于获取的数据有限,这里主要基于自然语言处理中的预训练迁移模型进行微调,利用训练预料丰富的领域帮助完成实体抽取。其次,对这些实体进行关系和属性抽取,这里主要使用基于注意力机制的卷积神经网络,以组合句子向量为单位抽取关系和属性。例如,抽取出一个区域的知识为,经度:109.809000,纬度:40.657000,海拔:1069m,时间:2021年6月1日,温度:10摄氏度,风向:3级,降水量:20mm/h(注意,这里只是为了对提取结果进行简单的说明,数据可能有一定偏差)。In this embodiment of the present invention, unstructured data and semi-structured data are first obtained from public web pages and papers, through technologies such as crawler, and by parsing the pages and data, for example: "July 20, 2021, afternoon From 4:00 to 5:00, the accumulated precipitation in Zhengzhou Station reached 201.9 mm in one hour, setting a single-hour precipitation record for large, medium and small cities in the world. To extract knowledge for unstructured and semi-structured precipitation data, first extract entities, such as longitude, latitude, temperature, altitude, wind direction, humidity, precipitation and other entities related to precipitation. Due to the limited data obtained, the fine-tuning is mainly based on the pre-trained transfer model in natural language processing, and the fields with rich training expectations are used to help complete entity extraction. Second, extract the relationship and attributes of these entities. Here, the convolutional neural network based on the attention mechanism is mainly used to extract the relationship and attributes in units of combined sentence vectors. For example, the knowledge of an area extracted is, longitude: 109.809000, latitude: 40.657000, altitude: 1069m, time: June 1, 2021, temperature: 10 degrees Celsius, wind direction: level 3, precipitation: 20mm/h (note, This is just for a brief description of the extraction results, the data may be biased).

还需要利用从雷达卫星等产品中获取的结构化数据,结合之前抽取的知识以及气象专家经验,对知识进行融合,包括实体消歧和对齐,例如“降水”、“降雨”、“降雨量”、“下雨量”、“降水量”等均统一为“降水量”。这里主要使用biLSTM神经网络,将实体对齐看作是字符串之间的相似度对比,最后计算其余弦相似度作为实体的匹配概率。最后对提取的知识进行进一步加工。利用机器学习相关性分析算法,分析经纬度、海拔、时间、温度、风向、湿度等其他气象因素和降水量之间的关系,即给定气象因素具体的取值,可得到该区域的最大降水量和最小降水量。构建降水预测的知识图谱,使用基于RDF模型的推理引擎,将提取到的数据构造成RDF格式的本体,将其导入到图数据库中,完成知识图谱的构建和存储。It is also necessary to use structured data obtained from products such as radar satellites, combined with previously extracted knowledge and the experience of meteorological experts, to integrate knowledge, including entity disambiguation and alignment, such as "precipitation", "rainfall", "rainfall" , "rainfall", "precipitation", etc. are unified as "precipitation". The biLSTM neural network is mainly used here, the entity alignment is regarded as the similarity comparison between strings, and finally the cosine similarity is calculated as the matching probability of the entity. Finally, the extracted knowledge is further processed. Use the machine learning correlation analysis algorithm to analyze the relationship between latitude and longitude, altitude, time, temperature, wind direction, humidity and other meteorological factors and precipitation, that is, given the specific values of meteorological factors, the maximum precipitation in the area can be obtained. and minimum precipitation. Construct the knowledge graph of precipitation prediction, use the inference engine based on the RDF model, construct the extracted data into an ontology in RDF format, and import it into the graph database to complete the construction and storage of the knowledge graph.

如图3所示,在本发明实施例中,所述构建多模态雷达回波预测模型的步骤,具体包括:As shown in FIG. 3 , in the embodiment of the present invention, the step of constructing a multi-modal radar echo prediction model specifically includes:

S3011,创建由Data Integration模块、CNN+LSTM模块、DS+LSTM模块、US+LSTM模块、CNN+LSTM模块和Data Generation模块构成的多模态雷达回波预测模型,由于大气云层都是在不断移动的,为更好的预测中心区域的降水,该模型加大了观测数据的感受野,即利用512km*512km区域的气象数据和预测中心区域256km*256km的雷达图像;多模态雷达回波预测模型用于对历史多模态气象大数据进行融合,历史多模态气象大数据包括雷达数据、卫星云图、经纬度数据、海拔数据、温度、风向和湿度,利用多个神经网络模块进行训练学习,用以对未来高分辨率雷达回波图进行更准确的预测;多模态雷达回波预测模型使用的损失函数为:S3011, create a multi-modal radar echo prediction model consisting of Data Integration module, CNN+LSTM module, DS+LSTM module, US+LSTM module, CNN+LSTM module and Data Generation module. Since the atmospheric clouds are constantly moving In order to better predict the precipitation in the central area, the model increases the receptive field of the observation data, that is, the meteorological data in the 512km*512km area and the radar image in the 256km*256km area of the prediction center are used; multimodal radar echo prediction The model is used to fuse historical multi-modal meteorological big data. Historical multi-modal meteorological big data includes radar data, satellite cloud images, latitude and longitude data, altitude data, temperature, wind direction and humidity. Multiple neural network modules are used for training and learning. It is used for more accurate prediction of future high-resolution radar echo images; the loss function used by the multi-modal radar echo prediction model is:

Figure BDA0003439469730000081
Figure BDA0003439469730000081

其中,

Figure BDA0003439469730000082
表示模型预测的雷达图数据,yk表示真实的雷达图数据,ωk和μk表示对不同强度的雷达图的加权值。in,
Figure BDA0003439469730000082
represents the radar map data predicted by the model, y k represents the real radar map data, and ω k and μ k represent the weighted values of radar maps of different intensities.

S3012,利用评估函数对多模态雷达回波预测模型进行评估,评估函数为:S3012, use the evaluation function to evaluate the multi-modal radar echo prediction model, and the evaluation function is:

Figure BDA0003439469730000083
Figure BDA0003439469730000083

Value评估结果值在-1和1之间,Value评估结果值值越大效果越好,其中,M为预测的雷达图序列长度,Valuei为单张雷达图的评分,即:The value of the Value evaluation result is between -1 and 1. The larger the Value evaluation result value, the better the effect. Among them, M is the length of the predicted radar map sequence, and Value i is the score of a single radar map, namely:

Figure BDA0003439469730000084
Figure BDA0003439469730000084

其中,L为预测的类别,N为总的样本数,ωj为第j个类别的权重,p(Ri,Tj)表示预测类别为i的像素点中真实类别为j的像素点总数,p(Ri)表示预测为类别i的像素点总数,p(Tj)表示真实类别为j的像素点总数;Among them, L is the predicted category, N is the total number of samples, ω j is the weight of the j-th category, and p(R i , T j ) represents the total number of pixels with the real category j in the pixels of the predicted category i. , p(R i ) represents the total number of pixels predicted as category i, p(T j ) represents the total number of pixels with real category j;

在本发明实施例中,根据需求,将数据集装箱中处理后的序列数据进行分割,即根据前3个小时的气象数据,预测未来3个小时的雷达序列数据,并将数据按照7:1:2的比例分成训练集、验证集和测试集。首先输入数据为前3个小时的多模态气象大数据,时间间隔为6分钟,即-180min、-174min、…、0min,多模态气象大数据包括雷达数据、卫星数据、温度、风向、经纬度、海拔,将其输入到各个模块中。Data Integration模块主要采用深度学习中的数据融合技术,对雷达数据、卫星云图、经纬度数据、海拔数据、温度、风向、湿度进行融合。首先,为防止模型后续出现梯度爆炸或者梯度消失,利用双曲正切函数对各维度数据进行归一化:In the embodiment of the present invention, the sequence data processed in the data container is divided according to the requirements, that is, the radar sequence data of the next 3 hours is predicted according to the meteorological data of the first 3 hours, and the data is divided according to 7:1: The ratio of 2 is divided into training set, validation set and test set. First, the input data is the multimodal meteorological big data of the first 3 hours, and the time interval is 6 minutes, namely -180min, -174min, ..., 0min. The multimodal meteorological big data includes radar data, satellite data, temperature, wind direction, Longitude, latitude, altitude, and input them into each module. The Data Integration module mainly uses data fusion technology in deep learning to integrate radar data, satellite cloud images, latitude and longitude data, altitude data, temperature, wind direction, and humidity. First, in order to prevent the subsequent gradient explosion or gradient disappearance of the model, the hyperbolic tangent function is used to normalize the data of each dimension:

Figure BDA0003439469730000085
Figure BDA0003439469730000085

然后,利用Space-to-depth、Mean-pooling、Center-crop、Conv(卷积)、Max-pooling等技术进行数据融合。CNN+LSTM模块整体上是encoder-decoder框架,这里主要将时间和空间融合,网络内部将卷积计算引入到LSTM的计算中,提取到了气象数据的时空相关性。如果为了特征提取的更加充分,样本量足够的话,CNN+LSTM模块可以多叠加几层网络,但由于我们获取的样本有限,为防止样本过拟合,将层数M设为1即可。DS+LSTM模块主要使用了下采样技术,充分提取历史各维度气象数据的深层特征。US+LSTM模块主要使用了上采样技术,利用提取的大气运动特征,预测未来的雷达序列数据特征。CNN+LSTM模块+DataGeneration模块主要根据提取的雷达序列数据特征,尽可能准确的生成原定区域的雷达序列数据。最后,通过Data Generation模块,输出未来3小时的雷达序列图,时间间隔为30min,即半个小时预测一次。Then, data fusion is performed using technologies such as Space-to-depth, Mean-pooling, Center-crop, Conv (convolution), and Max-pooling. The CNN+LSTM module is an encoder-decoder framework as a whole. Here, time and space are mainly integrated. The convolution calculation is introduced into the calculation of LSTM inside the network, and the spatiotemporal correlation of meteorological data is extracted. If the feature extraction is more sufficient and the sample size is sufficient, the CNN+LSTM module can stack several layers of the network, but due to the limited samples we obtain, in order to prevent the sample from overfitting, the number of layers M can be set to 1. The DS+LSTM module mainly uses down-sampling technology to fully extract the deep features of historical meteorological data of various dimensions. The US+LSTM module mainly uses the up-sampling technology to predict the future radar sequence data characteristics by using the extracted atmospheric motion characteristics. The CNN+LSTM module+DataGeneration module mainly generates the radar sequence data of the original area as accurately as possible according to the features of the extracted radar sequence data. Finally, through the Data Generation module, the radar sequence diagram of the next 3 hours is output, and the time interval is 30 minutes, that is, the forecast is once every half an hour.

在本发明实施例中,整个模型使用的损失函数为:In this embodiment of the present invention, the loss function used by the entire model is:

Figure BDA0003439469730000091
Figure BDA0003439469730000091

其中,

Figure BDA0003439469730000092
表示模型预测的雷达图数据,yk表示真实的雷达图数据,ωk和μk表示对不同强度的雷达图的加权值。利用前3个小时的多模态气象大数据,在gpu集群上,对这个改进后的模型进行训练,直到模型达到最优。利用如下评估函数,对上述最优模型进行评估:in,
Figure BDA0003439469730000092
represents the radar map data predicted by the model, y k represents the real radar map data, and ω k and μ k represent the weighted values of radar maps of different intensities. Using the multi-modal meteorological big data of the first 3 hours, the improved model is trained on the GPU cluster until the model reaches the optimum. The optimal model above is evaluated using the following evaluation function:

Figure BDA0003439469730000093
Figure BDA0003439469730000093

Value评估结果范围在-1和1之间,值越大效果越好。The value evaluation result ranges between -1 and 1, and the larger the value, the better the effect.

如图4所示,本发明提出一种人工智能的转换模型,可以把雷达图和降水图看成两个图像域,基于对抗生成网络,包含R2P生成器、P2R生成器、P判别器和R判别器四个模块,结合经纬度、海拔等地理位置数据,利用历史的雷达数据与降水量数据,在gpu集群上对模型进行训练优化,得到雷达和降水可智能转化的模型。As shown in Fig. 4, the present invention proposes an artificial intelligence transformation model, which can regard the radar map and the precipitation map as two image domains, based on the confrontation generation network, including R2P generator, P2R generator, P discriminator and R The four modules of the discriminator, combined with geographic location data such as latitude, longitude, and altitude, use historical radar data and precipitation data to train and optimize the model on the gpu cluster, and obtain a model that can be intelligently transformed between radar and precipitation.

在本发明实施例中,首先,获取雷达数据、地理位置大数据(包括经纬度数据、海拔数据等)与降水量数据,设为{(X1,X1,Y1),(X2,Z2,Y2),...,(Xn,Zn,Yn)}),将数据按照7:1:2的比例分成训练集、验证集和测试集。然后,构建一个深度生成网络,整体上可以看作由两个对抗网络组成,包括四个模块:R2P生成器:主要采用encoder-decoder框架,利用真实的雷达数据,结合经纬度和海拔等地理位置数据,通过encoder编码器对其特征进行编码,然后利用decoder解码器生成相应的降水数据。P判别器:主要用于分辨是R2P生成器的假的降水数据还是真实的降水数据。P2R生成器:和R2P生成器结构类似,但其主要功能是将真实的降水数据,结合经纬度和海拔等地理位置数据,通过encoder编码器对其特征进行编码,然后利用decoder解码器生成相应的雷达数据。R判别器:主要用于分辨是P2R生成器的假的雷达数据还是真实的雷达数据。该模型首先利用真实的雷达数据,结合经纬度海拔数据即(Xi,Zi),i=1,2,...,n,输入到R2P生成器,生成相应的降水量数据Yi′,i=1,2,...,n。然后,利用P判别器,对生成的Yi′和真实的Yi进行判别。同理,利用真实的降水数据,结合经纬度海拔数据即(Yi,Zi),i=1,2,...,n,输入到P2R生成器,生成相应的雷达数据Xi′,i=1,2,...,n。然后,利用R判别器,对生成的Xi和真实的Xi进行判别。In the embodiment of the present invention, first, obtain radar data, geographic location big data (including latitude and longitude data, altitude data, etc.) and precipitation data, set as {(X 1 , X 1 , Y 1 ), (X 2 , Z 2 , Y 2 ), ..., (X n , Z n , Y n )}), the data is divided into training set, validation set and test set according to the ratio of 7:1:2. Then, a deep generative network is constructed, which can be regarded as composed of two adversarial networks as a whole, including four modules: R2P generator: mainly using the encoder-decoder framework, using real radar data, combined with geographic location data such as latitude, longitude and altitude , encode its features through the encoder encoder, and then use the decoder decoder to generate the corresponding precipitation data. P discriminator: It is mainly used to distinguish whether it is the fake precipitation data of the R2P generator or the real precipitation data. P2R generator: Similar in structure to the R2P generator, but its main function is to combine the real precipitation data with geographic location data such as latitude, longitude and altitude, encode its features through the encoder encoder, and then use the decoder decoder to generate the corresponding radar. data. R discriminator: It is mainly used to distinguish whether it is the fake radar data of the P2R generator or the real radar data. The model first uses the real radar data, combined with the latitude and longitude altitude data (X i , Z i ), i =1, 2, ..., n, and input it to the R2P generator to generate the corresponding precipitation data Yi ', i=1,2,...,n. Then, use the P discriminator to discriminate between the generated Yi ' and the real Yi. In the same way, using real precipitation data, combined with latitude and longitude altitude data (Y i , Z i ), i =1, 2, . =1,2,...,n. Then, use the R discriminator to discriminate between the generated Xi and the real Xi.

在本发明实施例中,整个模型使用的损失函数为:In this embodiment of the present invention, the loss function used by the entire model is:

Loss=Loss1+Loss2+Loss3Loss=Loss1+Loss2+Loss3

其中:in:

Figure BDA0003439469730000101
Figure BDA0003439469730000101

Figure BDA0003439469730000102
Figure BDA0003439469730000102

Figure BDA0003439469730000103
Figure BDA0003439469730000103

在gpu集群上进行对抗训练优化,最终R2P生成器和P2R生成器得到一组最优的参数,结合经纬度海拔即可对雷达数据和降水量数据进行灵活转化。得到的R2P生成器即为临近降水转化模型,可将雷达数据转化为降水数据。The adversarial training optimization is carried out on the gpu cluster, and finally the R2P generator and the P2R generator obtain a set of optimal parameters, and the radar data and precipitation data can be flexibly transformed in combination with the latitude and longitude altitude. The resulting R2P generator is the near precipitation conversion model, which can convert radar data into precipitation data.

在本发明实施例中,基于构建好的降水预测知识图谱,利用深度学习算法进行知识推理,对得到的降水数据进行智能修正。利用S200得到的知识图谱中获取的数据和关系,可通过深度学习预测模型,根据经纬度、海拔、时间、温度、风向、湿度等气象因素,对区域降水量的最大值和最小值进行预测。进而,根据算法预测的降水量阈值对S32得到的降水数据进行智能修正,进一步提升降水预测的精确度和可靠性。In the embodiment of the present invention, based on the constructed precipitation prediction knowledge map, a deep learning algorithm is used to perform knowledge inference, and the obtained precipitation data is intelligently corrected. Using the data and relationships obtained in the knowledge graph obtained by S200, the deep learning prediction model can be used to predict the maximum and minimum values of regional precipitation according to meteorological factors such as latitude and longitude, altitude, time, temperature, wind direction, and humidity. Furthermore, the precipitation data obtained by S32 is intelligently corrected according to the precipitation threshold predicted by the algorithm, so as to further improve the accuracy and reliability of precipitation prediction.

在本发明实施例中,降水量数据可视化是为了更直观的进行观察,将预测并修正后的降水量进行分类,共分为8类,即0、(0,2.5]、(2.5,5]、(5,10]、(10,25]、(25,50]、(50,100]、(100,+∞)(单位:mm/h)。然后,基于经纬度数据,将降水量数据在地图上显示,便于观测分析。In the embodiment of the present invention, the visualization of precipitation data is for more intuitive observation, and the predicted and corrected precipitation is classified into 8 categories, namely 0, (0, 2.5], (2.5, 5] , (5,10], (10,25], (25,50], (50,100], (100,+∞) (unit: mm/h). Then, based on the latitude and longitude data, the precipitation data is displayed on the map. display for easy observation and analysis.

如图5所示,本发明实施例还公开了一种基于人工智能算法和知识图谱的降水预测系统,所述系统包括:As shown in FIG. 5 , an embodiment of the present invention also discloses a precipitation prediction system based on an artificial intelligence algorithm and a knowledge graph, and the system includes:

多模型数据集装箱,用于将不同类型的气象数据按照自身结构特点,输入到多模态数据集装箱得到多模态数据,对多模态数据进行时空对齐、数据清洗和预处理以及数据序列分割;The multi-model data container is used to input different types of meteorological data into the multi-modal data container according to its own structural characteristics to obtain multi-modal data, and perform spatio-temporal alignment, data cleaning and preprocessing, and data sequence segmentation for the multi-modal data;

降水预测知识图谱构建模块,用于构建关于降水预测的知识图谱。The precipitation prediction knowledge graph building module is used to build a knowledge graph about precipitation prediction.

基于人工智能算法的多模态降水预测和修正模块,用于创建基于人工智能算法的多模态降水预测模型,具体包括:雷达回波预测模型构建单元,用于构建多模态雷达回波预测模型,将各类历史气象数据进行时空融合,利用深度神经网络模型来预测未来的雷达序列图;智能转化模型构建单元,用于构建雷达降水智能转化模型,结合地理位置数据,利用对抗生成网络,对雷达数据和降水量进行相互转化,即可将预测的雷达序列图转换为降水量数据;智能修正单元,基于构建的降水预测知识图谱,利用神经网络算法进行知识推理,对预测的降水量数据进行智能修正;以及A multimodal precipitation prediction and correction module based on artificial intelligence algorithms, used to create a multimodal precipitation prediction model based on artificial intelligence algorithms, including: a radar echo prediction model building unit for constructing multimodal radar echo predictions The model, which integrates various historical meteorological data in time and space, uses the deep neural network model to predict the future radar sequence diagram; the intelligent transformation model building unit is used to construct the intelligent transformation model of radar precipitation, combined with geographic location data, using the adversarial generation network, The radar data and precipitation can be converted into each other, and the predicted radar sequence diagram can be converted into precipitation data; the intelligent correction unit, based on the constructed precipitation prediction knowledge map, uses the neural network algorithm to perform knowledge inference, and analyzes the predicted precipitation data. make smart corrections; and

区域降水可视化模块,用于对修正的降水量数据进行分类可视化。A regional precipitation visualization module for classifying and visualizing corrected precipitation data.

所述系统在使用过程中,首先需要获取某区域A的雷达、卫星、气象站等各维度的实时数据,然后将这个区域分割成n个500*500km的小区域,之后利用智能降水预测系统,经过各个模块,对这n个小区域未来的降水量进行预测,最后将这些小区域合并可视化,即可观察分析未来的降水量情况。In the process of using the system, it is first necessary to obtain real-time data of various dimensions such as radar, satellites, and weather stations in a certain area A, and then divide this area into n small areas of 500*500 km, and then use the intelligent precipitation prediction system. After each module, predict the future precipitation of these n small areas, and finally combine and visualize these small areas to observe and analyze the future precipitation.

以上仅对本发明的较佳实施例进行了详细叙述,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above only describes the preferred embodiments of the present invention in detail, and is not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention should be included in the protection of the present invention. within the range.

应该理解的是,虽然本发明各实施例的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,各实施例中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。It should be understood that although the steps in the flowcharts of the embodiments of the present invention are sequentially displayed in accordance with the arrows, these steps are not necessarily executed in the order indicated by the arrows. Unless explicitly stated herein, the execution of these steps is not strictly limited to the order, and these steps may be performed in other orders. Moreover, at least a part of the steps in each embodiment may include multiple sub-steps or multiple stages. These sub-steps or stages are not necessarily executed and completed at the same time, but may be executed at different times. The order of execution is also not necessarily sequential, but may be performed alternately or alternately with other steps or at least a portion of sub-steps or stages of other steps.

本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一非易失性计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。Those of ordinary skill in the art can understand that all or part of the processes in the methods of the above embodiments can be implemented by instructing relevant hardware through a computer program, and the program can be stored in a non-volatile computer-readable storage medium , when the program is executed, it may include the flow of the above-mentioned method embodiments. Wherein, any reference to memory, storage, database or other medium used in the various embodiments provided in this application may include non-volatile and/or volatile memory. Nonvolatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory. Volatile memory may include random access memory (RAM) or external cache memory. By way of illustration and not limitation, RAM is available in various forms such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Road (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.

本领域技术人员在考虑说明书及实施例处的公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由权利要求指出。Other embodiments of the present disclosure will readily occur to those skilled in the art upon consideration of the disclosure at the specification and examples. This application is intended to cover any variations, uses, or adaptations of the present disclosure that follow the general principles of the present disclosure and include common knowledge or techniques in the technical field not disclosed by the present disclosure . The specification and examples are to be regarded as exemplary only, with the true scope and spirit of the disclosure being indicated by the claims.

Claims (6)

1.一种基于人工智能算法和知识图谱的降水预测方法,其特征在于,所述方法包括以下步骤:1. a precipitation prediction method based on artificial intelligence algorithm and knowledge map, is characterized in that, described method may further comprise the steps: 构建多模态数据集装箱,将不同类型的气象数据按照自身结构特点,输入到多模态数据集装箱得到多模态数据,对多模态数据进行时空对齐、数据清洗和预处理以及数据序列分割;Build a multi-modal data container, input different types of meteorological data into the multi-modal data container according to their own structural characteristics to obtain multi-modal data, perform spatio-temporal alignment, data cleaning and preprocessing, and data sequence segmentation for the multi-modal data; 构建关于降水预测的知识图谱;Build a knowledge graph about precipitation forecasting; 创建基于人工智能算法的多模态降水预测模型,具体为:构建多模态雷达回波预测模型,将各类历史气象数据进行时空融合,利用深度神经网络模型来预测未来的雷达序列图;构建雷达降水智能转化模型,结合地理位置数据,利用对抗生成网络,对雷达数据和降水量进行相互转化,即可将预测的雷达序列图转换为降水量数据;基于构建的降水预测知识图谱,利用神经网络算法进行知识推理,对预测的降水量数据进行智能修正;Create a multi-modal precipitation prediction model based on artificial intelligence algorithms, specifically: building a multi-modal radar echo prediction model, integrating various historical meteorological data in time and space, and using a deep neural network model to predict future radar sequence diagrams; The radar precipitation intelligent transformation model, combined with geographic location data, uses the adversarial generation network to convert radar data and precipitation to each other, and the predicted radar sequence diagram can be converted into precipitation data; based on the constructed precipitation prediction knowledge map, the neural network The network algorithm conducts knowledge reasoning and intelligently corrects the predicted precipitation data; 对修正的降水量数据进行分类可视化。Classified visualization of corrected precipitation data. 2.根据权利要求1所述一种基于人工智能算法和知识图谱的降水预测方法,其特征在于,所述对多模态数据进行时空对齐的步骤,具体包括:2. a kind of precipitation prediction method based on artificial intelligence algorithm and knowledge map according to claim 1, is characterized in that, the described step of carrying out space-time alignment to multimodal data, specifically comprises: 将时间误差小于2分钟的历史雷达回波序列数据与卫星云图数据进行合并和对齐;对气象站数据进行双线性插值,将双线性插值处理后得到的数据与雷达数据和卫星数据进行融合,依照经纬度,对雷达数据、卫星数据、气象站数据以及海拔数据进行空间匹配和对齐;Merge and align historical radar echo sequence data with a time error of less than 2 minutes and satellite cloud image data; perform bilinear interpolation on weather station data, and fuse the data obtained after bilinear interpolation with radar data and satellite data , to spatially match and align radar data, satellite data, weather station data and altitude data according to latitude and longitude; 将雷达序列数据和地理位置大数据与降水量数据进行时空对齐,所述地理位置大数据包括经纬度数据和海拔数据。The radar sequence data and geographic location big data, including latitude and longitude data and altitude data, are aligned in space and time with precipitation data. 3.根据权利要求1所述一种基于人工智能算法和知识图谱的降水预测方法,其特征在于,所述构建关于降水预测的知识图谱的步骤,具体包括:3. a kind of precipitation prediction method based on artificial intelligence algorithm and knowledge map according to claim 1, is characterized in that, the described step of building the knowledge map of precipitation prediction, specifically comprises: 获取与降水相关的数据,包括从公开网站和研究中获得的非结构化降水数据以及半结构化降水数据,和从雷达与卫星中获取的结构化降水数据;Obtain precipitation-related data, including unstructured and semi-structured precipitation data from publicly available websites and research, and structured precipitation data from radar and satellites; 针对非结构化降水数据和半结构化降水数据,利用基于注意力机制的卷积神经网络进行降水预测的实体、关系和属性抽取得到抽取降水信息,所述实体包括经纬度、海拔、时间、温度、风向、湿度和降水量等;For unstructured precipitation data and semi-structured precipitation data, use the attention mechanism-based convolutional neural network to extract the entities, relationships and attributes of precipitation prediction to obtain the extracted precipitation information, the entities include latitude and longitude, altitude, time, temperature, Wind direction, humidity and precipitation, etc.; 将结构化降水数据和抽取降水信息进行融合,融合过程包括降水实体消歧和对齐;Fusion of structured precipitation data and extracted precipitation information, the fusion process includes precipitation entity disambiguation and alignment; 对抽取降水信息进行进一步加工,利用机器学习相关性分析算法,分析经纬度、海拔、时间、温度、风向和湿度与降水量之间的关系,即给定气象因素具体的取值,得到该区域的最大降水量和最小降水量;The extracted precipitation information is further processed, and the machine learning correlation analysis algorithm is used to analyze the relationship between latitude and longitude, altitude, time, temperature, wind direction, humidity and precipitation, that is, given the specific values of meteorological factors, to obtain the area's latitude and longitude. maximum and minimum precipitation; 根据抽取降水信息,构建降水预测知识图谱,将降水预测知识图谱存储到图数据库。According to the extracted precipitation information, the precipitation prediction knowledge map is constructed, and the precipitation prediction knowledge map is stored in the map database. 4.根据权利要求1所述一种基于人工智能算法和知识图谱的降水预测方法,其特征在于,所述构建多模态雷达回波预测模型的步骤,具体包括:4. a kind of precipitation prediction method based on artificial intelligence algorithm and knowledge map according to claim 1, is characterized in that, the described step of building multimodal radar echo prediction model, specifically comprises: 创建由Data Integration模块、CNN+LSTM模块、DS+LSTM模块、US+LSTM模块、CNN+LSTM模块和Data Generation模块构成的多模态雷达回波预测模型,为更好的预测中心区域的降水,所述多模态雷达回波预测模型利用了512km*512km区域的气象数据以及预测中心区256km*256km的雷达图像;多模态雷达回波预测模型用于对历史多模态气象大数据进行融合,历史多模态气象大数据包括雷达数据、卫星云图、经纬度数据、海拔数据、温度、风向和湿度,利用多个神经网络模块进行训练学习,用以对未来高分辨率雷达回波图进行准确的预测;多模态雷达回波预测模型使用的损失函数为:Create a multimodal radar echo prediction model consisting of Data Integration module, CNN+LSTM module, DS+LSTM module, US+LSTM module, CNN+LSTM module and Data Generation module, in order to better predict the precipitation in the central area, The multimodal radar echo prediction model utilizes the meteorological data in the area of 512km*512km and the radar image in the prediction center area of 256km*256km; the multimodal radar echo prediction model is used to fuse historical multimodal meteorological big data , Historical multi-modal meteorological big data includes radar data, satellite cloud images, latitude and longitude data, altitude data, temperature, wind direction and humidity, using multiple neural network modules for training and learning to accurately analyze future high-resolution radar echo images The prediction of ; the loss function used by the multimodal radar echo prediction model is:
Figure FDA0003439469720000021
Figure FDA0003439469720000021
其中,
Figure FDA0003439469720000022
表示模型预测的雷达图数据,yk表示真实的雷达图数据,ωk和μk表示对不同强度的雷达图的加权值;
in,
Figure FDA0003439469720000022
represents the radar map data predicted by the model, y k represents the real radar map data, ω k and μ k represent the weighted values of radar maps of different intensities;
利用评估函数对多模态雷达回波预测模型进行评估,评估函数为:The evaluation function is used to evaluate the multimodal radar echo prediction model. The evaluation function is:
Figure FDA0003439469720000023
Figure FDA0003439469720000023
Value评估结果值在-1和1之间,Value评估结果值值越大效果越好,其中,M为预测的雷达图序列长度,Valuei为单张雷达图的评分,即:The value of the Value evaluation result is between -1 and 1. The larger the Value evaluation result value, the better the effect. Among them, M is the length of the predicted radar map sequence, and Value i is the score of a single radar map, namely:
Figure FDA0003439469720000024
Figure FDA0003439469720000024
其中,L为预测的类别,N为总的样本数,ωj为第j个类别的权重,p(Ri,Tj)表示预测类别为i的像素点中真实类别为j的像素点总数,p(Ri)表示预测为类别i的像素点总数,p(Tj)表示真实类别为j的像素点总数。Among them, L is the predicted category, N is the total number of samples, ω j is the weight of the j-th category, and p(R i , T j ) represents the total number of pixels with the real category j in the pixels of the predicted category i. , p(R i ) represents the total number of pixels predicted as category i, and p(T j ) represents the total number of pixels with true category j.
5.根据权利要求4所述一种基于人工智能算法和知识图谱的降水预测方法,其特征在于,所述构建雷达降水智能转化模型的步骤,具体包括:构建包含R2P生成器、P2R生成器、P判别器和R判别器四个模块的转换模型,结合经纬度和海拔地理位置数据,利用历史的雷达数据与降水量数据,在gpu集群上对转换模型进行训练优化,得到雷达降水智能转化模型;雷达降水智能转化模型使用的损失函数为:5. a kind of precipitation prediction method based on artificial intelligence algorithm and knowledge map according to claim 4, is characterized in that, the described step of building radar precipitation intelligent transformation model, specifically comprises: building comprises R2P generator, P2R generator, The transformation model of the four modules of the P discriminator and the R discriminator, combined with the latitude and longitude and altitude geographic location data, uses the historical radar data and precipitation data to train and optimize the transformation model on the gpu cluster, and obtain the radar precipitation intelligent transformation model; The loss function used by the radar precipitation intelligent transformation model is: Loss==Loss1+Loss2+Loss3Loss==Loss1+Loss2+Loss3 其中:in:
Figure FDA0003439469720000031
Figure FDA0003439469720000031
Figure FDA0003439469720000032
Figure FDA0003439469720000032
Figure FDA0003439469720000033
Figure FDA0003439469720000033
6.一种基于人工智能算法和知识图谱的降水预测系统,其特征在于,所述系统包括:6. A precipitation prediction system based on an artificial intelligence algorithm and a knowledge map, wherein the system comprises: 多模型数据集装箱,用于将不同类型的气象数据按照自身结构特点,输入到多模态数据集装箱得到多模态数据,对多模态数据进行时空对齐、数据清洗和预处理以及数据序列分割;The multi-model data container is used to input different types of meteorological data into the multi-modal data container according to its own structural characteristics to obtain multi-modal data, and perform spatio-temporal alignment, data cleaning and preprocessing, and data sequence segmentation for the multi-modal data; 降水预测知识图谱构建模块,用于构建关于降水预测的知识图谱;The precipitation prediction knowledge map building module is used to build a knowledge map about precipitation prediction; 基于人工智能算法的多模态降水预测和修正模块,用于创建基于人工智能算法的多模态降水预测模型,具体包括:雷达回波预测模型构建单元,用于构建多模态雷达回波预测模型,将各类历史气象数据进行时空融合,利用深度神经网络模型来预测未来的雷达序列图;智能转化模型构建单元,用于构建雷达降水智能转化模型,结合地理位置数据,利用对抗生成网络,对雷达数据和降水量进行相互转化,即可将预测的雷达序列图转换为降水量数据;智能修正单元,基于构建的降水预测知识图谱,利用神经网络算法进行知识推理,对预测的降水量数据进行智能修正;以及A multimodal precipitation prediction and correction module based on artificial intelligence algorithms, used to create a multimodal precipitation prediction model based on artificial intelligence algorithms, including: a radar echo prediction model building unit for constructing multimodal radar echo predictions The model, which integrates various historical meteorological data in time and space, uses the deep neural network model to predict the future radar sequence diagram; the intelligent transformation model building unit is used to construct the intelligent transformation model of radar precipitation, combined with geographic location data, using the adversarial generation network, The radar data and precipitation can be converted into each other, and the predicted radar sequence diagram can be converted into precipitation data; the intelligent correction unit, based on the constructed precipitation prediction knowledge map, uses the neural network algorithm to perform knowledge inference, and analyzes the predicted precipitation data. make smart corrections; and 区域降水可视化模块,用于对修正的降水量数据进行分类可视化。A regional precipitation visualization module for classifying and visualizing corrected precipitation data.
CN202111625218.2A 2021-12-28 2021-12-28 A precipitation prediction method and system based on artificial intelligence algorithm and knowledge graph Pending CN114385611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111625218.2A CN114385611A (en) 2021-12-28 2021-12-28 A precipitation prediction method and system based on artificial intelligence algorithm and knowledge graph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111625218.2A CN114385611A (en) 2021-12-28 2021-12-28 A precipitation prediction method and system based on artificial intelligence algorithm and knowledge graph

Publications (1)

Publication Number Publication Date
CN114385611A true CN114385611A (en) 2022-04-22

Family

ID=81197843

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111625218.2A Pending CN114385611A (en) 2021-12-28 2021-12-28 A precipitation prediction method and system based on artificial intelligence algorithm and knowledge graph

Country Status (1)

Country Link
CN (1) CN114385611A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114610799A (en) * 2022-05-11 2022-06-10 未名环境分子诊断(常熟)有限公司 Data processing method and device based on environment monitoring and storage medium
CN115877345A (en) * 2023-02-28 2023-03-31 航天宏图信息技术股份有限公司 Method and device for supplementing missing data of wind profile radar

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101435648B1 (en) * 2014-05-13 2014-08-28 진양공업주식회사 Extremely short term precipitation prediction system of specific point using analysis of radar image
US20170357029A1 (en) * 2016-06-14 2017-12-14 The Climate Corporation Supervised neural network to predict unlabeled rain rates
CN108761576A (en) * 2018-05-28 2018-11-06 国网山西省电力公司电力科学研究院 A kind of X-band weather radar and precipitation station data fusion method and system
CN113240169A (en) * 2021-05-10 2021-08-10 东南大学 Short-term rainfall prediction method of GRU network based on multi-mode data and up-down sampling
CN113656647A (en) * 2021-06-02 2021-11-16 韦东庆 Intelligent operation and maintenance oriented engineering archive data management platform, method and system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101435648B1 (en) * 2014-05-13 2014-08-28 진양공업주식회사 Extremely short term precipitation prediction system of specific point using analysis of radar image
US20170357029A1 (en) * 2016-06-14 2017-12-14 The Climate Corporation Supervised neural network to predict unlabeled rain rates
CN108761576A (en) * 2018-05-28 2018-11-06 国网山西省电力公司电力科学研究院 A kind of X-band weather radar and precipitation station data fusion method and system
CN113240169A (en) * 2021-05-10 2021-08-10 东南大学 Short-term rainfall prediction method of GRU network based on multi-mode data and up-down sampling
CN113656647A (en) * 2021-06-02 2021-11-16 韦东庆 Intelligent operation and maintenance oriented engineering archive data management platform, method and system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
丁未思等: "基于图像挖掘技术的降雨预测系统的研究", 计算机测量与控制, vol. 14, no. 7, 25 July 2006 (2006-07-25), pages 931 - 933 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114610799A (en) * 2022-05-11 2022-06-10 未名环境分子诊断(常熟)有限公司 Data processing method and device based on environment monitoring and storage medium
CN114610799B (en) * 2022-05-11 2022-07-22 未名环境分子诊断(常熟)有限公司 Data processing method and device based on environmental monitoring and storage medium
CN115877345A (en) * 2023-02-28 2023-03-31 航天宏图信息技术股份有限公司 Method and device for supplementing missing data of wind profile radar

Similar Documents

Publication Publication Date Title
CN112561191B (en) Prediction model training method, prediction device, prediction apparatus, prediction program, and program
CN114926749A (en) Inversion method and system of near-surface atmospheric pollutants based on remote sensing images
Qi et al. A deep learning approach for long-term traffic flow prediction with multifactor fusion using spatiotemporal graph convolutional network
CN117494034A (en) Air quality prediction method based on traffic congestion index and multi-source data fusion
Jonnalagadda et al. Forecasting atmospheric visibility using auto regressive recurrent neural network
CN118690669B (en) Offshore wind field inversion method based on improved CNN-LSTM network
CN118643997B (en) Efficient flood resilience assessment method and system based on natural language processing and data-driven model
CN114385611A (en) A precipitation prediction method and system based on artificial intelligence algorithm and knowledge graph
CN116663742B (en) Regional capacity prediction method based on multi-factor and model fusion
Agga et al. Short-term load forecasting: based on hybrid CNN-LSTM neural network
CN116151459A (en) Probabilistic prediction method and system for power grid flood control risk based on improved Transformer
Kar et al. Intelligent traffic prediction by combining weather and road traffic condition information: a deep learning-based approach
Porto et al. Machine learning approaches to extreme weather events forecast in urban areas: Challenges and initial results
Fu et al. Prediction and analysis of sea surface temperature based on LSTM-transformer model
CN117827863B (en) Atmospheric environment monitoring and analysis method and system based on CLDAS database
CN117233869B (en) A short-term wind speed prediction method for sites based on GRU-BiTCN
Zhang Remote sensing data processing of urban land using based on artificial neural network
Brahma et al. Visualizing solar irradiance data in ArcGIS and forecasting based on a novel deep neural network mechanism
CN117706660A (en) Method for severe convective weather forecast based on CNN-ViT technology
CN118153628A (en) A correction method for short-term quantitative precipitation numerical forecast based on deep learning
Yin et al. A hybrid graph attention network based method for interval prediction of shipboard solar irradiation
Xie et al. Deep learning-based GoogLeNet-embedded no-pooling dimension fully-connected network for short-term wind power prediction
Zhang et al. A new lightweight framework based on knowledge distillation for reducing the complexity of multi-modal solar irradiance prediction model
Li et al. WSPTGAN for global ocean surface wind speed generation with high temporal resolution and spatial coverage
Luo et al. Pseudo grey metabolic Markov model and its application in urban rainfall prediction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination