CN114377559A - Super-hydrophobic nano-cellulose moisture-resistant air purification membrane and preparation method thereof - Google Patents
Super-hydrophobic nano-cellulose moisture-resistant air purification membrane and preparation method thereof Download PDFInfo
- Publication number
- CN114377559A CN114377559A CN202210057613.3A CN202210057613A CN114377559A CN 114377559 A CN114377559 A CN 114377559A CN 202210057613 A CN202210057613 A CN 202210057613A CN 114377559 A CN114377559 A CN 114377559A
- Authority
- CN
- China
- Prior art keywords
- air purification
- nanocellulose
- super
- preparation
- purification membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004887 air purification Methods 0.000 title claims abstract description 56
- 239000012528 membrane Substances 0.000 title claims abstract description 54
- 230000003075 superhydrophobic effect Effects 0.000 title claims abstract description 35
- 238000002360 preparation method Methods 0.000 title claims abstract description 23
- 229920002678 cellulose Polymers 0.000 title claims abstract description 10
- 239000001913 cellulose Substances 0.000 title claims abstract description 10
- 238000004108 freeze drying Methods 0.000 claims abstract description 8
- 229920001046 Nanocellulose Polymers 0.000 claims description 63
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 claims description 50
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 27
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 claims description 19
- 238000003760 magnetic stirring Methods 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 18
- 238000003756 stirring Methods 0.000 claims description 14
- 238000006011 modification reaction Methods 0.000 claims description 12
- 238000000137 annealing Methods 0.000 claims description 8
- 238000012986 modification Methods 0.000 claims description 7
- 230000004048 modification Effects 0.000 claims description 7
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 6
- 239000008213 purified water Substances 0.000 claims description 6
- 229910000077 silane Inorganic materials 0.000 claims description 6
- 238000001035 drying Methods 0.000 claims description 5
- 239000002121 nanofiber Substances 0.000 claims description 3
- 238000007493 shaping process Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 16
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 238000007385 chemical modification Methods 0.000 abstract description 3
- 238000001914 filtration Methods 0.000 description 27
- 239000004615 ingredient Substances 0.000 description 21
- 239000000835 fiber Substances 0.000 description 10
- 239000000203 mixture Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 230000002209 hydrophobic effect Effects 0.000 description 5
- 238000005096 rolling process Methods 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 2
- 229920002301 cellulose acetate Polymers 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000001523 electrospinning Methods 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 229910021389 graphene Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- KMHSUNDEGHRBNV-UHFFFAOYSA-N 2,4-dichloropyrimidine-5-carbonitrile Chemical compound ClC1=NC=C(C#N)C(Cl)=N1 KMHSUNDEGHRBNV-UHFFFAOYSA-N 0.000 description 1
- 241000711573 Coronaviridae Species 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- YUYCVXFAYWRXLS-UHFFFAOYSA-N trimethoxysilane Chemical compound CO[SiH](OC)OC YUYCVXFAYWRXLS-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/02—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/54—Particle separators, e.g. dust precipitators, using ultra-fine filter sheets or diaphragms
- B01D46/543—Particle separators, e.g. dust precipitators, using ultra-fine filter sheets or diaphragms using membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
- B01D67/0006—Organic membrane manufacture by chemical reactions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/08—Polysaccharides
- B01D71/10—Cellulose; Modified cellulose
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【技术领域】【Technical field】
本发明涉及空气净化膜技术领域,具体涉及超疏水纳米纤维素抗湿空气净化膜及其制备方法。The invention relates to the technical field of air purification membranes, in particular to a superhydrophobic nanocellulose anti-moisture air purification membrane and a preparation method thereof.
【背景技术】【Background technique】
可持续发展是现在社会发展的基本理念,采用植物源材料替代不可再生材料势在必行。自新型冠状病毒侵袭全球以来,空气过滤装备的制造出现飞速上升,其中又以口罩滤芯为主要代表。相关数据显示,2020年口罩滤芯的产能提升了将近三倍。现阶段口罩滤芯仍以石油衍生物聚丙烯为主要材料来源,产能的增加必然会使碳排放升高,同时无法自然降解的缺陷会对生态环境造成二次污染。Sustainable development is the basic concept of current social development, and it is imperative to replace non-renewable materials with plant-derived materials. Since the new coronavirus hit the world, the manufacture of air filtration equipment has risen rapidly, among which mask filter elements are the main representatives. Relevant data shows that the production capacity of mask filter elements has nearly tripled in 2020. At this stage, the filter element of the mask still uses petroleum derivative polypropylene as the main material source. The increase in production capacity will inevitably increase carbon emissions. At the same time, the defect that cannot be naturally degraded will cause secondary pollution to the ecological environment.
基于此,以植物纤维可降解的纳米纤维素为基材,制备高效的空气净化膜成为现阶段的研究热点,现已有相关的研究,例如中国专利申请号201810717317.5一种纤维素_聚酰胺防静电空气净化复合膜及制备方法,该方法在纤维素/聚酰胺的纺丝乳液中加入氧化石墨烯、四羧基酞菁铁,在凝固时破乳,使氧化石墨烯析出并沉积在复合纳米膜的表面,并进一步在表面接枝一层四羧基酞菁铁,制备的复合膜可充分利用四羧基酞菁铁对甲醛的催化氧化能力,对甲醛的高效永久去除效果,并且可及时排除静电,防止粉尘吸附,防止膜孔堵塞,耐久性好,使用寿命长,可广泛用于空气净化领域。又例如中国专利申请号201710587286.1一种负离子空气净化膜的制备方法,以醋酸纤维素为主要材料,溶于单一溶剂或混合溶剂中,得到的混合纤维溶液再与改性的奇冰石粉进行混合均质,通过静电纺丝的方法制备得到新型的负离子空气净化膜,制得的膜的面密度为30-120g/m2、厚度为0.3-0.8mm、抗张强度:8-15KN/M,以醋酸纤维素为主要成分制备空气净化膜,方法简单,将奇冰石粉添加于净化膜上,在过滤空气的同时,带来负离子,达到净化空气目的。Based on this, the preparation of high-efficiency air purification membranes based on degradable nanocellulose from plant fibers has become a research hotspot at this stage. There are related studies, such as Chinese Patent Application No. 201810717317.5 A cellulose-polyamide anti- Electrostatic air purification composite membrane and preparation method. In the method, graphene oxide and tetracarboxylated iron phthalocyanine are added to the spinning emulsion of cellulose/polyamide, and the emulsion is broken during solidification, so that graphene oxide is precipitated and deposited on the composite nanomembrane. The surface of the composite film is further grafted with a layer of iron tetracarboxyphthalocyanine. The prepared composite film can make full use of the catalytic oxidation ability of iron tetracarboxyphthalocyanine to formaldehyde, the efficient and permanent removal of formaldehyde, and the elimination of static electricity in time. Prevent dust adsorption, prevent membrane hole clogging, good durability, long service life, can be widely used in the field of air purification. Another example is Chinese Patent Application No. 201710587286.1 A preparation method of negative ion air purification membrane, with cellulose acetate as the main material, being dissolved in a single solvent or mixed solvent, and the obtained mixed fiber solution is mixed with the modified ice stone powder again. A new type of negative ion air purification membrane was prepared by electrospinning. The surface density of the prepared membrane was 30-120g/m 2 , the thickness was 0.3-0.8mm, and the tensile strength was 8-15KN/M. The air purification membrane is prepared by using cellulose acetate as the main component. The method is simple. Add the ice stone powder to the purification membrane, and at the same time filter the air, it also brings negative ions to achieve the purpose of purifying the air.
然而,植物纤维纳米纤维素是一种亲水纤维,材料的基本特性致使了其在不同场景应用的限制,特别是在高湿度、高温差环境下,具体表现在以下两点:1、在高湿度环境下植物纤维容易吸湿溶胀,致使纤维结构软化,最终在使用过程中的气压差环境下纤维网状结构发生坍塌,丧失最基本的过滤性能;2、静电柱极的电纺丝膜受高湿度空气中水分子干扰使其携带的表面电荷损失,降低了以静电吸附力为主导的过滤效率。在实际应用的环境条件中,处于热带或亚热带地区的空气相对湿度(RH)可高达80-90%,人体口鼻呼吸会产生约含有85-95%RH的气溶胶湿热空气。当空气净化膜两端存在一定温度差时,基于冷凝效应,湿气流通过过滤介质时会被冷凝形成液滴。这种冷凝现象对纤维过滤膜结构的破坏是毁灭性的,一方面亲水纤维吸收液滴导致机械性能剧降,过滤膜的抗拉伸性和抗弯曲性不足;另一方面毛细作用力使截留的液滴在纤维间凝聚形成液膜,使得过滤介质的气流通路减少,导致过滤阻力上升。However, plant fiber nanocellulose is a kind of hydrophilic fiber, and the basic characteristics of the material limit its application in different scenarios, especially in the environment of high humidity and high temperature difference, which is manifested in the following two points: 1. Plant fibers are easy to absorb moisture and swell in a humidity environment, resulting in softening of the fiber structure, and finally the fiber network structure collapses under the pressure difference environment during use, losing the most basic filtration performance; 2. The electrospinning membrane of the electrostatic cylinder is subject to high The interference of water molecules in the humid air causes the loss of the surface charge carried by it, which reduces the filtration efficiency dominated by electrostatic adsorption. In practical environmental conditions, the relative humidity (RH) of the air in tropical or subtropical regions can be as high as 80-90%, and breathing through the mouth and nose of the human body will generate aerosol moist hot air containing about 85-95% RH. When there is a certain temperature difference between the two ends of the air purification membrane, based on the condensation effect, the moisture flow will be condensed to form droplets when passing through the filter medium. This condensation phenomenon is devastating to the structure of fiber filtration membranes. On the one hand, hydrophilic fibers absorb droplets, resulting in a sharp drop in mechanical properties, and the membrane has insufficient tensile and bending resistance; on the other hand, capillary force causes The trapped droplets condense between the fibers to form a liquid film, which reduces the airflow path of the filter medium and increases the filtration resistance.
因此,现阶段纳米纤维素空气净化膜抗湿性能不足是限制其应用的关键因素。Therefore, the lack of moisture resistance of nanocellulose air purification membranes at this stage is a key factor limiting its application.
【发明内容】[Content of the invention]
针对现有技术中纳米纤维素空气净化膜抗湿性能不足的问题,本发明提供了超疏水纳米纤维素抗湿空气净化膜及其制备方法,得到一种具有超疏水性质的纳米纤维素空气净化膜,实现纳米纤维素空气净化膜在高湿度环境条件下的稳定过滤。本发明采用绿色化学改性和冷冻干燥工艺结合的形式,该方法具有安全稳定、生产工艺简单和工艺成本低廉的优势。Aiming at the problem of insufficient moisture resistance of nanocellulose air purification membranes in the prior art, the present invention provides a superhydrophobic nanocellulose antihumidity air purification membrane and a preparation method thereof, and obtains a nanocellulose air purification with superhydrophobic properties Membrane, to achieve stable filtration of nanocellulose air purification membrane under high humidity environmental conditions. The invention adopts the form of combining green chemical modification and freeze-drying process, and the method has the advantages of safety and stability, simple production process and low process cost.
本发明的目的通过以下技术方案来实现:The object of the present invention is achieved through the following technical solutions:
超疏水纳米纤维素抗湿空气净化膜的制备方法,包括如下步骤:The preparation method of the super-hydrophobic nanocellulose anti-moisture air purification membrane comprises the following steps:
1)准备重量份的纳米纤维素40-60份,甲基三甲氧基硅烷0.1-1份,叔丁醇40-60份、纯净水2-4份,将纳米纤维素和叔丁醇混合均匀,并置于超声条件下均质;1) Prepare 40-60 parts by weight of nanocellulose, 0.1-1 part of methyltrimethoxysilane, 40-60 parts of tert-butanol, 2-4 parts of purified water, and mix the nanocellulose and tert-butanol evenly , and placed under ultrasonic conditions to homogenize;
2)将纯净水调整pH=4,加入甲基三甲氧基硅烷,搅拌均匀配制成硅烷水解液;2) Adjust pH=4 with pure water, add methyltrimethoxysilane, and stir to prepare a silane hydrolyzed solution;
3)将步骤2)得到的物料和步骤1)得到的物料混合,在搅拌的条件下进行改性反应,改性反应结束后使用定制模具塑形,冷冻干燥,高温退火后得到超疏水纳米纤维素抗湿空气净化膜。3) Mix the material obtained in step 2) with the material obtained in step 1), carry out a modification reaction under stirring conditions, use a custom mold to shape after the modification reaction, freeze-dry, and anneal at high temperature to obtain superhydrophobic nanofibers Anti-moisture air purification membrane.
本发明中:In the present invention:
步骤1)中按照纳米纤维素50份,甲基三甲氧基硅烷0.5份,叔丁醇50份、纯净水3份的重量比例;所述的搅拌均匀,是采用磁力搅拌30min;所述的超声条件,其功率100W,时间10min。In step 1), according to the weight ratios of 50 parts of nanocellulose, 0.5 parts of methyltrimethoxysilane, 50 parts of tert-butanol, and 3 parts of pure water; the described stirring is uniform, using magnetic stirring for 30min; the ultrasonic conditions, its power is 100W, and the time is 10min.
步骤2)所述的搅拌均匀,是采用磁力搅拌10min。In step 2), the stirring is uniform, using magnetic stirring for 10 min.
步骤3)所述的在搅拌的条件下进行改性反应,是在磁力搅拌下进行改性2h;所述的使用定制模具塑形,其中模具的尺寸R=6cm,高度是2cm;所述的冷冻干燥,是先置于冰箱中,-20℃预冻6h,然后置于-56℃设备干燥48h;所述的高温退火,退火温度80℃,时间2h。In step 3), the modification reaction is carried out under stirring conditions, and the modification is carried out under magnetic stirring for 2 h; the modification is carried out using a custom mold, wherein the size of the mold is R=6cm, and the height is 2cm; the Freeze drying is first placed in a refrigerator, pre-frozen at -20°C for 6 hours, and then placed at -56°C for drying for 48 hours; the high-temperature annealing is performed at a temperature of 80°C for 2 hours.
本发明中各组分的作用功效,具体如下:The effect of each component in the present invention is as follows:
纳米纤维素:空气净化膜的支撑骨架,过滤效果的基础来源。Nanocellulose: the supporting skeleton of the air purification membrane, the basic source of the filtration effect.
甲基三甲氧基硅烷:纳米纤维素疏水改性剂,用于实现纳米纤维素超疏水性能。Methyltrimethoxysilane: Nanocellulose hydrophobic modifier, used to achieve superhydrophobic properties of nanocellulose.
叔丁醇:使纳米纤维素在冷冻干燥过程形成均匀、细微的孔隙,改善过滤性能。Tert-Butanol: Makes nanocellulose form uniform and fine pores during the freeze-drying process, improving filtration performance.
盐酸:条件甲基三甲氧基硅烷水解环境pH值,使硅烷稳定水解。Hydrochloric acid: Conditional methyltrimethoxysilane hydrolyzes the pH value of the environment, so that silane is hydrolyzed stably.
本发明还涉及采用上述超疏水纳米纤维素抗湿空气净化膜的制备方法得到的超疏水纳米纤维素抗湿空气净化膜,密度为0.0119-0.0153g/cm2,孔隙率达到99.0-99.2%,水接触静止角达到138.5°-154.2°、水接触滚动角为5.3°-7.2°,对PM2.5的过滤效率达到99.24-99.73%,且过滤阻力低于100Pa(51-82Pa),品质因子达到0.076-0.122Pa-1,符合商用空气过滤材料的需求。The invention also relates to a super-hydrophobic nano-cellulose anti-moisture air purification film obtained by using the above-mentioned preparation method of the super-hydrophobic nano-cellulose anti-moisture air purification film, the density is 0.0119-0.0153g/cm 2 , the porosity reaches 99.0-99.2%, The water contact repose angle reaches 138.5°-154.2°, the water contact rolling angle is 5.3°-7.2°, the filtration efficiency for PM2.5 reaches 99.24-99.73%, and the filtration resistance is lower than 100Pa (51-82Pa), and the quality factor reaches 0.076-0.122Pa -1 , which meets the needs of commercial air filter materials.
和现有技术相比,本发明具有如下优点:Compared with the prior art, the present invention has the following advantages:
1、本发明所述的超疏水纳米纤维素抗湿空气净化膜的制备方法,采用化学改性的方式对纳米纤维素进行改性,甲基三甲氧基硅烷的改性增强了纳米纤维素的疏水性能,达到了超疏水的效果(水接触静止角达到138.5°-154.2°、水接触滚动角为5.3°-7.2°),有利于纳米纤维素空气净化膜对空气中水分的抗干扰能力,并且该方法工艺简单有效,无毒害,无环境污染风险,生产能耗低,易于实现工业化,进一步提升了纳米纤维素工业化应用的潜力。1. The preparation method of the super-hydrophobic nanocellulose anti-moisture air purification film of the present invention adopts the chemical modification method to modify the nanocellulose, and the modification of methyltrimethoxysilane enhances the nanocellulose. The hydrophobic performance achieves the super-hydrophobic effect (the repose angle of water contact is 138.5°-154.2°, and the rolling angle of water contact is 5.3°-7.2°), which is beneficial to the anti-interference ability of nanocellulose air purification membrane to moisture in the air, In addition, the method has the advantages of simple and effective process, no toxicity, no risk of environmental pollution, low production energy consumption, easy to realize industrialization, and further enhances the potential of industrial application of nanocellulose.
2、本发明得到的超疏水纳米纤维素抗湿空气净化膜,能明显提升纳米纤维素空气净化膜的抗湿过滤性能,并保证了其高效的颗粒物过滤效率,降低颗粒物过滤阻力,和现有的产品相比,抗湿性能提升了约50倍,抗湿过滤阻力升高率低于15%。同时,叔丁醇的加入保留了纳米纤维素高度均匀且细密的孔隙结构,密度为0.0119-0.0153g/cm2,孔隙率达到99.0-99.2%,实现了纳米纤维空气净化膜的高效过滤性能,对PM2.5的过滤效率达到99.24-99.73%,且过滤阻力低于100Pa,品质因子达到0.076-0.122Pa-1,符合商用空气过滤材料的需求。2. The super-hydrophobic nanocellulose anti-moisture air purification membrane obtained by the present invention can significantly improve the anti-moisture filtration performance of the nanocellulose air purification membrane, and ensure its high-efficiency particulate filtering efficiency, reduce particulate filtering resistance, and be compatible with existing Compared with other products, the anti-humidity performance is improved by about 50 times, and the increase rate of anti-humidity filtration resistance is less than 15%. At the same time, the addition of tert-butanol preserves the highly uniform and dense pore structure of nanocellulose, with a density of 0.0119-0.0153g/cm 2 and a porosity of 99.0-99.2%, realizing the high-efficiency filtration performance of the nanofiber air purification membrane. The filtration efficiency of PM2.5 reaches 99.24-99.73%, the filtration resistance is lower than 100Pa, and the quality factor reaches 0.076-0.122Pa -1 , which meets the needs of commercial air filter materials.
【附图说明】【Description of drawings】
图1是本发明所述的的超疏水纳米纤维素抗湿空气净化膜的制备方法的工艺流程图。Fig. 1 is the process flow diagram of the preparation method of the superhydrophobic nanocellulose anti-moisture air purification membrane of the present invention.
【具体实施方式】【Detailed ways】
以下结合实施例对本发明的具体实施方式做进一步说明。The specific embodiments of the present invention will be further described below with reference to the examples.
实施例1:Example 1:
超疏水纳米纤维素抗湿空气净化膜的制备方法,包括如下步骤:The preparation method of the super-hydrophobic nanocellulose anti-moisture air purification membrane comprises the following steps:
1)准备纳米纤维素50g,甲基三甲氧基硅烷0.5g,叔丁醇50g,纯净水3g,将纳米纤维素和叔丁醇采用磁力搅拌30min混合均匀,并置于超声条件下均质(功率:100W,时间10min);1) Prepare 50g of nanocellulose, 0.5g of methyltrimethoxysilane, 50g of tert-butanol, 3g of purified water, and mix the nanocellulose and tert-butanol by magnetic stirring for 30min, and place them under ultrasonic conditions to homogenize ( Power: 100W, time 10min);
2)将纯净水调整pH=4,加入甲基三甲氧基硅烷,搅拌均匀(磁力搅拌10min)配制成硅烷水解液;2) Adjust pH=4 with pure water, add methyltrimethoxysilane, stir evenly (magnetic stirring for 10min) to prepare a silane hydrolyzate;
3)将步骤2)得到的物料和步骤1)得到的物料混合,在磁力搅拌下进行改性反应2h,改性反应结束后使用定制模具(模具的尺寸R=6cm,高度是2cm)塑形,冷冻干燥(先置于冰箱中,-20℃预冻6h,然后置于-56℃设备干燥48h),高温退火(退火温度80℃,时间2h)后得到超疏水纳米纤维素抗湿空气净化膜;3) Mix the material obtained in step 2) with the material obtained in step 1), carry out the modification reaction under magnetic stirring for 2h, and use a custom mold (the size of the mold R=6cm, the height is 2cm) to shape after the modification reaction is finished. , freeze-drying (pre-freeze at -20°C for 6h, and then place at -56°C for drying for 48h), high temperature annealing (annealing temperature 80°C, time 2h) to obtain superhydrophobic nanocellulose anti-moisture air purification membrane;
得到的超疏水纳米纤维素抗湿空气净化膜,密度为0.0123g/cm2,孔隙率达到99.1%,水接触静止角达到147.8°、水接触滚动角为6.4°,对PM2.5的过滤效率达到99.56%,且过滤阻力为51Pa,品质因子达到0.107Pa-1。The obtained superhydrophobic nanocellulose anti-moisture air purification membrane has a density of 0.0123 g/cm 2 , a porosity of 99.1%, a water contact repose angle of 147.8°, a water contact rolling angle of 6.4°, and the filtration efficiency of PM2.5 It reaches 99.56%, the filtration resistance is 51Pa, and the quality factor reaches 0.107Pa -1 .
实施例2:Example 2:
超疏水纳米纤维素抗湿空气净化膜的制备方法,包括如下步骤:The preparation method of the super-hydrophobic nanocellulose anti-moisture air purification membrane comprises the following steps:
1)准备纳米纤维素40g,甲基三甲氧基硅烷1g,叔丁醇40g,纯净水4g,将纳米纤维素和叔丁醇采用磁力搅拌30min混合均匀,并置于超声条件下均质(功率:100W,时间10min);1) Prepare 40g of nanocellulose, 1g of methyltrimethoxysilane, 40g of tert-butanol, 4g of purified water, mix the nanocellulose and tert-butanol by magnetic stirring for 30min, and place them under ultrasonic conditions to homogenize (power : 100W, time 10min);
2)将纯净水调整pH=4,加入甲基三甲氧基硅烷,搅拌均匀(磁力搅拌10min)配制成硅烷水解液;2) Adjust pH=4 with pure water, add methyltrimethoxysilane, stir evenly (magnetic stirring for 10min) to prepare a silane hydrolyzate;
3)将步骤2)得到的物料和步骤1)得到的物料混合,在磁力搅拌下进行改性反应2h,改性反应结束后使用定制模具(模具的尺寸R=6cm,高度是2cm)塑形,冷冻干燥(先置于冰箱中,-20℃预冻6h,然后置于-56℃设备干燥48h),高温退火(退火温度80℃,时间2h)后得到超疏水纳米纤维素抗湿空气净化膜;3) Mix the material obtained in step 2) with the material obtained in step 1), carry out the modification reaction under magnetic stirring for 2h, and use a custom mold (the size of the mold R=6cm, the height is 2cm) to shape after the modification reaction is finished. , freeze-drying (pre-freeze at -20°C for 6h, and then place at -56°C for drying for 48h), high temperature annealing (annealing temperature 80°C, time 2h) to obtain superhydrophobic nanocellulose anti-moisture air purification membrane;
得到的超疏水纳米纤维素抗湿空气净化膜,密度为0.0151g/cm2,孔隙率达到99.0%,水接触静止角达到154.2°、水接触滚动角为5.3°,对PM2.5的过滤效率达到99.73%,且过滤阻力为82Pa,品质因子达到0.076Pa-1。The obtained superhydrophobic nanocellulose anti-humidity air purification membrane has a density of 0.0151 g/cm 2 , a porosity of 99.0%, a water contact repose angle of 154.2°, a water contact rolling angle of 5.3°, and the filtration efficiency of PM2.5 It reaches 99.73%, the filtration resistance is 82Pa, and the quality factor reaches 0.076Pa -1 .
实施例3:Example 3:
超疏水纳米纤维素抗湿空气净化膜的制备方法,包括如下步骤:The preparation method of the super-hydrophobic nanocellulose anti-moisture air purification membrane comprises the following steps:
1)准备纳米纤维素60g,甲基三甲氧基硅烷0.1g,叔丁醇60g,纯净水2g,将纳米纤维素和叔丁醇采用磁力搅拌30min混合均匀,并置于超声条件下均质(功率:100W,时间10min);1) Prepare nanocellulose 60g, methyltrimethoxysilane 0.1g, tert-butanol 60g, purified water 2g, mix nanocellulose and tert-butanol by magnetic stirring for 30min, and place them under ultrasonic conditions to homogenize ( Power: 100W, time 10min);
2)将纯净水调整pH=4,加入甲基三甲氧基硅烷,搅拌均匀(磁力搅拌10min)配制成硅烷水解液;2) Adjust pH=4 with pure water, add methyltrimethoxysilane, stir evenly (magnetic stirring for 10min) to prepare a silane hydrolyzate;
3)将步骤2)得到的物料和步骤1)得到的物料混合,在磁力搅拌下进行改性反应2h,改性反应结束后使用定制模具(模具的尺寸R=6cm,高度是2cm)塑形,冷冻干燥(先置于冰箱中,-20℃预冻6h,然后置于-56℃设备干燥48h),高温退火(退火温度80℃,时间2h)后得到超疏水纳米纤维素抗湿空气净化膜;3) Mix the material obtained in step 2) with the material obtained in step 1), carry out the modification reaction under magnetic stirring for 2h, and use a custom mold (the size of the mold R=6cm, the height is 2cm) to shape after the modification reaction is finished. , freeze-drying (pre-freeze at -20°C for 6h, and then place at -56°C for drying for 48h), high temperature annealing (annealing temperature 80°C, time 2h) to obtain superhydrophobic nanocellulose anti-moisture air purification membrane;
得到的超疏水纳米纤维素抗湿空气净化膜,密度为0.0119g/cm2,孔隙率达到99.2%,水接触静止角达到138.5°、水接触滚动角为7.2°,对PM2.5的过滤效率达到99.24%,且过滤阻力为52Pa,品质因子达到0.122Pa-1。The obtained superhydrophobic nanocellulose anti-moisture air purification membrane has a density of 0.0119 g/cm 2 , a porosity of 99.2%, a water contact repose angle of 138.5°, a water contact rolling angle of 7.2°, and the filtration efficiency of PM2.5 It reaches 99.24%, the filtration resistance is 52Pa, and the quality factor reaches 0.122Pa -1 .
实施例;工艺筛选:Example; Process Screening:
表1物料配料表Table 1 Material ingredient list
不同的工艺技术方案如下所示:The different process technology options are as follows:
(1)取40%的纳米纤维素置于烧杯内,加入40%叔丁醇在磁力搅拌的作用下,搅拌30min使其混合均匀,后在经过超声(功率:30%,时间10min)进行均质处理。单独配置甲基三甲氧基硅烷,先取适量去离子水于烧杯内,用盐酸调节水溶液pH=4,然后滴加1%的甲基三甲氧基硅烷使在磁力搅拌的作用下水解10min,得到甲基三甲氧基硅烷水解液后保留备用。将适量甲基三甲氧基硅烷水解液添加到纳米纤维素/叔丁醇混合溶液中,在磁力搅拌的作用下进行改性2h,改性完成之后倒入定制的模具(R=6cm)中,然后置于冰箱中(-20℃)中预冻6h,之后进行冷冻干燥(-56℃、48h),冷冻干燥后的样品取出并密封,置于80℃的高温烘箱中退火处理2h即得最终样品。(1) Take 40% nanocellulose and put it in a beaker, add 40% tert-butanol under the action of magnetic stirring, stir for 30 minutes to make it evenly mixed, and then homogenize it by ultrasonic (power: 30%, time 10 minutes). quality treatment. To prepare methyltrimethoxysilane separately, first take an appropriate amount of deionized water in a beaker, adjust the pH of the aqueous solution to 4 with hydrochloric acid, and then dropwise add 1% methyltrimethoxysilane to hydrolyze under the action of magnetic stirring for 10 minutes to obtain methyltrimethoxysilane. The hydrolyzed solution of trimethoxysilane was reserved for future use. An appropriate amount of methyltrimethoxysilane hydrolyzate was added to the nanocellulose/tert-butanol mixed solution, modified under the action of magnetic stirring for 2 hours, and poured into a customized mold (R=6cm) after the modification was completed. Then it was placed in a refrigerator (-20°C) for 6 hours, and then freeze-dried (-56°C, 48h). The freeze-dried samples were taken out and sealed, and annealed in a high-temperature oven at 80°C for 2 hours to obtain the final result. sample.
(2)与(1)不同之处在于配料比不同,相应的配料为:40%纳米纤维素,50%叔丁醇。(2) The difference from (1) lies in the ratio of ingredients, and the corresponding ingredients are: 40% nanocellulose, 50% tert-butanol.
(3)与(1)不同之处在于配料比不同,相应的配料为:40%纳米纤维素,59%叔丁醇。(3) The difference from (1) lies in the ratio of ingredients, and the corresponding ingredients are: 40% nanocellulose, 59% tert-butanol.
(4)与(1)不同之处在于配料比不同,相应的配料为:50%纳米纤维素,40%叔丁醇。The difference between (4) and (1) is that the ratio of ingredients is different, and the corresponding ingredients are: 50% nanocellulose, 40% tert-butanol.
(5)与(1)不同之处在于配料比不同,相应的配料为:50%纳米纤维素,50%叔丁醇。The difference between (5) and (1) is that the proportion of ingredients is different, and the corresponding ingredients are: 50% nanocellulose, 50% tert-butanol.
(6)与(1)不同之处在于配料比不同,相应的配料为:50%纳米纤维素,59%叔丁醇。(6) The difference from (1) lies in the ratio of ingredients, and the corresponding ingredients are: 50% nanocellulose, 59% tert-butanol.
(7)与(1)不同之处在于配料比不同,相应的配料为:60%纳米纤维素,40%叔丁醇。(7) The difference from (1) lies in the ratio of ingredients, and the corresponding ingredients are: 60% nanocellulose, 40% tert-butanol.
(8)与(1)不同之处在于配料比不同,相应的配料为:60%纳米纤维素,50%叔丁醇。The difference between (8) and (1) is that the proportion of ingredients is different, and the corresponding ingredients are: 60% nanocellulose, 50% tert-butanol.
(9)与(1)不同之处在于配料比不同,相应的配料为:60%纳米纤维素,59%叔丁醇。The difference between (9) and (1) is that the proportion of ingredients is different, and the corresponding ingredients are: 60% nanocellulose, 59% tert-butanol.
本发明的关键技术在于考察了不同配料比对纳米纤维素空气净化膜疏水改性及抗湿过滤的影响效果,通过配料比的变化构建了不同密度和疏水性能的空气净化膜;叔丁醇配料比的增加使空气净化膜的密度得到有效的降低,进一步优化了空气净化膜的孔隙结构,提升比表面积,提升了在不同空气环境下颗粒物的基础过滤效果;纳米纤维素配料比的不同主要影响了空气净化膜的疏水性能,通过优化空气净化膜的水接触角提升其抗水分干扰能力,有效降低了冷凝湿空气导致过滤阻力升高的问题,可实现纳米纤维素空气净化膜在高湿度空气下稳定过滤的效果。The key technology of the present invention is to investigate the effect of different ingredient ratios on the hydrophobic modification and anti-moisture filtration of nanocellulose air purification membranes, and to construct air purification membranes with different densities and hydrophobic properties by changing the ingredient ratios; tert-butanol ingredients The increase of the ratio effectively reduces the density of the air purification membrane, further optimizes the pore structure of the air purification membrane, increases the specific surface area, and improves the basic filtration effect of particulate matter in different air environments; the main influence of the different ratio of nanocellulose ingredients The hydrophobic performance of the air purification membrane is improved, and the water contact angle of the air purification membrane is optimized to improve its anti-moisture interference ability, which effectively reduces the problem of increasing the filtration resistance caused by the condensation of humid air, and can realize the nanocellulose air purification membrane in high humidity air. under the effect of stable filtering.
上述实施例只是为了说明本发明的技术构思及特点,其目的是在于让本领域内的普通技术人员能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡是根据本发明内容的实质所做出的等效的变化或修饰,都应涵盖在本发明的保护范围内。The above-mentioned embodiments are only to illustrate the technical concept and characteristics of the present invention, and the purpose thereof is to enable those of ordinary skill in the art to understand the content of the present invention and implement them accordingly, and not to limit the protection scope of the present invention. All equivalent changes or modifications made according to the essence of the present invention shall be included within the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210057613.3A CN114377559B (en) | 2022-01-18 | 2022-01-18 | Super-hydrophobic nano-cellulose moisture-resistant air purification membrane and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210057613.3A CN114377559B (en) | 2022-01-18 | 2022-01-18 | Super-hydrophobic nano-cellulose moisture-resistant air purification membrane and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114377559A true CN114377559A (en) | 2022-04-22 |
CN114377559B CN114377559B (en) | 2022-10-18 |
Family
ID=81204021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210057613.3A Active CN114377559B (en) | 2022-01-18 | 2022-01-18 | Super-hydrophobic nano-cellulose moisture-resistant air purification membrane and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114377559B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117599624A (en) * | 2023-11-21 | 2024-02-27 | 舟山市食品药品检验检测研究院 | A method for detecting nanoplastics |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080179248A1 (en) * | 2005-07-29 | 2008-07-31 | Ge Healthcare Bio-Sciences Ab | Process for Cross-Linking Cellulose Ester Membranes |
CN107051408A (en) * | 2017-06-01 | 2017-08-18 | 北京化工大学 | A kind of preparation method of the hydrophobic sponge of three-dimensional manometer fiber of repeatable oil suction |
CN107383212A (en) * | 2017-08-07 | 2017-11-24 | 武汉大学 | A kind of hydrophobically modified method of nano-cellulose |
CN107486033A (en) * | 2017-08-01 | 2017-12-19 | 东华大学 | A kind of air filtration bacteria cellulose nano-fiber composite film and preparation method thereof |
CN110343282A (en) * | 2018-04-02 | 2019-10-18 | 广西大学 | A kind of super-hydrophobicity nano-cellulose film and preparation method thereof |
US20210253820A1 (en) * | 2018-06-13 | 2021-08-19 | The Regents Of The University Of Colorado, A Body Corporate | Cellulosic gels, films and composites including the gels, and methods of forming same |
CN113368710A (en) * | 2021-08-04 | 2021-09-10 | 内蒙古科技大学 | Preparation method of hydrophobic bacterial cellulose aerogel-based air filtering membrane |
-
2022
- 2022-01-18 CN CN202210057613.3A patent/CN114377559B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080179248A1 (en) * | 2005-07-29 | 2008-07-31 | Ge Healthcare Bio-Sciences Ab | Process for Cross-Linking Cellulose Ester Membranes |
CN107051408A (en) * | 2017-06-01 | 2017-08-18 | 北京化工大学 | A kind of preparation method of the hydrophobic sponge of three-dimensional manometer fiber of repeatable oil suction |
CN107486033A (en) * | 2017-08-01 | 2017-12-19 | 东华大学 | A kind of air filtration bacteria cellulose nano-fiber composite film and preparation method thereof |
CN107383212A (en) * | 2017-08-07 | 2017-11-24 | 武汉大学 | A kind of hydrophobically modified method of nano-cellulose |
CN110343282A (en) * | 2018-04-02 | 2019-10-18 | 广西大学 | A kind of super-hydrophobicity nano-cellulose film and preparation method thereof |
US20210253820A1 (en) * | 2018-06-13 | 2021-08-19 | The Regents Of The University Of Colorado, A Body Corporate | Cellulosic gels, films and composites including the gels, and methods of forming same |
CN113368710A (en) * | 2021-08-04 | 2021-09-10 | 内蒙古科技大学 | Preparation method of hydrophobic bacterial cellulose aerogel-based air filtering membrane |
Non-Patent Citations (1)
Title |
---|
尚倩倩等: ""超疏水纤维素复合气凝胶的制备及其油水分离"", 《林业工程学报》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117599624A (en) * | 2023-11-21 | 2024-02-27 | 舟山市食品药品检验检测研究院 | A method for detecting nanoplastics |
CN117599624B (en) * | 2023-11-21 | 2024-05-10 | 舟山市食品药品检验检测研究院 | A method for detecting nanoplastics |
Also Published As
Publication number | Publication date |
---|---|
CN114377559B (en) | 2022-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106984290B (en) | Preparation method of chitosan/sodium alginate magnetic composite microspheres capable of adsorbing heavy metal ions | |
CN105559203B (en) | A kind of mouth mask with haze function and preparation method thereof | |
CN205567899U (en) | Gauze mask with antifog haze function | |
CN114377559B (en) | Super-hydrophobic nano-cellulose moisture-resistant air purification membrane and preparation method thereof | |
CN110485157A (en) | Chitosan graft mesoporous silicon dioxide nano tunica fibrosa preparation method and applications | |
CN102675675B (en) | Dithiocarbamic acid (DTC) modified chitosan macromolecule composite membrane and preparation method | |
CN107441848A (en) | A kind of surface has fibroin albumen nano-filtration membrane, the preparation method and applications of micro nano structure | |
CN114899463B (en) | Organic-inorganic composite medium-temperature proton exchange membrane and preparation method thereof | |
CN114182523B (en) | Method for carrying out asymmetric wettability modification on surface of cellulose material | |
CN102172480A (en) | Polyvinyl chloride/diatomite composite membrane and preparation method and application thereof | |
CN102115921B (en) | Glycosylated nanofiber membrane and preparation method and application thereof | |
CN110787774A (en) | Chitosan-manganese dioxide composite adsorption material and preparation method thereof | |
CN107433191B (en) | Insoluble impurities can be filtered and adsorb the preparation method of the multifunctional composite film of heavy metal ion | |
CN109011922A (en) | A kind of preparation method of the PM2.5 filtering net film based on TPU nanofiber | |
CN204352655U (en) | Air purifier microporous teflon membran composite screen | |
CN112569813A (en) | Preparation method of inorganic nano material reinforced hollow fiber ultrafiltration membrane | |
CN110270161B (en) | Air compressor oil-gas separation core material and preparation process thereof | |
CN106145380A (en) | A kind of biologically active charing stalk/diatomite molecular sieve demanganization filtrate | |
CN113856757B (en) | Polydopamine modified carbon nitride/titanium dioxide supported foam nickel composite photocatalyst and preparation method and application thereof | |
CN110026137A (en) | The preparation method and application of three-dimensional porous algae base/chitosan aeroge for uranium-containing waste water processing | |
CN207575979U (en) | A kind of air purification filter paper | |
CN114934385B (en) | Cellulose acetate based composite aerogel and preparation method and application thereof | |
CN111545179A (en) | Preparation method of 2-aminopyrazine modified milk fiber biological adsorbent | |
TWI445571B (en) | Method for fabricating filter material | |
CN101371956B (en) | Nano silver filtering carbon core and production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |