CN114372938A - Image self-adaptive restoration method based on calibration - Google Patents
Image self-adaptive restoration method based on calibration Download PDFInfo
- Publication number
- CN114372938A CN114372938A CN202210040753.XA CN202210040753A CN114372938A CN 114372938 A CN114372938 A CN 114372938A CN 202210040753 A CN202210040753 A CN 202210040753A CN 114372938 A CN114372938 A CN 114372938A
- Authority
- CN
- China
- Prior art keywords
- image
- calibration
- noise
- distribution
- restoration method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 32
- 238000003384 imaging method Methods 0.000 claims abstract description 18
- 230000003044 adaptive effect Effects 0.000 claims abstract description 14
- 230000003287 optical effect Effects 0.000 claims abstract description 8
- 230000006870 function Effects 0.000 claims description 17
- 230000008569 process Effects 0.000 claims description 17
- 238000004364 calculation method Methods 0.000 claims description 8
- 230000008859 change Effects 0.000 claims description 3
- 230000004044 response Effects 0.000 claims description 3
- 230000009466 transformation Effects 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 4
- 238000001914 filtration Methods 0.000 description 8
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012634 optical imaging Methods 0.000 description 2
- 241001081972 Arctium medians Species 0.000 description 1
- 235000002566 Capsicum Nutrition 0.000 description 1
- 239000006002 Pepper Substances 0.000 description 1
- 235000016761 Piper aduncum Nutrition 0.000 description 1
- 235000017804 Piper guineense Nutrition 0.000 description 1
- 244000203593 Piper nigrum Species 0.000 description 1
- 235000008184 Piper nigrum Nutrition 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010351 charge transfer process Methods 0.000 description 1
- 230000019771 cognition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/10—Image enhancement or restoration using non-spatial domain filtering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/40—Image enhancement or restoration using histogram techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/73—Deblurring; Sharpening
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/80—Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20024—Filtering details
- G06T2207/20032—Median filtering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20048—Transform domain processing
- G06T2207/20056—Discrete and fast Fourier transform, [DFT, FFT]
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Image Processing (AREA)
Abstract
本发明属于图像复原处理领域,具体公开了一种基于标定的图像自适应复原方法,包括步骤:噪声标定,对设定的靶标进行拍摄、保存,并进行噪声标定;成像系统标定;图像去噪处理;图像去糊处理;输出最终复原后的图像。本发明通过对实际光学系统的噪声和模糊系数标定,进行参数化的数学建模,将标定结果应用到后续图像复原算法中,获得对于这套成像系统的最佳图像复原结果,大大提升图像复原效果。
The invention belongs to the field of image restoration processing, and specifically discloses an image adaptive restoration method based on calibration, comprising the steps of: noise calibration, shooting and saving a set target, and performing noise calibration; imaging system calibration; image denoising processing; image deblurring; output the final restored image. The invention performs parameterized mathematical modeling by calibrating the noise and blur coefficient of the actual optical system, and applies the calibration result to the subsequent image restoration algorithm to obtain the best image restoration result for this imaging system, and greatly improves the image restoration. Effect.
Description
技术领域technical field
本发明涉及图像复原处理领域,具体为一种基于标定的图像自适应复原方法。The invention relates to the field of image restoration processing, in particular to an image adaptive restoration method based on calibration.
背景技术Background technique
物空间一点经过理想光学成像系统所成的像仍是一点。而实际光学成像系统受几何像差和光学衍射极限的影响,图像不再是清晰完善像,存在一定的光学模糊。同时,成像过程中总是伴随着噪声信号,噪声主要来源于与光强相关的泊松噪声、电荷转移过程中引入的转移噪声、热激发在硅衬底产生的暗电流噪声、以及非均匀性噪声等。The image formed by a point in object space through an ideal optical imaging system is still a point. However, the actual optical imaging system is affected by geometric aberration and optical diffraction limit, and the image is no longer clear and perfect, and there is a certain optical blur. At the same time, the imaging process is always accompanied by noise signals. The noise mainly comes from Poisson noise related to light intensity, transfer noise introduced in the charge transfer process, dark current noise generated by thermal excitation in the silicon substrate, and non-uniformity. noise, etc.
这些因素导致了图像质量的下降,因此图像去噪和去糊是图像复原中非常重要步骤。图像去噪一般从图像的平滑性、频域的高频性及分布的随机性出发,构建相应的数学模型来去除噪声;图像去糊利用人类对清晰图像的认知,为退化模型添加先验进行模型求解,达到图像去模糊的功能。These factors lead to the degradation of image quality, so image denoising and deblurring are very important steps in image restoration. Image denoising generally starts from the smoothness of the image, the high frequency in the frequency domain and the randomness of the distribution, and constructs a corresponding mathematical model to remove noise; image denoising uses human cognition of clear images to add a priori to the degradation model Solve the model to achieve the function of image deblurring.
当前绝大部分算法对图像处理都是人为给予某种假设,如噪声服从高斯分布或模糊核默认值,这会使得对于不同成像系统,图像复原效果不理想。Most of the current algorithms artificially give certain assumptions to image processing, such as noise obeying Gaussian distribution or the default value of blur kernel, which will make the image restoration effect unsatisfactory for different imaging systems.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种基于标定的图像自适应复原方法,以解决上述背景技术中提出的问题。The purpose of the present invention is to provide an image adaptive restoration method based on calibration, so as to solve the problems raised in the above background art.
为实现上述目的,本发明提供如下技术方案:一种基于标定的图像自适应复原方法,包括步骤:To achieve the above object, the present invention provides the following technical solutions: a calibration-based image adaptive restoration method, comprising the steps:
S1:噪声标定,对设定的靶标进行拍摄、保存,并进行噪声标定;S1: Noise calibration, shoot and save the set target, and perform noise calibration;
S2:成像系统标定;S2: imaging system calibration;
S3:图像去噪处理;S3: Image denoising processing;
S4:图像去糊处理;S4: Image deblurring;
S5:输出最终复原后的图像。S5: Output the final restored image.
优选的,S1中噪声标定包括全局噪声标定、局部噪声标定,噪声标定具体步骤包括:Preferably, the noise calibration in S1 includes global noise calibration and local noise calibration, and the specific steps of noise calibration include:
S101:设定靶标,采用实际光学系统对靶标进行拍摄,保存拍摄图像;S101: Set the target, use the actual optical system to shoot the target, and save the captured image;
S102:选择两帧同一时刻相同场景的靶标图像;S102: Select two target images of the same scene at the same moment;
S103:计算全局图像噪声分布;S103: Calculate the global image noise distribution;
S104:计算局部图像噪声分布。S104: Calculate the local image noise distribution.
优选的,S103中全局图像噪声分布计算过程具体包括:Preferably, the calculation process of the global image noise distribution in S103 specifically includes:
S103a:对两帧靶标图像进行差分运算,获得差值图像;S103a: Perform a difference operation on the two frames of target images to obtain a difference image;
S103b:对差值图像进行概率密度函数的分布拟合,确定其分布类型和具体参数值;S103b: Perform distribution fitting of the probability density function on the difference image to determine its distribution type and specific parameter values;
S103c:将结果存入参数文件中。S103c: save the result in the parameter file.
优选的,S104中局部图像噪声分布计算过程具体包括:Preferably, the calculation process of the local image noise distribution in S104 specifically includes:
S104a:在靶标图像上截取N个不同灰度值的图像块,N默认为8;S104a: intercept N image blocks with different grayscale values on the target image, and N is 8 by default;
S104b:对各个图像块分别绘制直方图;S104b: respectively draw a histogram for each image block;
S104c:再进行概率密度函数的分布拟合,确定其分布类型和具体参数值;S104c: Perform the distribution fitting of the probability density function again to determine its distribution type and specific parameter values;
S104d:对N个图像块结果取平均;S104d: average the results of N image blocks;
S104e:将所有结果存入参数文件。S104e: save all the results into the parameter file.
优选的,S2的成像系统标定过程具体包括:Preferably, the imaging system calibration process of S2 specifically includes:
S201:选择一帧靶标图像;S201: select a frame of target image;
S202:截取图像中带有黑白斜边的区域ROI;S202: Capture a region ROI with black and white oblique edges in the image;
S203:将ROI中不同行的数据顺序“投影”在相同像素格子上,得到边缘扩散函数ESF;S203: "project" the data sequence of different rows in the ROI on the same pixel grid to obtain the edge spread function ESF;
S204:对边缘扩散函数ESF进行求导得到直线的变化率线扩散函数LSF;S204: derive the edge spread function ESF to obtain the line spread function LSF of the rate of change of the straight line;
S205:将LSF进行傅里叶FFT变换就得到各空间频率下的响应值SFR;S205: Perform Fourier FFT transformation on the LSF to obtain the response value SFR at each spatial frequency;
S206:对SFR数据进行分析,获得成像系统模糊参数;S206: analyze the SFR data to obtain the blur parameters of the imaging system;
S207:将结果存入参数文件中。S207: Store the result in the parameter file.
优选的,S3中图像去噪处理基于分布算法实现,分布算法包括但不限于中值滤波、非局部均值算法、R-L算法。Preferably, the image denoising process in S3 is implemented based on a distribution algorithm, and the distribution algorithm includes but is not limited to median filtering, non-local mean algorithm, and R-L algorithm.
优选的,S4中图像去糊处理过程基于去糊算出实现,经去糊处理后的图片即为最终复原后的图像。Preferably, the image deblurring process in S4 is implemented based on deblurring calculation, and the image after deblurring is the final restored image.
与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
本发明通过当前光学系统进行噪声分布和成像系统标定,并将标定后的文件保存,应用到后续算法作为先验参数,根据噪声分布选择不同算法,能够使得去噪效果最佳;将成像系统标定的结果作为基于边缘去糊算法的初值,进一步提高盲去模糊的模糊核估计的正确性,进而能大大提升去糊效果。The invention uses the current optical system to calibrate the noise distribution and the imaging system, saves the calibrated file, applies it to the subsequent algorithm as a priori parameter, and selects different algorithms according to the noise distribution, which can make the denoising effect the best; the imaging system is calibrated The result is used as the initial value of the edge deblurring algorithm, which further improves the accuracy of the blur kernel estimation for blind deblurring, which can greatly improve the deblurring effect.
附图说明Description of drawings
图1为本发明整体的流程框图;Fig. 1 is the overall flow chart of the present invention;
图2为本发明实施例中噪声标定的流程图;2 is a flowchart of noise calibration in an embodiment of the present invention;
图3为本发明实施例中成像系统标定的流程图;3 is a flowchart of imaging system calibration in an embodiment of the present invention;
图4为本发明实施例中图像去噪的流程图;4 is a flowchart of image denoising in an embodiment of the present invention;
图5为本发明实施例中图像去糊的流程图;5 is a flowchart of image deblurring in an embodiment of the present invention;
图6为本发明实施例中标定靶标的示意图。FIG. 6 is a schematic diagram of a calibration target in an embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, rather than all the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
请参阅图1,本发明提供一种技术方案:一种基于标定的图像自适应复原方法,包括步骤:Referring to FIG. 1, the present invention provides a technical solution: a calibration-based image adaptive restoration method, comprising the steps of:
S1:噪声标定,对设定的靶标进行拍摄、保存,并进行噪声标定(标定靶标如图6);S1: Noise calibration, shoot and save the set target, and perform noise calibration (the calibration target is shown in Figure 6);
S2:成像系统标定;S2: imaging system calibration;
S3:图像去噪处理;S3: Image denoising processing;
S4:图像去糊处理;S4: Image deblurring;
S5:输出最终复原后的图像。S5: Output the final restored image.
请参阅图2,在本实施例中,S1中噪声标定包括全局噪声标定、局部噪声标定,噪声标定具体步骤包括:Please refer to FIG. 2. In this embodiment, the noise calibration in S1 includes global noise calibration and local noise calibration. The specific steps of noise calibration include:
S101:设定靶标,采用实际光学系统对靶标进行拍摄,保存拍摄图像;S101: Set the target, use the actual optical system to shoot the target, and save the captured image;
S102:选择两帧同一时刻相同场景的靶标图像;S102: Select two target images of the same scene at the same moment;
S103:计算全局图像噪声分布;S103: Calculate the global image noise distribution;
S104:计算局部图像噪声分布。S104: Calculate the local image noise distribution.
在本实施例中,S103中全局图像噪声分布计算过程具体包括:In this embodiment, the calculation process of the global image noise distribution in S103 specifically includes:
S103a:对两帧靶标图像进行差分运算,获得差值图像;S103a: Perform a difference operation on the two frames of target images to obtain a difference image;
S103b:对差值图像进行概率密度函数的分布拟合,确定其分布类型和具体参数值;S103b: Perform distribution fitting of the probability density function on the difference image to determine its distribution type and specific parameter values;
S103c:将结果存入参数文件中。S103c: save the result in the parameter file.
在本实施例中,S104中局部图像噪声分布计算过程具体包括:In this embodiment, the calculation process of the local image noise distribution in S104 specifically includes:
S104a:在靶标图像上截取N个不同灰度值的图像块,N默认为8;S104a: intercept N image blocks with different grayscale values on the target image, and N is 8 by default;
S104b:对各个图像块分别绘制直方图;S104b: respectively draw a histogram for each image block;
S104c:再进行概率密度函数的分布拟合,确定其分布类型和具体参数值;S104c: Perform the distribution fitting of the probability density function again to determine its distribution type and specific parameter values;
S104d:对N个图像块结果取平均;S104d: average the results of N image blocks;
S104e:将所有结果存入参数文件。S104e: save all the results into the parameter file.
请参阅图3,在本实施例中,S2的成像系统标定过程具体包括:Referring to FIG. 3, in this embodiment, the imaging system calibration process of S2 specifically includes:
S201:选择一帧靶标图像;S201: select a frame of target image;
S202:截取图像中带有黑白斜边的区域ROI;S202: Capture a region ROI with black and white oblique edges in the image;
S203:将ROI中不同行的数据顺序“投影”在相同像素格子上,得到边缘扩散函数ESF;S203: "project" the data sequence of different rows in the ROI on the same pixel grid to obtain the edge spread function ESF;
S204:对边缘扩散函数ESF进行求导得到直线的变化率线扩散函数LSF;S204: derive the edge spread function ESF to obtain the line spread function LSF of the rate of change of the straight line;
S205:将LSF进行傅里叶FFT变换就得到各空间频率下的响应值SFR;S205: Perform Fourier FFT transformation on the LSF to obtain the response value SFR at each spatial frequency;
S206:对SFR数据进行分析,获得成像系统模糊参数;S207:将结果存入参数文件中。S206: analyze the SFR data to obtain the imaging system blur parameters; S207: store the results in a parameter file.
请参阅图4,在本实施例中,S3中图像去噪处理基于分布算法实现,分布算法包括但不限于中值滤波、非局部均值算法、R-L算法。Referring to FIG. 4 , in this embodiment, the image denoising process in S3 is implemented based on a distribution algorithm, and the distribution algorithm includes but is not limited to median filtering, non-local mean algorithm, and R-L algorithm.
S3中具体包括步骤:S3 specifically includes steps:
S301:导入参数文件;S301: Import parameter file;
S302:选择要处理的输入图像;S302: select the input image to be processed;
S303:根据参数文件标定的噪声分布,进行自适应算法选择,算法提供自适应算法选择;算法包括:S303: According to the noise distribution calibrated by the parameter file, select an adaptive algorithm, and the algorithm provides an adaptive algorithm selection; the algorithm includes:
a、中值滤波(椒盐噪声),中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,中值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,从而消除孤立的噪声点;a. Median filtering (salt and pepper noise), median filtering is a nonlinear signal processing technology based on sorting statistics theory that can effectively suppress noise. The basic principle of median filtering is to use the value of a point in a digital image or digital sequence with The median value of each point value in a neighborhood of the point is replaced, thereby eliminating isolated noise points;
b、非局部均值算法(高斯噪声),非局部均值算法为在一个目标像素周围区域平滑取均值的方法,所以非局部均值滤波就意味着它使用图像中的所有像素,这些像素根据某种相似度进行加权平均。滤波后图像清晰度高,而且不丢失细节;非局部均值算法使用自然图像中普遍存在的冗余信息来去噪声,与双线性滤波、中值滤波等利用图像局部信息来滤波不同,其利用了整幅图像进行去噪,即以图像块为单位在图像中寻找相似区域,再对这些区域取平均,较好地滤除图像中的高斯噪声;b. Non-local mean algorithm (Gaussian noise), the non-local mean algorithm is a method of taking the mean value smoothly in the area around a target pixel, so the non-local mean filter means that it uses all the pixels in the image, these pixels are based on some similarity weighted average. After filtering, the image has high definition and no details are lost; the non-local mean algorithm uses redundant information ubiquitous in natural images to remove noise, which is different from bilinear filtering, median filtering, etc. The whole image is denoised, that is to find similar areas in the image in units of image blocks, and then average these areas to filter out the Gaussian noise in the image better;
c、R-L算法(泊松噪声);c, R-L algorithm (Poisson noise);
S304:对输入图像进行处理;S304: process the input image;
S305:输出处理后的图像,再进入图像去糊处理。S305: Output the processed image, and then enter the image deblurring process.
请参阅图5,在本实施例中,S4中图像去糊处理过程基于去糊算出实现,经去糊处理后的图片即为最终复原后的图像。Referring to FIG. 5 , in this embodiment, the image deblurring process in S4 is implemented based on deblurring calculation, and the image after deblurring is the final restored image.
在本实施例中,S4中具体包括:In this embodiment, S4 specifically includes:
S401:读取参数文件标定的成像系统模糊参数,构建成二维核函数;S401: Read the fuzzy parameters of the imaging system calibrated by the parameter file, and construct a two-dimensional kernel function;
S402:把S401中获得的核,作为基于边缘去糊算法的初始值,开始图像去糊;S402: Use the kernel obtained in S401 as the initial value based on the edge deblurring algorithm, and start image deblurring;
S403:图像去糊后完成复原操作。S403: The restoration operation is completed after the image is de-blurred.
上述实施例通过对实际光学系统的噪声和模糊系数标定,进行参数化的数学建模,将标定结果应用到后续图像复原算法中,获得对于这套成像系统的最佳图像复原结果。In the above embodiment, the parameterized mathematical modeling is performed by calibrating the noise and blur coefficient of the actual optical system, and the calibration result is applied to the subsequent image restoration algorithm to obtain the best image restoration result for this imaging system.
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。Although embodiments of the present invention have been shown and described, it will be understood by those skilled in the art that various changes, modifications, and substitutions can be made in these embodiments without departing from the principle and spirit of the invention and modifications, the scope of the present invention is defined by the appended claims and their equivalents.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210040753.XA CN114372938B (en) | 2022-01-14 | A calibration-based adaptive image restoration method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210040753.XA CN114372938B (en) | 2022-01-14 | A calibration-based adaptive image restoration method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114372938A true CN114372938A (en) | 2022-04-19 |
CN114372938B CN114372938B (en) | 2025-02-25 |
Family
ID=
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116823938A (en) * | 2023-08-28 | 2023-09-29 | 荣耀终端有限公司 | Method for determining spatial frequency response, electronic device and storage medium |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107133948A (en) * | 2017-05-09 | 2017-09-05 | 电子科技大学 | Image blurring and noise evaluating method based on multitask convolutional neural networks |
CN109754435A (en) * | 2019-01-04 | 2019-05-14 | 北京航空航天大学 | An online camera calibration method based on fuzzy images of small targets |
US20190228506A1 (en) * | 2018-01-19 | 2019-07-25 | Bae Systems Information And Electronic Systems Integration Inc. | Methods for image denoising and deblurring |
CN110458901A (en) * | 2019-06-26 | 2019-11-15 | 西安电子科技大学 | A Global Optimal Design Method for Photoelectric Imaging System Based on Computational Imaging |
CN113034374A (en) * | 2019-12-24 | 2021-06-25 | 广东唯仁医疗科技有限公司 | OCT image adaptive noise estimation method and system |
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107133948A (en) * | 2017-05-09 | 2017-09-05 | 电子科技大学 | Image blurring and noise evaluating method based on multitask convolutional neural networks |
US20190228506A1 (en) * | 2018-01-19 | 2019-07-25 | Bae Systems Information And Electronic Systems Integration Inc. | Methods for image denoising and deblurring |
CN109754435A (en) * | 2019-01-04 | 2019-05-14 | 北京航空航天大学 | An online camera calibration method based on fuzzy images of small targets |
CN110458901A (en) * | 2019-06-26 | 2019-11-15 | 西安电子科技大学 | A Global Optimal Design Method for Photoelectric Imaging System Based on Computational Imaging |
CN113034374A (en) * | 2019-12-24 | 2021-06-25 | 广东唯仁医疗科技有限公司 | OCT image adaptive noise estimation method and system |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116823938A (en) * | 2023-08-28 | 2023-09-29 | 荣耀终端有限公司 | Method for determining spatial frequency response, electronic device and storage medium |
CN116823938B (en) * | 2023-08-28 | 2023-11-17 | 荣耀终端有限公司 | Method for determining spatial frequency response, electronic device and storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Reblur2deblur: Deblurring videos via self-supervised learning | |
CN110706174B (en) | Image enhancement method, terminal device and storage medium | |
US20150036943A1 (en) | Patch-Based, Locally Content-Adaptive Image and Video Sharpening | |
CN102968814B (en) | A kind of method and apparatus of image rendering | |
WO2017100971A1 (en) | Deblurring method and device for out-of-focus blurred image | |
CN108090886A (en) | A kind of display of high dynamic range infrared image and detail enhancing method | |
WO2023273868A1 (en) | Image denoising method and apparatus, terminal, and storage medium | |
TW201830330A (en) | Image processing method and image processing system | |
CN105574823B (en) | A kind of deblurring method and device of blurred picture out of focus | |
Tan et al. | A real-time video denoising algorithm with FPGA implementation for Poisson–Gaussian noise | |
Tsutsui et al. | Halo artifacts reduction method for variational based realtime retinex image enhancement | |
CN108898561B (en) | A dehazing method, server and system for foggy images with sky area | |
Park et al. | Image enhancement for extremely low light conditions | |
CN103595933B (en) | A kind of noise-reduction method of image | |
CN113379631A (en) | Image defogging method and device | |
CN104168405B (en) | Noise suppression method and image processing apparatus | |
WO2024001538A1 (en) | Scratch detection method and apparatus, electronic device, and readable storage medium | |
CN114372938A (en) | Image self-adaptive restoration method based on calibration | |
Li et al. | Dynamic-clustering extreme intensity prior based blind image deblurring | |
Zhu et al. | LLISP: Low-light image signal processing net via two-stage network | |
CN104243767A (en) | Method for removing image noise | |
Tigga et al. | Image deblurring with impulse noise using alternating direction method of multipliers and Lucy-Richardson method | |
Kumar | Satellite image denoising using local spayed and optimized center pixel weights | |
CN117710250B (en) | Method for eliminating honeycomb structure imaged by fiberscope | |
CN115619659B (en) | Low-illumination image enhancement method and system based on regularized Gaussian field model |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |