CN114371348A - Super-surface testing device, testing method and PB phase testing method - Google Patents
Super-surface testing device, testing method and PB phase testing method Download PDFInfo
- Publication number
- CN114371348A CN114371348A CN202111572426.0A CN202111572426A CN114371348A CN 114371348 A CN114371348 A CN 114371348A CN 202111572426 A CN202111572426 A CN 202111572426A CN 114371348 A CN114371348 A CN 114371348A
- Authority
- CN
- China
- Prior art keywords
- waveguide
- reflected
- polarizer
- wave
- metasurface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 82
- 230000010287 polarization Effects 0.000 claims abstract description 36
- 238000006243 chemical reaction Methods 0.000 claims abstract description 19
- 238000010998 test method Methods 0.000 claims abstract description 11
- 230000007704 transition Effects 0.000 claims description 8
- 238000010586 diagram Methods 0.000 claims description 5
- 238000012545 processing Methods 0.000 abstract description 4
- 238000000034 method Methods 0.000 description 8
- 238000004088 simulation Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005388 cross polarization Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000009916 joint effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R29/00—Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
- G01R29/08—Measuring electromagnetic field characteristics
- G01R29/0864—Measuring electromagnetic field characteristics characterised by constructional or functional features
- G01R29/0892—Details related to signal analysis or treatment; presenting results, e.g. displays; measuring specific signal features other than field strength, e.g. polarisation, field modes, phase, envelope, maximum value
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Resistance Or Impedance (AREA)
Abstract
本发明提供了一种超表面测试装置、测试方法及PB相位测试方法,所述测试装置包括:第一同轴波导转换器、第二同轴波导转换器、正交模耦合器、极化器、反射波导、矢量网络分析仪(VNA),两个同轴波导转换器的同轴端与矢量网络分析仪连接,波导端与正交模耦合器连接;正交模耦合器、极化器、反射波导依次相连;反射波导具有用于反射入射圆极化波的反射面。本发明通过采用测试装置可对极化转换反射波束幅值和相位的收集,实现圆极化转换效率和PB(Pancharatnam‑Berry)相位测试。相对于目前常用的自由空间测试法,提出波导测试系统能有效节约样品加工成本,提升测试工作效率。
The invention provides a metasurface testing device, a testing method and a PB phase testing method. The testing device comprises: a first coaxial waveguide converter, a second coaxial waveguide converter, an orthogonal mode coupler, and a polarizer , reflection waveguide, vector network analyzer (VNA), the coaxial ends of the two coaxial waveguide converters are connected to the vector network analyzer, and the waveguide ends are connected to the orthogonal mode coupler; the orthogonal mode coupler, polarizer, The reflective waveguides are connected in sequence; the reflective waveguide has a reflective surface for reflecting incident circularly polarized waves. The present invention can collect the amplitude and phase of the polarization conversion reflected beam by using the test device, so as to realize the circular polarization conversion efficiency and PB (Pancharatnam-Berry) phase test. Compared with the currently commonly used free space test method, the proposed waveguide test system can effectively save the sample processing cost and improve the test work efficiency.
Description
技术领域technical field
本发明提出一种超表面测试装置、测试方法及PB相位测试方法,涉及超表面单元结构性能测试领域,特别涉及超表面单元结构极化转换效率、PB相位测试装置和方法。The invention provides a metasurface test device, a test method and a PB phase test method, which relate to the field of metasurface unit structure performance test, in particular to a metasurface unit structure polarization conversion efficiency, PB phase test device and method.
背景技术Background technique
超表面通过特定的单元结构和新奇的物理特性,可在亚波长的尺度上实现对电磁波的约束与调控。同时依靠自身的低损耗、低剖面、易于设计与制作等优点,受到科学界以及工业界的广泛关注。随着超表面的不断发展,单元结构的设计从简单到复杂,所能呈现的功能从单一到多样,这便决定了这些超表面的性能指标要求和评价标准具有多样性和复杂性。对这些超表面的性能做出准确的测量是一项重要的工作。Metasurfaces can confine and control electromagnetic waves at the subwavelength scale through specific unit structures and novel physical properties. At the same time, relying on its own advantages such as low loss, low profile, easy design and fabrication, etc., it has received extensive attention from the scientific and industrial circles. With the continuous development of metasurfaces, the design of unit structures has changed from simple to complex, and the functions that can be presented have changed from single to diverse, which determines the diversity and complexity of the performance index requirements and evaluation criteria of these metasurfaces. Making accurate measurements of the properties of these metasurfaces is an important task.
目前针对于超表面性能的分析,主要集中在对整个超表面即全模测试,这种测试方法可以精确、完整的得到超表面的全部性能,但是全模样品加工成本高,时间长。极化是电磁波重要属性,电磁波的极化调控被广泛应用于通信、探测等方面。通过查阅已发表的文献发现,超表面的极化转换特性的测试是通过远场发射接收方式进行的,对测试系统要求高,测试费用高。因此,对全尺寸超表面的性能测试并不是一种理想的选择,更多的时候需要一种加工和测试成本低、系统简单、效率高的测试方案。At present, the analysis of metasurface performance mainly focuses on the entire metasurface, that is, the full mold test. This test method can accurately and completely obtain all the properties of the metasurface, but the processing cost of the full mold sample is high and the time is long. Polarization is an important property of electromagnetic waves, and the polarization regulation of electromagnetic waves is widely used in communication, detection and other fields. By consulting the published literature, it is found that the test of the polarization conversion characteristics of the metasurface is carried out by the far-field transmission and reception method, which requires high test system and high test cost. Therefore, performance testing of full-scale metasurfaces is not an ideal choice, and more often, a testing solution with low processing and testing costs, simple system and high efficiency is required.
发明内容SUMMARY OF THE INVENTION
为了解决以上问题,本发明提出一种超表面测试装置、测试方法及PB相位测试方法,该测试装置可以较为快速且准确的得到超表面单元结构的极化转换性能。同时还可以通过对旋转角度不同的超表面单元结构的测量,获取其PB相位,以此来获取单元结构的几何相位调控能力。PB(Pancharatnam-Berry)相位是与电磁波的偏振或极化相关的几何相位,即基于亚波长单元结构的PB相位可以更灵活地调控电磁波。In order to solve the above problems, the present invention provides a metasurface test device, a test method and a PB phase test method, which can obtain the polarization conversion performance of the metasurface unit structure relatively quickly and accurately. At the same time, the PB phase can be obtained by measuring the metasurface unit structure with different rotation angles, so as to obtain the geometric phase control ability of the unit structure. The PB (Pancharatnam-Berry) phase is a geometric phase related to the polarization or polarization of the electromagnetic wave, that is, the PB phase based on the subwavelength unit structure can tune the electromagnetic wave more flexibly.
本发明解决其技术问题所采用的技术方案为:The technical scheme adopted by the present invention to solve its technical problems is:
一种超表面测试装置,测试装置包括:第一同轴波导转换器、第二同轴波导转换器、正交模耦合器、极化器、反射波导、矢量网络分析仪(VNA):两个同轴波导转换器的同轴端与矢量网络分析仪连接,波导端与正交模耦合器连接;正交模耦合器、极化器、反射波导依次相连;反射波导具有用于反射入射圆极化波的反射面。A metasurface testing device, the testing device includes: a first coaxial waveguide converter, a second coaxial waveguide converter, an orthogonal mode coupler, a polarizer, a reflective waveguide, and a vector network analyzer (VNA): two The coaxial end of the coaxial waveguide converter is connected with the vector network analyzer, and the waveguide end is connected with the orthogonal mode coupler; the orthogonal mode coupler, the polarizer and the reflection waveguide are connected in sequence; reflective surface of the chemical wave.
进一步地,测试装置包括能带动被测结构转动的电机。Further, the testing device includes a motor that can drive the structure to be tested to rotate.
进一步地,极化器为圆极化器、反射波导为反射方波导,使用方圆过渡波导用于两者的连接。Further, the polarizer is a circular polarizer, the reflective waveguide is a reflective square waveguide, and a square-circle transition waveguide is used for the connection between the two.
进一步地,第一同轴波导转换器、第二同轴波导转换器、正交模耦合器、极化器、反射波导间固定连接或可拆卸连接。Further, the first coaxial waveguide converter, the second coaxial waveguide converter, the orthogonal mode coupler, the polarizer, and the reflective waveguides are fixedly or detachably connected.
进一步地,被测结构可以为单个超表面单元结构或由N×M个超表面单元结构组成的阵列,N与M为正整数。Further, the measured structure can be a single metasurface unit structure or an array composed of N×M metasurface unit structures, where N and M are positive integers.
本发明还提出以下技术方案:The present invention also proposes the following technical solutions:
一种基于如上所述的超表面测试装置的测试方法,包括以下步骤:A test method based on the above-mentioned metasurface test device, comprising the following steps:
1)未装载被测结构时,测得归一化基准反射信号S21-1:第一同轴波导转换器(1)辐射线极化波,通过正交模耦合器(3)的公共端口进入极化器(4)被转换为圆极化波,圆极化波进入反射波导(6),经过反射波导(6)的反射面反射,被极化转换为正交的圆极化反射波,正交圆极化反射波又通过极化器(4)被转化为正交的线极化波,再由正交模耦合器(3)分离后,最终由第二同轴波导转换器(2)接收反射波,此时在矢量网络分析仪上显示获取的反射波信号,即所述归一化基准反射信号S21-1,并对该信号S21-1的振幅值进行直通校准,校准后该振幅值近似为1;1) When the measured structure is not loaded, the normalized reference reflection signal S21-1 is measured: the first coaxial waveguide converter (1) radiates the linearly polarized wave, which enters through the common port of the orthogonal mode coupler (3). The polarizer (4) is converted into a circularly polarized wave, the circularly polarized wave enters the reflective waveguide (6), is reflected by the reflective surface of the reflective waveguide (6), and is polarized and converted into an orthogonal circularly polarized reflected wave, The orthogonal circularly polarized reflected wave is converted into an orthogonal linearly polarized wave through the polarizer (4), and then separated by the orthogonal mode coupler (3), and finally transmitted by the second coaxial waveguide converter (2). ) to receive the reflected wave, at this time, the acquired reflected wave signal, that is, the normalized reference reflected signal S21-1, is displayed on the vector network analyzer, and the amplitude value of the signal S21-1 is directly calibrated. The amplitude value is approximately 1;
2)加载被测结构,测得反射信号S21-2:第一同轴波导转换器1辐射与前述相同极化方向的线极化波,通过正交模耦合器(3)进入极化器(4)被转换为圆极化波,圆极化波进入反射波导(6)被反射面和结构反射,被结构极化转换的部分圆极化入射波转化为旋向与入射波相同的圆极化反射波,未被结构极化转换的部分圆极化入射波转化为旋向与入射波相反的圆极化反射波;两种圆极化反射波通过极化器(4)被转化为正交的两个方向的线极化波,由正交模耦合器(3)分离并分别通过两个同轴波导转换器接收反射波,未受所述被测结构极化转换的反射波由第二同轴波导转换器(2)接收,并在矢量网络分析仪上显示相应的反射信号S21-2;被结构极化转换的反射波由第一同轴波导转换器(1)接收,即反射信号S11;2) Load the measured structure, and measure the reflected signal S21-2: the first
3)将获取的S21-1的振幅平方减去加载被测结构时的S21-2的振幅平方,得到被测结构的圆极化转换效率为(S21-1)2-(S21-2)2。3) Subtract the obtained amplitude square of S21-1 from the amplitude square of S21-2 when the tested structure is loaded, and obtain the circular polarization conversion efficiency of the tested structure as (S21-1) 2 -(S21-2) 2 .
进一步地,第一同轴波导转换器辐射的线极化波可以为H极化、V极化或其他极化方向的线极化波。Further, the linearly polarized waves radiated by the first coaxial waveguide converter may be H-polarized, V-polarized or linearly polarized waves in other polarization directions.
本发明还提出又一技术方案:The present invention also proposes another technical solution:
一种基于如上所述的超表面测试装置的PB相位测试方法,包括:A PB phase testing method based on the above-mentioned metasurface testing device, comprising:
1)测得反射信号S11,具体包括:1) Measure the reflected signal S11, which specifically includes:
加载被测结构,第一同轴波导转换器辐射与前述相同极化方向的线极化波,通过正交模耦合器进入极化器被转换为圆极化波,圆极化波进入反射波导被反射面和结构反射,被结构极化转换的部分圆极化入射波转化为旋向与入射波相同的圆极化反射波,未被结构极化转换的部分圆极化入射波转化为旋向与入射波相反的圆极化反射波;两种圆极化反射波通过极化器被转化为正交的两个方向的线极化波,由正交模耦合器分离并分别通过两个同轴波导转换器接收反射波,被结构极化转换的部分反射波由第一同轴波导转换器接收,即反射信号S11;Loading the structure under test, the first coaxial waveguide converter radiates a linearly polarized wave in the same polarization direction as the aforementioned, enters the polarizer through the orthogonal mode coupler and is converted into a circularly polarized wave, and the circularly polarized wave enters the reflection waveguide Reflected by the reflective surface and the structure, the partially circularly polarized incident wave converted by the structural polarization is converted into a circularly polarized reflected wave with the same handedness as the incident wave, and the partially circularly polarized incident wave that is not converted by the structural polarization is converted into a circularly polarized incident wave. The circularly polarized reflected wave is opposite to the incident wave; the two circularly polarized reflected waves are converted into two orthogonal linearly polarized waves by the polarizer, which are separated by the orthogonal mode coupler and pass through two The coaxial waveguide converter receives the reflected wave, and the partially reflected wave converted by the structural polarization is received by the first coaxial waveguide converter, that is, the reflected signal S11;
2)转动被测结构,旋转角度为θ;自动采集不同角度θ所对应的S11的相位信息;2) Rotate the measured structure, the rotation angle is θ; automatically collect the phase information of S11 corresponding to different angles θ;
3)选取所测频段范围任意频点,绘制θ与相位信息坐标图。3) Select any frequency point in the measured frequency range, and draw a coordinate diagram of θ and phase information.
其中,本发明所述的测试装置,可根据被测结构大小和工作频率范围定制波导结构尺寸。Among them, the testing device of the present invention can customize the size of the waveguide structure according to the size of the tested structure and the operating frequency range.
本发明与现有技术相比,有益效果为:使用本测试装置对超表面单元结构进行测试,不需要远场测试设备,结构紧凑,可有效降低全尺寸超表面极化特性测试过程所需要加工和测试成本,提升测试工作效率。Compared with the prior art, the present invention has the following beneficial effects: using the testing device to test the metasurface unit structure does not require far-field testing equipment, has a compact structure, and can effectively reduce the processing required for the full-scale metasurface polarization characteristic testing process. and test cost, improve test work efficiency.
附图说明Description of drawings
图1为本发明的结构示意图;Fig. 1 is the structural representation of the present invention;
图2为本发明实例中所用被测结构;Fig. 2 is the tested structure used in the example of the present invention;
图3为本发明实例中被测结构极化转换测试与理论对比图;Fig. 3 is the polarization conversion test and theoretical comparison diagram of the structure under test in the example of the present invention;
图4为本发明实例中被测结构PB相位测试与理论对比图。FIG. 4 is a comparison diagram of the PB phase test and theoretical comparison of the structure under test in the example of the present invention.
附图标记:Reference number:
1-第一同轴波导转换器、2-第二同轴波导转换器、3-正交模耦合器、4-极化器、5-方圆过渡波导、6-反射波导、7-被测结构。1-First coaxial waveguide converter, 2-Second coaxial waveguide converter, 3-Orthogonal mode coupler, 4-Polarizer, 5-Square transition waveguide, 6-Reflection waveguide, 7-Measured structure .
具体实施方式Detailed ways
下面结合附图及具体实施方式对本发明进行详细说明,但本发明的保护范围并不仅限于下面实施例,应包括权利要求书中的全部内容。The present invention will be described in detail below with reference to the accompanying drawings and specific embodiments, but the protection scope of the present invention is not limited to the following examples, and should include all the contents in the claims.
如图1所示,一种超表面测试装置,包括:第一同轴波导转换器1、第二同轴波导转换器2、正交模耦合器3、极化器4、反射波导6、矢量网络分析仪(VNA);两个同轴波导转换器1、2用于发射和接收正交线极化波,两个同轴波导转换器的同轴端与矢量网络分析仪连接,用于向矢量网络分析仪传递信号,波导端与正交模耦合器3连接;正交模耦合器3能分离或合成正交线极化波;正交模耦合器3、极化器4、反射方波导6依次相连。第一同轴波导转换器1、第二同轴波导转换器2、正交模耦合器3、极化器4、反射波导6间可固定连接也可采用可拆卸连接,其连接方式并不影响功能的实现,本实施例中依次通过螺钉相互连接。极化器4可实现入射的线极化转化为圆极化波,也能把反射回来的圆极化波转化为线极化波。反射波导6具有用于反射入射圆极化波的反射面。本实施例中,为便于说明,系统采用水平方向布置,实际运用中,系统的摆放位置可以设置为垂直或其他向。本领域技术人员可根据被测结构大小和工作频率范围定制波导结构尺寸。As shown in Figure 1, a metasurface testing device includes: a first
本实施例中,第一同轴波导转换器1和第二同轴波导转换器2所选型号为HD-100WCAS、正交模耦合器3所选型号为HD-100CWOMT23.825T3、极化器4所选型号为HD-23.825CWPST1、反射波导6所选型号为HD-20X20WSST1,另外,由于所选的极化器4截面为圆形,反射波导6截面为方形,因此为了连接上述两个装置,这里选用了型号为HD-20X20RCA23.825T1的方圆过渡波导5,方圆过渡波导5的圆波导口与圆极化器4相连,方波导口与反射方波导6相连;如果上述两个装置截面形状相同,可以直接进行连接,无需另选其他装置;另外,这里仅对本实施例所选型号进行举例说明,本领域技术人员可根据实际条件进行同轴波导转换器、正交模耦合器、圆极化器、方圆过渡波导、反射方波导的选择。在测试时,被测结构可以是单个的超表面单元结构,如图2所示;也可以是由多个超表面单元结构组成的阵列,如N×N或N×M个图2所示的超表面单元结构所组成的阵列,N与M为正整数。测试时,可将如图2所示的超表面单元结构装配到图1中7的位置。被测结构为长方形贴片长为l,宽为w,本实施例中,其取值为l=18mm,w=5mm,材质为不锈钢,贴片厚度1mm。贴片距离反射面的距离为7.5mm。超表面单元结构材质也可为介质,本测量装置的测量原理与超表面单元结构的材质无关,可用于任意材质的超表面单元结构的圆极化转换效率的测试。为了测量超表面单元结构PB相位,本实施例中,使用电机带动固定在电机轴上的超表面单元结构进行旋转,电机可改变被测结构转角θ。实际使用中,只要被测结构或前述测试装置相互间能相对旋转即可实现对PB相位的测量,这里并不对产生相对旋转的具体结构进行限制。In this embodiment, the selected model of the first
该测试装置的极化转换效率测试使用方法如下:包括以下步骤:The method of using the polarization conversion efficiency test of the test device is as follows: it includes the following steps:
1)取得基准信号:未装载超表面单元结构,测得归一化反射信号S21。这里的S21表示的是由第一同轴波导转换器1发出的,并由第二同轴波导转换器2接收的信号,同理,S11表示的是由第一同轴波导转换器1发出的,并由第一同轴波导转换器1接收的信号。为便于分辨,这里将此步的S21标识为S21-1。在第一同轴波导转换器1输出的电磁波频率段内,通过直通校准该反射信号S21的振幅值,表征第一同轴波导转换器1输入线极化波能量与输出线极化波能量之比。电磁波发射和接收过程如下:第一同轴波导转换器1辐射H极化波,通过正交模耦合器3的公共端口进入极化器4被转换为圆极化波,圆极化波通过方圆过渡波导5,进入反射波导6,此时,进入反射波导6的圆极化波被反射面反射,同时由于半波损失,入射波被反射波导6极化转换为正交的圆极化反射波,正交圆极化反射波又通过极化器4被转化为V极化,再由正交模耦合器3分离后,由第二同轴波导转换器2接收,在矢量网络分析仪上显示信号S21-1,再通过操作矢量网络分析仪对S21-1的振幅值进行直通校准,校准后该值近似为1,具体校准方法为本领域技术人员的常规使用手段,这里不做赘述。1) Obtain a reference signal: the metasurface unit structure is not loaded, and the normalized reflection signal S21 is measured. Here S21 represents the signal sent by the first
2)加载被测结构,被测结构被加载在反射面之前,测得反射信号S21-2。电磁波发射和接收过程如下:第一同轴波导转换器1辐射与步骤1)相同的极化波,本实施例中为H极化波,通过正交模耦合器3进入极化器被转换为圆极化波,圆极化波通过方圆过渡波导5,进入反射波导6被反射面反射,由于半波损失和被测结样品共同作用,由被测结构极化转换的圆极化入射波转化为旋向与入射波相同的圆极化反射波,未被测结构极化转换的圆极化入射波转化为旋向与入射波相反的圆极化反射波;两种圆极化反射波通过极化器4被转化为正交的两个方向的线极化波,由正交模耦合器3分离并分别通过两个同轴波导转换器接收,未被被测结构极化转换的部分由第二同轴波导转换器(2)接收,并在矢量网络分析仪上显示信号S21-2,被测结构极化转换的部分由第一同轴波导转换器(1)接收,即反射信号S11;2) Load the structure under test, before the structure under test is loaded on the reflective surface, the reflected signal S21-2 is measured. The electromagnetic wave transmitting and receiving process is as follows: the first
3)步骤1)获取的S21-1振幅平方减去加载被测结构时的S21-2的振幅平方,即为被测结构(此时为附图2所示的单个超表面单元结构)的圆极化转换效率(S21-1)2-(S21-2)2。需要注意,这里第一同轴波导转换器1辐射H极化波,是为了便于说明,除此之外,也可选择V极化波或其他方向极化波。3) The square of the amplitude of S21-1 obtained in step 1) minus the square of the amplitude of S21-2 when the tested structure is loaded, which is the circle of the tested structure (in this case, the single metasurface unit structure shown in Figure 2). Polarization conversion efficiency (S21-1) 2 -(S21-2) 2 . It should be noted that the first
圆极化转换效率测试结果如图3所示,本实施例中,通过数值模拟证实,该测试装置进行的极化转换效率测试结果(如虚线所示)与CST理论仿真结果(如实线所示)是吻合的。需要注意,在使用CST理论仿真来验证测试装置性能时,CST理论仿真的参数设置需要与实际测试装置相一致;如本实施例中被测结构与电机轴连接,电机轴直径为3mm,反射波导6的反射面中心预留3.1mm直径小孔,便于电机轴进入反射波导6,调节电机轴位置,使被测结构距离反射波导6的反射面7.5mm,那么在做CST理论仿真时,也需要仿真相同的电机轴和被测结构距离反射波导6的反射面的距离,才能保证仿真结果与测试装置的可比性。在10-11GHz范围内,所选被测结构的最大的极化转换率为97.87%,且在f=10.588GHz附近,极化转换率接近100%。The test results of the circular polarization conversion efficiency are shown in Figure 3. In this embodiment, it is confirmed by numerical simulation that the test results of the polarization conversion efficiency (shown by the dotted line) and the CST theoretical simulation results (shown by the solid line) performed by the test device ) are consistent. It should be noted that when using CST theoretical simulation to verify the performance of the test device, the parameter settings of the CST theoretical simulation need to be consistent with the actual test device. A small hole with a diameter of 3.1mm is reserved in the center of the reflective surface of 6, so that the motor shaft can enter the
该测试装置同时可用于PB相位测试,用于确定所设计的超表面单元结构是否具有优良的几何相位调控能力,具体步骤包括:The test device can also be used for PB phase test to determine whether the designed metasurface unit structure has excellent geometric phase control capability. The specific steps include:
通过加载被测结构测得反射信号S11,转动被测结构,转速为v1,转过的角度为θ。因被测结构每旋转180°,其PB相位变化为2π,通常给定较慢的转速可以获得更精准的PB相位,但速度过低会影响数据测量的效率,因此其值可由本领域技术人员根据实际进行具体选择;通过自动采集不同角度θ,所对应的S11的相位信息;选取所测频段范围任意频点,绘制θ与相位信息坐标图。需要注意,这里第一同轴波导转换器1辐射H极化波,是为了便于说明,除此之外,也可选择V极化波或其他方向极化波。The reflected signal S11 is measured by loading the structure under test, and the structure under test is rotated, the rotational speed is v 1 , and the rotated angle is θ. Because the measured structure rotates 180°, its PB phase changes by 2π. Usually, a slower rotation speed can obtain a more accurate PB phase. However, if the speed is too low, the efficiency of data measurement will be affected, so its value can be determined by those skilled in the art. The specific selection is made according to the actual situation; the phase information of S11 corresponding to different angles θ is automatically collected; any frequency point in the measured frequency range is selected, and a coordinate diagram of θ and phase information is drawn. It should be noted that the first
本测试装置用于测试PB相位的结果如图4所示,提取频率f=10.588GHz处的不同角度θ所对应的S11的相位变化关系,该波导装置测试的PB相位与理论是一致的,即本测试装置具有优良的PB相位测试准确度。The results of the test device used to test the PB phase are shown in Figure 4. The phase change relationship of S11 corresponding to different angles θ at the frequency f=10.588GHz is extracted. The PB phase tested by the waveguide device is consistent with the theory, that is, The test device has excellent PB phase test accuracy.
综上所述,本发明提出了一种用于极化转换超表面单元结构的交叉极化测试装置及测试方法,该测试方法可较为快速且准确的得到被测结构的极化转换性能和PB相位。To sum up, the present invention proposes a cross-polarization test device and a test method for a polarization conversion metasurface unit structure, and the test method can obtain the polarization conversion performance and PB of the tested structure relatively quickly and accurately. phase.
因此,上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的实施方式仅仅是示意性的,而不是限制性的。本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。本发明未详细阐述部分属于本领域技术人员的公知技术。Therefore, the embodiments of the present invention are described above with reference to the accompanying drawings, but the present invention is not limited to the above-mentioned specific implementation manners, which are merely illustrative rather than restrictive. Under the inspiration of the present invention, those of ordinary skill in the art can also make many forms without departing from the spirit of the present invention and the scope protected by the claims, which all belong to the protection of the present invention. Parts not described in detail in the present invention belong to the well-known technologies of those skilled in the art.
Claims (9)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111572426.0A CN114371348B (en) | 2021-12-21 | 2021-12-21 | A metasurface testing device, testing method and PB phase testing method |
CN202310702032.5A CN116859133A (en) | 2021-12-21 | 2021-12-21 | Super-surface testing device and PB phase testing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111572426.0A CN114371348B (en) | 2021-12-21 | 2021-12-21 | A metasurface testing device, testing method and PB phase testing method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310702032.5A Division CN116859133A (en) | 2021-12-21 | 2021-12-21 | Super-surface testing device and PB phase testing method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114371348A true CN114371348A (en) | 2022-04-19 |
CN114371348B CN114371348B (en) | 2023-07-21 |
Family
ID=81139202
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111572426.0A Active CN114371348B (en) | 2021-12-21 | 2021-12-21 | A metasurface testing device, testing method and PB phase testing method |
CN202310702032.5A Pending CN116859133A (en) | 2021-12-21 | 2021-12-21 | Super-surface testing device and PB phase testing method |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310702032.5A Pending CN116859133A (en) | 2021-12-21 | 2021-12-21 | Super-surface testing device and PB phase testing method |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN114371348B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024060040A1 (en) * | 2022-09-20 | 2024-03-28 | 京东方科技集团股份有限公司 | Single-channel test device and system, and test method |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6181221B1 (en) * | 1998-10-06 | 2001-01-30 | Hughes Electronics Corporation | Reflective waveguide variable power divider/combiner |
CN104569622A (en) * | 2014-12-24 | 2015-04-29 | 复旦大学 | Efficient microwave polarization detection device based on photonic spin Hall effect |
WO2016178740A2 (en) * | 2015-03-12 | 2016-11-10 | President And Fellows Of Harvard College | Polarization-selective scattering antenna arrays based polarimeter |
CN107367642A (en) * | 2017-08-01 | 2017-11-21 | 北京航天光华电子技术有限公司 | It is a kind of measure waveguide circular polarizer axle than device |
CN108037561A (en) * | 2017-12-14 | 2018-05-15 | 中国科学院光电技术研究所 | Waveguide structure for phase regulation and control of chip laser radar based on super surface |
EP3439107A1 (en) * | 2017-08-01 | 2019-02-06 | University Of Cyprus | Realizing programmable wireless enviroments through software-controlled metasurfaces |
US20190219623A1 (en) * | 2018-01-17 | 2019-07-18 | Kymeta Corporation | Localized free space tester |
WO2019148200A1 (en) * | 2018-01-29 | 2019-08-01 | University Of Washington | Metasurfaces and systems for full-color imaging and methods of imaging |
US20190394073A1 (en) * | 2018-06-20 | 2019-12-26 | Kabushiki Kaisha Toshiba | Antenna device and signal reception method |
CN111133632A (en) * | 2017-09-20 | 2020-05-08 | 集美塔公司 | RF ripple correction in antenna aperture |
US20210114205A1 (en) * | 2019-01-03 | 2021-04-22 | Lucomm Technologies, Inc. | Flux Sensing System |
CN112881815A (en) * | 2021-01-22 | 2021-06-01 | 北京航空航天大学 | Programmable super-surface reflective array-based field simulator |
CN113063994A (en) * | 2021-03-24 | 2021-07-02 | 中国人民解放军国防科技大学 | Active super-surface strong irradiation field performance testing device and system |
EP3855192A1 (en) * | 2018-11-27 | 2021-07-28 | Morita Tech Co., Ltd. | Testing device |
US20210328366A1 (en) * | 2020-01-03 | 2021-10-21 | Pivotal Commware, Inc. | Dual polarization patch antenna system |
-
2021
- 2021-12-21 CN CN202111572426.0A patent/CN114371348B/en active Active
- 2021-12-21 CN CN202310702032.5A patent/CN116859133A/en active Pending
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6181221B1 (en) * | 1998-10-06 | 2001-01-30 | Hughes Electronics Corporation | Reflective waveguide variable power divider/combiner |
CN104569622A (en) * | 2014-12-24 | 2015-04-29 | 复旦大学 | Efficient microwave polarization detection device based on photonic spin Hall effect |
WO2016178740A2 (en) * | 2015-03-12 | 2016-11-10 | President And Fellows Of Harvard College | Polarization-selective scattering antenna arrays based polarimeter |
EP3439107A1 (en) * | 2017-08-01 | 2019-02-06 | University Of Cyprus | Realizing programmable wireless enviroments through software-controlled metasurfaces |
CN107367642A (en) * | 2017-08-01 | 2017-11-21 | 北京航天光华电子技术有限公司 | It is a kind of measure waveguide circular polarizer axle than device |
CN111133632A (en) * | 2017-09-20 | 2020-05-08 | 集美塔公司 | RF ripple correction in antenna aperture |
CN108037561A (en) * | 2017-12-14 | 2018-05-15 | 中国科学院光电技术研究所 | Waveguide structure for phase regulation and control of chip laser radar based on super surface |
US20190219623A1 (en) * | 2018-01-17 | 2019-07-18 | Kymeta Corporation | Localized free space tester |
WO2019148200A1 (en) * | 2018-01-29 | 2019-08-01 | University Of Washington | Metasurfaces and systems for full-color imaging and methods of imaging |
US20190394073A1 (en) * | 2018-06-20 | 2019-12-26 | Kabushiki Kaisha Toshiba | Antenna device and signal reception method |
EP3855192A1 (en) * | 2018-11-27 | 2021-07-28 | Morita Tech Co., Ltd. | Testing device |
US20210114205A1 (en) * | 2019-01-03 | 2021-04-22 | Lucomm Technologies, Inc. | Flux Sensing System |
US20210328366A1 (en) * | 2020-01-03 | 2021-10-21 | Pivotal Commware, Inc. | Dual polarization patch antenna system |
CN112881815A (en) * | 2021-01-22 | 2021-06-01 | 北京航空航天大学 | Programmable super-surface reflective array-based field simulator |
CN113063994A (en) * | 2021-03-24 | 2021-07-02 | 中国人民解放军国防科技大学 | Active super-surface strong irradiation field performance testing device and system |
Non-Patent Citations (2)
Title |
---|
ZHAOYI LI 等: "Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces", 《NATURE NANOTECHNOLOGY》, pages 675 * |
崔建华: "基于色散工程的超表面极化调控设计及应用研究", 《中国博士学位论文全文数据库基础科学辑》, pages 005 - 125 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024060040A1 (en) * | 2022-09-20 | 2024-03-28 | 京东方科技集团股份有限公司 | Single-channel test device and system, and test method |
Also Published As
Publication number | Publication date |
---|---|
CN116859133A (en) | 2023-10-10 |
CN114371348B (en) | 2023-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Engen | The six-port reflectometer: An alternative network analyzer | |
US10151783B2 (en) | Antenna measuring station | |
CN107632210B (en) | A Terahertz Antenna Planar Near-Field Measurement System | |
CN101344495A (en) | A device for measuring reflectivity of absorbing material | |
CN107202942A (en) | A kind of free-space Method dielectric constant measurement system and measuring method for adding polarization grid | |
CN110470915B (en) | Circularly polarized antenna test system, calibration and signal test method | |
CN103411528B (en) | Utilize the method for circular polarized antenna axial ratio patterns calculating electric field probe rotation offset | |
CN104198824A (en) | Measurement method for differential antenna | |
CN114371348B (en) | A metasurface testing device, testing method and PB phase testing method | |
CN103424634B (en) | WIFI Antenna testing system and method | |
CN108151641A (en) | The length measurement method and equipment of a kind of radio-frequency transmission line | |
Hesler et al. | THz vector network analyzer measurements and calibration | |
CN112255462B (en) | Directionality improving device and method for network analyzer and network analyzer | |
CN107026325B (en) | Impedance matching connection device for radio frequency identification tag antenna | |
CN106199188A (en) | A kind of device and method utilizing the change of removal cable phase place in circulator calibration vector field measurement | |
CN108896831A (en) | The method that a kind of combination interior near field and far field carry out OTA measurement to active antenna | |
CN117007868A (en) | Vector network analysis device and system | |
CN102880884B (en) | A kind of test macro of passive label and method of testing | |
CN114441889B (en) | Network analyzer, harmonic wave testing method and storage medium | |
US11287458B2 (en) | Determination of gain characteristics of a linearly-polarized antenna | |
US11360134B2 (en) | Determination of gain characteristics of a circularly-polarized antenna | |
Chang et al. | Low-cost microwave/millimeter-wave impedance measuring scheme using a three-probe microstrip circuit | |
Benlahdar et al. | Methods of experimental measurement of scattering and transmission parameters in microwave frequency bands | |
JPH0616058B2 (en) | Near electric field measuring device | |
CN206922015U (en) | A kind of RFID antenna impedance matching attachment means |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |