CN114367199A - Method for preparing MOF film by in-situ phase inversion method and application - Google Patents
Method for preparing MOF film by in-situ phase inversion method and application Download PDFInfo
- Publication number
- CN114367199A CN114367199A CN202210027052.2A CN202210027052A CN114367199A CN 114367199 A CN114367199 A CN 114367199A CN 202210027052 A CN202210027052 A CN 202210027052A CN 114367199 A CN114367199 A CN 114367199A
- Authority
- CN
- China
- Prior art keywords
- mof
- mof film
- film
- water
- prepared
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012923 MOF film Substances 0.000 title claims abstract description 89
- 238000011065 in-situ storage Methods 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title claims abstract description 18
- 238000000614 phase inversion technique Methods 0.000 title claims abstract description 9
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims abstract description 94
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 59
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 53
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims abstract description 47
- 235000019253 formic acid Nutrition 0.000 claims abstract description 47
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims abstract description 40
- 238000000926 separation method Methods 0.000 claims abstract description 31
- 230000007774 longterm Effects 0.000 claims abstract description 11
- 230000003746 surface roughness Effects 0.000 claims abstract description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 81
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 55
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 claims description 34
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 33
- 238000006243 chemical reaction Methods 0.000 claims description 31
- 239000010408 film Substances 0.000 claims description 20
- 239000000377 silicon dioxide Substances 0.000 claims description 19
- 239000005711 Benzoic acid Substances 0.000 claims description 17
- 235000010233 benzoic acid Nutrition 0.000 claims description 17
- 239000007788 liquid Substances 0.000 claims description 16
- 239000002245 particle Substances 0.000 claims description 15
- 239000011248 coating agent Substances 0.000 claims description 10
- 238000000576 coating method Methods 0.000 claims description 10
- 239000013078 crystal Substances 0.000 claims description 10
- -1 polytetrafluoroethylene Polymers 0.000 claims description 10
- 238000011156 evaluation Methods 0.000 claims description 9
- 239000008187 granular material Substances 0.000 claims description 9
- 230000035515 penetration Effects 0.000 claims description 9
- 230000035699 permeability Effects 0.000 claims description 9
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 9
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 9
- DUNKXUFBGCUVQW-UHFFFAOYSA-J zirconium tetrachloride Chemical compound Cl[Zr](Cl)(Cl)Cl DUNKXUFBGCUVQW-UHFFFAOYSA-J 0.000 claims description 9
- UHOVQNZJYSORNB-UHFFFAOYSA-N monobenzene Natural products C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 6
- 239000002904 solvent Substances 0.000 claims description 4
- 230000009466 transformation Effects 0.000 claims description 3
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 2
- SUAKHGWARZSWIH-UHFFFAOYSA-N N,N‐diethylformamide Chemical compound CCN(CC)C=O SUAKHGWARZSWIH-UHFFFAOYSA-N 0.000 claims description 2
- 150000001555 benzenes Chemical class 0.000 claims description 2
- 230000035484 reaction time Effects 0.000 claims description 2
- 235000012239 silicon dioxide Nutrition 0.000 claims 3
- 238000010438 heat treatment Methods 0.000 claims 2
- 244000137852 Petrea volubilis Species 0.000 claims 1
- 238000001354 calcination Methods 0.000 claims 1
- 238000001816 cooling Methods 0.000 claims 1
- 238000002156 mixing Methods 0.000 claims 1
- 238000005498 polishing Methods 0.000 claims 1
- 238000002791 soaking Methods 0.000 claims 1
- 238000003860 storage Methods 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 abstract description 31
- 238000003786 synthesis reaction Methods 0.000 abstract description 31
- 239000012920 MOF membrane Substances 0.000 abstract description 19
- 239000012528 membrane Substances 0.000 abstract description 10
- 239000012297 crystallization seed Substances 0.000 abstract description 3
- 230000008569 process Effects 0.000 abstract description 3
- 230000004907 flux Effects 0.000 description 16
- 238000002360 preparation method Methods 0.000 description 15
- 239000012621 metal-organic framework Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 7
- 238000005373 pervaporation Methods 0.000 description 4
- 229920005597 polymer membrane Polymers 0.000 description 3
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000000089 atomic force micrograph Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002090 nanochannel Substances 0.000 description 1
- 239000013110 organic ligand Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 230000034655 secondary growth Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/36—Pervaporation; Membrane distillation; Liquid permeation
- B01D61/362—Pervaporation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
- B01D67/0006—Organic membrane manufacture by chemical reactions
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2387/00—Characterised by the use of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Water Supply & Treatment (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
本发明公开一种原位相转化法制备MOF薄膜的方法及应用,在此过程中探究了种子负载量,甲酸量,合成时间、合成温度相关因素对MOF薄膜表面的致密程度,厚度,表面粗糙度及膜亲水性的影响,同时将其应用于乙醇/水,丁醇/水分离。本发明成功的制备了超薄MOF膜,具有优异的分离表现及良好的长期稳定性,是一种极具潜力的分离技术。
The invention discloses a method and application for preparing a MOF film by an in-situ phase inversion method. In the process, factors related to seed loading, formic acid amount, synthesis time and synthesis temperature are investigated on the surface density, thickness and surface roughness of the MOF film. degree and membrane hydrophilicity, while applying it to ethanol/water and butanol/water separations. The invention successfully prepares an ultra-thin MOF membrane, has excellent separation performance and good long-term stability, and is a very potential separation technology.
Description
技术领域technical field
本发明属于新材料领域,具体涉及一种原位相转化法制备MOF薄膜的方法及应用。The invention belongs to the field of new materials, and in particular relates to a method and application for preparing a MOF film by an in-situ phase inversion method.
背景技术Background technique
作为精馏分离的替代技术,渗透汽化技术已被开发为工业上可以接收的实用化技术,至今已有几十多年的历史,在有机溶剂脱水、共沸组分分离等相关工业的节能降耗发挥着重要作用, 证明这一新膜技术的可靠性和竞争力。As an alternative technology for rectification and separation, pervaporation technology has been developed as a practical technology that can be accepted in industry. consumption plays an important role, proving the reliability and competitiveness of this new membrane technology.
传统的渗透汽化膜材料包括聚合物膜、陶瓷膜、沸石膜等。聚合物膜易于制备且具有很强的机械强度,现已被广泛应用于工业气体分离、反渗透等过程,部分聚合物膜材料在渗透汽化应用中存在化学稳定性和热稳定性差的问题。无机膜尤其是沸石膜已被广泛用于有机物脱水,但结构脆性较大,限制了膜的应用。金属有机骨架(MOF)膜,具有通用拓扑结构和精确可调的纳米孔道结构,同时兼具强健的骨架结构,因此,MOF膜是一种极具潜力的分离材料。金属有机骨架(metal-organic frameworks,MOFs)材料是一类由有机配体与金属中心通过配位相互作用形成的具有周期性网状结构的材料。与传统无机多孔材料相比,MOFs材料具有更大的比表面积,更高的孔隙率,结构和孔道高度可调节等优势。Traditional pervaporation membrane materials include polymer membranes, ceramic membranes, zeolite membranes, and the like. Polymer membranes are easy to prepare and have strong mechanical strength, and have been widely used in industrial gas separation, reverse osmosis and other processes. Some polymer membrane materials have poor chemical stability and thermal stability in pervaporation applications. Inorganic membranes, especially zeolite membranes, have been widely used in the dehydration of organic matter, but their structural brittleness limits their application. Metal-organic framework (MOF) membranes have a general topology and precisely tunable nano-channel structure, and at the same time have a robust framework structure. Therefore, MOF membranes are a promising separation material. Metal-organic frameworks (MOFs) are a class of materials with periodic network structures formed by coordination interactions between organic ligands and metal centers. Compared with traditional inorganic porous materials, MOFs have the advantages of larger specific surface area, higher porosity, and adjustable structure and pore height.
目前常见的金属有机骨架薄膜制备方法包括原位水热合成,二次生长法等。这些方法都不同程度的受到一些因素的制约,例如:大量的原料液、膜组装方式的影响等。本发明在蒸汽辅助的作用下,通过金属有机骨架材料发生原味相转化实现超薄MOF膜材料的制备,制得的MOF薄膜表现出优秀的渗透汽化性能。At present, the common preparation methods of metal-organic framework films include in-situ hydrothermal synthesis, secondary growth method, etc. These methods are restricted by some factors to varying degrees, such as: a large number of raw material solutions, the influence of membrane assembly methods, etc. The invention realizes the preparation of ultra-thin MOF film materials through the transformation of the original flavor of the metal-organic framework material under the action of steam assistance, and the prepared MOF film exhibits excellent pervaporation performance.
发明内容SUMMARY OF THE INVENTION
本发明的目的克服现有技术的不足,通过原位相转化技术制备具有超薄厚度的MOF薄膜及应用。The purpose of the present invention is to overcome the deficiencies of the prior art, and to prepare a MOF film with ultra-thin thickness by in-situ phase inversion technology and its application.
本发明的技术方案是原位相转化法制备MOF薄膜的方法,主要步骤为:The technical scheme of the present invention is a method for preparing MOF film by an in-situ phase inversion method, and the main steps are:
(1)制备NU-906颗粒;(1) Preparation of NU-906 particles;
(2)用砂纸将自制的二氧化硅载体表面打磨光滑后,涂覆50nm二氧化硅颗粒并在550℃下煅烧5h,得到表面光滑平整的二氧化硅载体;(2) after the surface of the self-made silica carrier is smoothed with sandpaper, 50nm silica particles are coated and calcined at 550° C. for 5h to obtain a silica carrier with a smooth surface;
(3)将制备的NU-906晶种分散在溶剂中,利用湿涂的方式组装在改性的二氧化硅载体上形成致密的NU-906层,待用;(3) Disperse the prepared NU-906 seed crystal in a solvent, and assemble it on the modified silica carrier by wet coating to form a dense NU-906 layer, ready for use;
(4)将负载NU-906颗粒的载体置于具有支架的聚四氟乙烯内衬中,加入甲酸,控制时间、温度,使NU-906颗粒通过原位相转化生成致密的MOF薄膜,反应结束后将获得的MOF薄膜浸泡在丙酮中保存,待用;(4) The carrier loaded with NU-906 particles is placed in a PTFE liner with a scaffold, formic acid is added, and the time and temperature are controlled, so that the NU-906 particles can be transformed into a dense MOF film by in-situ phase transformation, and the reaction is completed. Then, the obtained MOF film was immersed in acetone and stored for later use;
(5)利用自组装的装置评价MOF薄膜的渗透性能,并对膜的长期稳定性评价;(5) Using the self-assembled device to evaluate the permeability of the MOF film, and to evaluate the long-term stability of the film;
(6)SEM表征MOF膜的表面形貌及厚度,XRD反映MOF膜的取向,AFM观察MOF膜的表面粗糙度,水接触角测试不同时间MOF膜的亲水性,进一步说明取向性MOF薄膜的结构特征和分离性能;(6) SEM characterizes the surface morphology and thickness of the MOF film, XRD reflects the orientation of the MOF film, AFM observes the surface roughness of the MOF film, and the water contact angle tests the hydrophilicity of the MOF film at different times, which further illustrates the orientation of the MOF film. Structural characteristics and separation properties;
所述步骤(3)NU-906负载量为5-500mg/cm2;Described step (3) NU-906 load is 5-500mg/cm 2 ;
所述步骤(4)MOF薄膜的反应温度为25-150℃;The reaction temperature of the MOF film in the step (4) is 25-150°C;
所述步骤(4)MOF薄膜的反应时间为2-48h;The reaction time of the step (4) MOF film is 2-48h;
所述步骤(4)甲酸的量为0.08-2000μL/mg NU-906。The amount of formic acid in the step (4) is 0.08-2000 μL/mg NU-906.
所述步骤(3)溶剂包括N,N-二甲基甲酰胺,N,N-二乙基甲酰胺,N,N-二甲基乙酰胺,水,低级烷烃醇(C1~C6),乙腈,丙酮或乙酸乙酯。The step (3) solvent includes N,N-dimethylformamide, N,N-diethylformamide, N,N-dimethylacetamide, water, lower alkanol (C1-C6), acetonitrile , acetone or ethyl acetate.
所述步骤(4)MOF薄膜的制备方法为原位相转化。The preparation method of the MOF film in the step (4) is in-situ phase inversion.
所述步骤(5)渗透评价体系分别为20wt%-95wt%乙醇/水,操作温度20-120℃;20wt% -95wt%丁醇/水,操作温度为20-120℃。In the step (5), the penetration evaluation system is 20wt%-95wt% ethanol/water, operating temperature is 20-120°C; 20wt%-95wt% butanol/water, operating temperature is 20-120°C.
本发明制备NU-906颗粒,包括如下步骤:A液:将58.5mg氯化锆,24mg苯甲酸溶解于1.8mL N,N-二甲基甲酰胺中,80℃加热1h,冷却至室温;B液:36mg 1,4-二溴-2,3,5,6- 四羧苯基取代苯溶解于1.8mL N,N-二甲基甲酰胺中;将配置的A液,B液及288mg苯甲酸混合均匀,100℃加热2-72h获得白色粉末状NU-906颗粒,待用。The preparation of NU-906 particles in the present invention includes the following steps: liquid A: dissolve 58.5 mg of zirconium chloride and 24 mg of benzoic acid in 1.8 mL of N,N-dimethylformamide, heat at 80° C. for 1 hour, and cool to room temperature; B Solution: 36mg of 1,4-dibromo-2,3,5,6-tetracarboxyphenyl substituted benzene was dissolved in 1.8mL of N,N-dimethylformamide; the prepared solution A, B and 288mg of benzene were dissolved Formic acid is mixed evenly, heated at 100°C for 2-72h to obtain white powdery NU-906 granules, which are ready for use.
本发明的第二个技术方案是采用前述方法制备的原位相转化法制备MOF薄膜应用于乙醇/水,丁醇/水分离。The second technical solution of the present invention is to use the in-situ phase inversion method prepared by the aforementioned method to prepare the MOF film and apply it to the separation of ethanol/water and butanol/water.
本发明的优点:Advantages of the present invention:
本发明利用原位相转化法成功制备了MOF薄膜,制备方法简便快捷、不需要额外添加化学试剂。在分离应用中,MOF薄膜对乙醇/水的分离因子高达600,通量为2.5kg/(m2·h),丁醇/水的分离因子高达6000,通量为3.8kg/(m2·h)。本发明制备的MOF薄膜具有超薄的厚度,具有优异的分离表现及良好的长期稳定性,是一种极具潜力的分离技术。The present invention successfully prepares the MOF film by the in-situ phase inversion method, and the preparation method is simple and quick, and does not need to add additional chemical reagents. In separation applications, MOF membranes have a separation factor of 600 for ethanol/water and a flux of 2.5kg/(m 2 ·h), and a separation factor of 6000 for butanol/water with a flux of 3.8kg/(m 2 ·h) h). The MOF film prepared by the invention has ultra-thin thickness, excellent separation performance and good long-term stability, and is a very potential separation technology.
附图说明Description of drawings
图1:负载量为250mg/cm2且甲酸的量为2μL/mg NU-906时,100℃反应24h后制备的MOF膜的XRD图。Figure 1: XRD patterns of MOF films prepared after reaction at 100 °C for 24 h when the loading amount was 250 mg/cm 2 and the amount of formic acid was 2 μL/mg NU-906.
图2:负载量为250mg/cm2且甲酸的量为2μL/mg NU-906时,100℃反应24h后制备的MOF膜的表面图。Figure 2: Surface images of MOF membranes prepared after 100 °C reaction for 24 h when the loading amount was 250 mg/cm 2 and the amount of formic acid was 2 μL/mg NU-906.
图3:负载量为250mg/cm2且甲酸的量为2μL/mg NU-906时,100℃反应24h后制备的MOF膜的截面图。Figure 3: Cross-sectional view of the MOF film prepared after reaction at 100 °C for 24 h when the loading amount was 250 mg/cm 2 and the amount of formic acid was 2 μL/mg NU-906.
图4:负载量为250mg/cm2且甲酸的量为2μL/mg NU-906时,100℃反应24h后制备的MOF膜的AFM图。Figure 4: AFM image of MOF film prepared after 100°C reaction for 24h when the loading amount was 250 mg/cm 2 and the amount of formic acid was 2 μL/mg NU-906.
图5:负载量为250mg/cm2且甲酸的量为2μL/mg NU-906时,100℃反应24h后制备的MOF膜的水接触角图。Figure 5: The water contact angle diagram of the MOF film prepared after reaction at 100 °C for 24 h when the loading amount was 250 mg/cm 2 and the amount of formic acid was 2 μL/mg NU-906.
具体实施方式Detailed ways
以下结合具体实施例来对本发明做进一步的说明。The present invention will be further described below with reference to specific embodiments.
本发明NU-906种子的制备,参考:Phase Transitions in Metal-OrganicFrameworks Directly Monitored through In Situ Variable Temperature Liquid-Cell Transmission Electron Microscopy and In Situ Xray Diffraction[J].Journalof the American Chemical Society,2020, 142(10):4609-4615.For the preparation of NU-906 seeds of the present invention, refer to: Phase Transitions in Metal-OrganicFrameworks Directly Monitored through In Situ Variable Temperature Liquid-Cell Transmission Electron Microscopy and In Situ Xray Diffraction[J]. Journal of the American Chemical Society, 2020, 142(10 ): 4609-4615.
实施例1:Embodiment 1:
(1)A液:将58.5mg氯化锆,24mg苯甲酸溶解于1.8mL N,N-二甲基甲酰胺中,80℃加热1h,冷却至室温;B液:36mg 1,4-二溴-2,3,5,6-四羧苯基取代苯溶解于1.8mL N,N-二甲基甲酰胺中;将配置的A液,B液及288mg苯甲酸混合均匀,100℃加热2-72h获得白色粉末状NU-906颗粒,待用;(1) Liquid A: dissolve 58.5 mg of zirconium chloride and 24 mg of benzoic acid in 1.8 mL of N,N-dimethylformamide, heat at 80°C for 1 h, and cool to room temperature; liquid B: 36 mg of 1,4-dibromo -2,3,5,6-Tetracarboxyphenyl-substituted benzene was dissolved in 1.8mL N,N-dimethylformamide; the prepared solution A, B and 288mg benzoic acid were mixed uniformly, heated at 100°C for 2- 72h to obtain white powdery NU-906 granules, ready for use;
(2)用砂纸将自制的二氧化硅载体表面打磨光滑后,涂覆50nm二氧化硅颗粒并在550℃下煅烧5h,得到表面光滑的二氧化硅载体;(2) after the surface of the self-made silica carrier is smoothed with sandpaper, 50nm silica particles are coated and calcined at 550° C. for 5h to obtain a silica carrier with a smooth surface;
(3)将2.5mg NU-906晶种分散在2.6mL N,N-二甲基甲酰胺中使单片负载量为5mg/cm2,利用湿涂的方式组装在改性的二氧化硅载体上形成致密的NU-906层,待用;(3) Disperse 2.5 mg of NU-906 seed crystals in 2.6 mL of N,N-dimethylformamide so that the single-chip loading is 5 mg/cm 2 , and assemble on the modified silica carrier by wet coating A dense NU-906 layer is formed on it, ready for use;
(4)将预涂NU-906的载体置于具有支架的聚四氟乙烯内衬中,控制合成时间、合成温度及甲酸的量,甲酸蒸汽辅助NU-906颗粒通过原位相转化生成致密的MOF薄膜,反应结束后将获得的MOF薄膜浸泡在丙酮中保存,待用;(4) The carrier pre-coated with NU-906 is placed in a PTFE lining with a stent, and the synthesis time, synthesis temperature and amount of formic acid are controlled, and the formic acid vapor assists the NU-906 particles to generate dense MOF film, after the reaction is completed, the obtained MOF film is soaked in acetone and stored for later use;
(5)利用自组装的装置评价MOF薄膜的渗透性能,并对膜的长期稳定性评价;(5) Using the self-assembled device to evaluate the permeability of the MOF film, and to evaluate the long-term stability of the film;
(6)所述MOF膜的制备方法是原位相转化;(6) the preparation method of the MOF film is in-situ phase inversion;
(7)所述MOF膜的合成温度为25-150℃;(7) the synthesis temperature of described MOF film is 25-150 ℃ ;
(8)所述MOF膜的合成时间为2-48h;(8) the synthesis time of the MOF film is 2-48h;
(9)所述MOF膜甲酸的量为0.08-2000μL/mg NU-906;(9) the amount of formic acid in the MOF membrane is 0.08-2000 μL/mg NU-906;
(10)所述渗透评价体系为20wt%-95wt%乙醇/水,操作温度20-120℃;20wt%-95wt%丁醇/水,操作温度为20-120℃。(10) The penetration evaluation system is 20wt%-95wt% ethanol/water, operating temperature is 20-120 °C ; 20wt%-95wt% butanol/water, operating temperature is 20-120 °C .
(11)当甲酸的量为2μL/mg NU-906时,100℃反应24h后制备的MOF膜对90wt%乙醇/水分离因子为390,通量为3.8kg/(m2·h);对90wt%丁醇/水分离因子为4020,通量为2.3kg/(m2·h)。(11) When the amount of formic acid was 2 μL/mg NU-906, the separation factor for 90wt% ethanol/water was 390 and the flux was 3.8 kg/(m 2 ·h) for the MOF membrane prepared after reaction at 100 °C for 24 h; The 90 wt% butanol/water separation factor was 4020 and the flux was 2.3 kg/(m 2 ·h).
(12)当甲酸的量为2μL/mg NU-906时,100℃反应24h后制备的膜厚度为130nm,膜的粗糙度为8.9nm,水接触角为65°。(12) When the amount of formic acid was 2 μL/mg NU-906, the film thickness was 130 nm, the film roughness was 8.9 nm, and the water contact angle was 65° after 100 °C reaction for 24 h.
实施例2:Embodiment 2:
(1)A液:将58.5mg氯化锆,24mg苯甲酸溶解于1.8mL N,N-二甲基甲酰胺中,80℃加热1h,冷却至室温;B液:36mg 1,4-二溴-2,3,5,6-四羧苯基取代苯溶解于1.8mL N,N-二甲基甲酰胺中;将配置的A液,B液及288mg苯甲酸混合均匀,100℃加热2-72h获得白色粉末状NU-906颗粒,待用;(1) Liquid A: dissolve 58.5 mg of zirconium chloride and 24 mg of benzoic acid in 1.8 mL of N,N-dimethylformamide, heat at 80°C for 1 h, and cool to room temperature; liquid B: 36 mg of 1,4-dibromo -2,3,5,6-Tetracarboxyphenyl-substituted benzene was dissolved in 1.8mL N,N-dimethylformamide; the prepared solution A, B and 288mg benzoic acid were mixed uniformly, heated at 100°C for 2- 72h to obtain white powdery NU-906 granules, ready for use;
(2)用砂纸将自制的二氧化硅载体表面打磨光滑后,涂覆50nm二氧化硅颗粒并在550℃下煅烧5h,得到表面光滑的二氧化硅载体;(2) after the surface of the self-made silica carrier is smoothed with sandpaper, 50nm silica particles are coated and calcined at 550° C. for 5h to obtain a silica carrier with a smooth surface;
(3)将10mg NU-906晶种分散在2.6mL N,N-二甲基甲酰胺中使单片负载量为20mg/cm2,利用湿涂的方式组装在改性的二氧化硅载体上形成致密的NU-906层,待用;(3) Disperse 10 mg of NU-906 seed crystals in 2.6 mL of N,N-dimethylformamide so that the single sheet loading is 20 mg/cm 2 , and assemble on the modified silica carrier by wet coating Form a dense layer of NU-906, ready for use;
(4)将预涂NU-906的载体置于具有支架的聚四氟乙烯内衬中,控制合成时间、合成温度及甲酸的量,甲酸蒸汽辅助NU-906颗粒通过原位相转化生成致密的MOF薄膜,反应结束后将获得的MOF薄膜浸泡在丙酮中保存,待用;(4) The pre-coated NU-906 carrier is placed in a PTFE liner with a stent, and the synthesis time, synthesis temperature and amount of formic acid are controlled, and the formic acid vapor assists the NU-906 particles to generate dense MOF film, after the reaction is completed, the obtained MOF film is soaked in acetone and stored for later use;
(5)利用自组装的装置评价MOF薄膜的渗透性能,并对膜的长期稳定性评价;(5) Using the self-assembled device to evaluate the permeability of the MOF film, and to evaluate the long-term stability of the film;
(6)所述MOF膜的制备方法是原位相转化;(6) the preparation method of the MOF film is in-situ phase inversion;
(7)所述MOF膜的合成温度为25-150℃;(7) the synthesis temperature of described MOF film is 25-150 ℃ ;
(8)所述MOF膜的合成时间为2-48h;(8) the synthesis time of the MOF film is 2-48h;
(9)所述MOF膜甲酸的量为0.08-2000μL/mg NU-906;(9) the amount of formic acid in the MOF membrane is 0.08-2000 μL/mg NU-906;
(10)所述渗透评价体系为20wt%-95wt%乙醇/水,操作温度20-120℃;20wt%-95wt%丁醇/水,操作温度为20-120℃。(10) The penetration evaluation system is 20wt%-95wt% ethanol/water, operating temperature is 20-120 °C ; 20wt%-95wt% butanol/water, operating temperature is 20-120 °C .
(10)当甲酸的量为2μL/mg NU-906时,100℃反应24h后制备的MOF膜对90wt%乙醇/水分离因子为437,通量为3.1kg/(m2·h);对90wt%丁醇/水分离因子为4250,通量为2.1kg/(m2·h)。(10) When the amount of formic acid was 2 μL/mg NU-906, the separation factor for 90wt% ethanol/water was 437 and the flux was 3.1 kg/(m 2 ·h) for the MOF membrane prepared after 100 °C reaction for 24 h; The 90 wt% butanol/water separation factor was 4250 and the flux was 2.1 kg/(m 2 ·h).
(11)当甲酸的量为2μL/mg NU-906时,100℃反应24h后制备的MOF膜厚度为130nm,膜的粗糙度为6.7nm,水接触角为57°。(11) When the amount of formic acid was 2 μL/mg NU-906, the thickness of the MOF film prepared after reaction at 100 °C for 24 h was 130 nm, the film roughness was 6.7 nm, and the water contact angle was 57°.
实施例3:Embodiment 3:
(1)A液:将58.5mg氯化锆,24mg苯甲酸溶解于1.8mL N,N-二甲基甲酰胺中,80℃加热1h,冷却至室温;B液:36mg 1,4-二溴-2,3,5,6-四羧苯基取代苯溶解于1.8mL N,N-二甲基甲酰胺中;将配置的A液,B液及288mg苯甲酸混合均匀,100℃加热2-72h获得白色粉末状NU-906颗粒,待用;(1) Liquid A: dissolve 58.5 mg of zirconium chloride and 24 mg of benzoic acid in 1.8 mL of N,N-dimethylformamide, heat at 80°C for 1 h, and cool to room temperature; liquid B: 36 mg of 1,4-dibromo -2,3,5,6-Tetracarboxyphenyl-substituted benzene was dissolved in 1.8mL N,N-dimethylformamide; the prepared solution A, B and 288mg benzoic acid were mixed uniformly, heated at 100°C for 2- 72h to obtain white powdery NU-906 granules, ready for use;
(2)用砂纸将自制的二氧化硅载体表面打磨光滑后,涂覆50nm二氧化硅颗粒并在550℃下煅烧5h,得到表面光滑的二氧化硅载体;(2) after the surface of the self-made silica carrier is smoothed with sandpaper, 50nm silica particles are coated and calcined at 550° C. for 5h to obtain a silica carrier with a smooth surface;
(3)将40mg NU-906晶种分散在2.6mL N,N-二甲基甲酰胺中使单片负载量为80mg/cm2,利用湿涂的方式组装在改性的二氧化硅载体上形成致密的NU-906层,待用;(3) Disperse 40 mg of NU-906 seed crystals in 2.6 mL of N,N-dimethylformamide so that the single sheet loading is 80 mg/cm 2 , and assemble on the modified silica carrier by wet coating Form a dense layer of NU-906, ready for use;
(4)将预涂NU-906的载体置于具有支架的聚四氟乙烯内衬中,控制合成时间、合成温度及甲酸的量,甲酸蒸汽辅助NU-906颗粒通过原位相转化生成致密的MOF薄膜,反应结束后将获得的MOF薄膜浸泡在丙酮中保存,待用;(4) The pre-coated NU-906 carrier is placed in a PTFE liner with a stent, and the synthesis time, synthesis temperature and amount of formic acid are controlled, and the formic acid vapor assists the NU-906 particles to generate dense MOF film, after the reaction is completed, the obtained MOF film is soaked in acetone and stored for later use;
(5)利用自组装的装置评价MOF薄膜的渗透性能,并对膜的长期稳定性评价;(5) Using the self-assembled device to evaluate the permeability of the MOF film, and to evaluate the long-term stability of the film;
(6)所述MOF膜的制备方法是原位相转化;(6) the preparation method of the MOF film is in-situ phase inversion;
(7)所述MOF膜的合成温度为25-150℃;(7) the synthesis temperature of described MOF film is 25-150 ℃ ;
(8)所述MOF膜的合成时间为2-48h;(8) the synthesis time of the MOF film is 2-48h;
(9)所述MOF膜甲酸的量为0.08-2000μL/mg NU-906;(9) the amount of formic acid in the MOF membrane is 0.08-2000 μL/mg NU-906;
(10)所述渗透评价体系为20wt%-95wt%乙醇/水,操作温度20-120℃;20wt%-95wt%丁醇/水,操作温度为20-120℃。(10) The penetration evaluation system is 20wt%-95wt% ethanol/water, operating temperature is 20-120 °C ; 20wt%-95wt% butanol/water, operating temperature is 20-120 °C .
(11)当甲酸的量为2μL/mg NU-906时,100℃反应24h后制备的MOF膜对90wt%乙醇/水分离因子为473,通量为2.8kg/(m2·h);对90wt%丁醇/水分离因子为4532,通量为2.2 kg/(m2·h)。(11) When the amount of formic acid was 2 μL/mg NU-906, the separation factor for 90wt% ethanol/water was 473 and the flux was 2.8 kg/(m 2 ·h) for the MOF membrane prepared after 100 °C reaction for 24 h; The 90 wt% butanol/water separation factor was 4532 and the flux was 2.2 kg/(m 2 ·h).
(12)当甲酸的量为2μL/mg NU-906时,100℃反应24h后制备的MOF膜厚度为140nm,膜的粗糙度为4.5nm,水接触角为45°。(12) When the amount of formic acid was 2 μL/mg NU-906, the thickness of the MOF film prepared after 100 °C reaction for 24 h was 140 nm, the film roughness was 4.5 nm, and the water contact angle was 45°.
实施例4:Embodiment 4:
(1)A液:将58.5mg氯化锆,24mg苯甲酸溶解于1.8mL N,N-二甲基甲酰胺中,80℃加热1h,冷却至室温;B液:36mg 1,4-二溴-2,3,5,6-四羧苯基取代苯溶解于1.8mL N,N-二甲基甲酰胺中;将配置的A液,B液及288mg苯甲酸混合均匀,100℃加热2-72h获得白色粉末状NU-906颗粒,待用;(1) Liquid A: dissolve 58.5 mg of zirconium chloride and 24 mg of benzoic acid in 1.8 mL of N,N-dimethylformamide, heat at 80°C for 1 h, and cool to room temperature; liquid B: 36 mg of 1,4-dibromo -2,3,5,6-Tetracarboxyphenyl-substituted benzene was dissolved in 1.8mL N,N-dimethylformamide; the prepared solution A, B and 288mg benzoic acid were mixed uniformly, heated at 100°C for 2- 72h to obtain white powdery NU-906 granules, ready for use;
(2)用砂纸将自制的二氧化硅载体表面打磨光滑后,涂覆50nm二氧化硅颗粒并在550℃下煅烧5h,得到表面光滑的二氧化硅载体;(2) after the surface of the self-made silica carrier is smoothed with sandpaper, 50nm silica particles are coated and calcined at 550° C. for 5h to obtain a silica carrier with a smooth surface;
(3)将90mg NU-906晶种分散在2.6mL N,N-二甲基甲酰胺中使单片负载量为180mg/cm2,利用湿涂的方式组装在改性的二氧化硅载体上形成致密的NU-906层,待用;(3) Disperse 90 mg of NU-906 seed crystals in 2.6 mL of N,N-dimethylformamide so that the single sheet loading is 180 mg/cm 2 , and assemble on the modified silica carrier by wet coating Form a dense layer of NU-906, ready for use;
(4)将预涂NU-906的载体置于具有支架的聚四氟乙烯内衬中,控制合成时间、合成温度及甲酸的量,甲酸蒸汽辅助NU-906颗粒通过原位相转化生成致密的MOF薄膜,反应结束后将获得的MOF薄膜浸泡在丙酮中保存,待用;(4) The pre-coated NU-906 carrier is placed in a PTFE liner with a stent, and the synthesis time, synthesis temperature and amount of formic acid are controlled, and the formic acid vapor assists the NU-906 particles to generate dense MOF film, after the reaction is completed, the obtained MOF film is soaked in acetone and stored for later use;
(5)利用自组装的装置评价MOF薄膜的渗透性能,并对膜的长期稳定性评价;(5) Using the self-assembled device to evaluate the permeability of the MOF film, and to evaluate the long-term stability of the film;
(6)所述MOF膜的制备方法是原位相转化;(6) the preparation method of the MOF film is in-situ phase inversion;
(7)所述MOF膜的合成温度为25-150℃;(7) the synthesis temperature of described MOF film is 25-150 ℃ ;
(8)所述MOF膜的合成时间为2-48h;(8) the synthesis time of the MOF film is 2-48h;
(9)所述MOF膜甲酸的量为0.08-2000μL/mg NU-906;(9) the amount of formic acid in the MOF membrane is 0.08-2000 μL/mg NU-906;
(10)所述渗透评价体系为20wt%-95wt%乙醇/水,操作温度20-120℃;20wt%-95wt%丁醇/水,操作温度为20-120℃。(10) The penetration evaluation system is 20wt%-95wt% ethanol/water, operating temperature is 20-120 °C ; 20wt%-95wt% butanol/water, operating temperature is 20-120 °C .
(11)当甲酸的量为2μL/mg NU-906时,100℃反应24h后制备的MOF膜对90wt%乙醇/水分离因子为455,通量为3.3kg/(m2·h);对90wt%丁醇/水分离因子为4672,通量为2.5kg/(m2·h)。(11) When the amount of formic acid was 2 μL/mg NU-906, the separation factor for 90wt% ethanol/water was 455 and the flux was 3.3 kg/(m 2 ·h) for the MOF membrane prepared after reaction at 100 °C for 24 h; The 90 wt% butanol/water separation factor was 4672 and the flux was 2.5 kg/(m 2 ·h).
(12)当甲酸的量为2μL/mg NU-906时,100℃反应24h后制备的MOF膜厚度为150nm,膜的粗糙度为3.9nm,水接触角为34°。(12) When the amount of formic acid was 2 μL/mg NU-906, the thickness of the MOF film prepared after 100 °C reaction for 24 h was 150 nm, the film roughness was 3.9 nm, and the water contact angle was 34°.
实施例5:Embodiment 5:
(1)A液:将58.5mg氯化锆,24mg苯甲酸溶解于1.8mL N,N-二甲基甲酰胺中,80℃加热1h,冷却至室温;B液:36mg 1,4-二溴-2,3,5,6-四羧苯基取代苯溶解于1.8mL N,N-二甲基甲酰胺中;将配置的A液,B液及288mg苯甲酸混合均匀,100℃加热2-72h获得白色粉末状NU-906颗粒,待用;(1) Liquid A: dissolve 58.5 mg of zirconium chloride and 24 mg of benzoic acid in 1.8 mL of N,N-dimethylformamide, heat at 80°C for 1 h, and cool to room temperature; liquid B: 36 mg of 1,4-dibromo -2,3,5,6-Tetracarboxyphenyl-substituted benzene was dissolved in 1.8mL N,N-dimethylformamide; the prepared solution A, B and 288mg benzoic acid were mixed uniformly, heated at 100°C for 2- 72h to obtain white powdery NU-906 granules, ready for use;
(2)用砂纸将自制的二氧化硅载体表面打磨光滑后,涂覆50nm二氧化硅颗粒并在550℃下煅烧5h,得到表面光滑的二氧化硅载体;(2) after the surface of the self-made silica carrier is smoothed with sandpaper, 50nm silica particles are coated and calcined at 550° C. for 5h to obtain a silica carrier with a smooth surface;
(3)将125mg NU-906晶种分散在2.6mL N,N-二甲基甲酰胺中使单片负载量为250mg/cm2,利用湿涂的方式组装在改性的二氧化硅载体上形成致密的NU-906,待用;(3) Disperse 125 mg of NU-906 seed crystals in 2.6 mL of N,N-dimethylformamide so that the single-chip loading is 250 mg/cm 2 , and assemble on the modified silica carrier by wet coating Formed dense NU-906, ready for use;
(4)将预涂NU-906的载体置于具有支架的聚四氟乙烯内衬中,控制合成时间、合成温度及甲酸的量,甲酸蒸汽辅助NU-906颗粒通过原位相转化生成致密的MOF薄膜,反应结束后将获得的MOF薄膜浸泡在丙酮中保存,待用;(4) The pre-coated NU-906 carrier is placed in a PTFE liner with a stent, and the synthesis time, synthesis temperature and amount of formic acid are controlled, and the formic acid vapor assists the NU-906 particles to generate dense MOF film, after the reaction is completed, the obtained MOF film is soaked in acetone and stored for later use;
(5)利用自组装的装置评价MOF薄膜的渗透性能,并对膜的长期稳定性评价;(5) Using the self-assembled device to evaluate the permeability of the MOF film, and to evaluate the long-term stability of the film;
(6)所述MOF膜的制备方法是原位相转化;(6) the preparation method of the MOF film is in-situ phase inversion;
(7)所述MOF膜的合成温度为25-150℃;(7) the synthesis temperature of described MOF film is 25-150 ℃ ;
(8)所述MOF膜的合成时间为2-48h;(8) the synthesis time of the MOF film is 2-48h;
(9)所述MOF膜甲酸的量为0.08-2000μL/mg NU-906;(9) the amount of formic acid in the MOF membrane is 0.08-2000 μL/mg NU-906;
(10)所述渗透评价体系为20wt%-95wt%乙醇/水,操作温度20-120℃;20wt%-95wt%丁醇/水,操作温度为20-120℃。(10) The penetration evaluation system is 20wt%-95wt% ethanol/water, operating temperature is 20-120 °C ; 20wt%-95wt% butanol/water, operating temperature is 20-120 °C .
(11)当甲酸的量为2μL/mg NU-906时,100℃反应24h后制备的MOF膜对90wt%乙醇/水分离因子为600,通量为3.5kg/(m2·h);对90wt%丁醇/水分离因子为8000,通量为2.5kg/(m2·h)。(11) When the amount of formic acid was 2 μL/mg NU-906, the MOF membrane prepared after 100 ℃ of reaction for 24 h had a separation factor of 600 for 90 wt% ethanol/water and a flux of 3.5 kg/(m 2 ·h); The 90 wt% butanol/water separation factor was 8000 and the flux was 2.5 kg/(m 2 ·h).
(12)当甲酸的量为2μL/mg NU-906时,100℃反应24h后制备的MOF膜厚度为110nm,膜的粗糙度为1.6nm,水接触角为15°。(12) When the amount of formic acid was 2 μL/mg NU-906, the thickness of the MOF film prepared after 100 °C reaction for 24 h was 110 nm, the film roughness was 1.6 nm, and the water contact angle was 15°.
实施例6:Embodiment 6:
(1)A液:将58.5mg氯化锆,24mg苯甲酸溶解于1.8mL N,N-二甲基甲酰胺中,80℃加热1h,冷却至室温;B液:36mg 1,4-二溴-2,3,5,6-四羧苯基取代苯溶解于1.8mL N,N-二甲基甲酰胺中;将配置的A液,B液及288mg苯甲酸混合均匀,100℃加热2-72h获得白色粉末状NU-906颗粒,待用;(1) Liquid A: dissolve 58.5 mg of zirconium chloride and 24 mg of benzoic acid in 1.8 mL of N,N-dimethylformamide, heat at 80°C for 1 h, and cool to room temperature; liquid B: 36 mg of 1,4-dibromo -2,3,5,6-Tetracarboxyphenyl-substituted benzene was dissolved in 1.8mL N,N-dimethylformamide; the prepared solution A, B and 288mg benzoic acid were mixed uniformly, heated at 100°C for 2- 72h to obtain white powdery NU-906 granules, ready for use;
(2)用砂纸将自制的二氧化硅载体表面打磨光滑后,涂覆50nm二氧化硅颗粒并在550℃下煅烧5h,得到表面光滑的二氧化硅载体;(2) after the surface of the self-made silica carrier is smoothed with sandpaper, 50nm silica particles are coated and calcined at 550° C. for 5h to obtain a silica carrier with a smooth surface;
(3)将188mg NU-906晶种分散在2.6mL N,N-二甲基甲酰胺中使单片负载量为376mg/cm2,利用湿涂的方式组装在改性的二氧化硅载体上形成致密的NU-906层,待用;(3) Disperse 188 mg of NU-906 seed crystals in 2.6 mL of N,N-dimethylformamide so that the single sheet loading is 376 mg/cm 2 , and assemble on the modified silica carrier by wet coating Form a dense layer of NU-906, ready for use;
(4)将预涂NU-906的载体置于具有支架的聚四氟乙烯内衬中,控制合成时间、合成温度及甲酸的量,甲酸蒸汽辅助NU-906颗粒通过原位相转化生成致密的MOF薄膜,反应结束后将获得的MOF薄膜浸泡在丙酮中保存,待用;(4) The pre-coated NU-906 carrier is placed in a PTFE liner with a stent, and the synthesis time, synthesis temperature and amount of formic acid are controlled, and the formic acid vapor assists the NU-906 particles to generate dense MOF film, after the reaction is completed, the obtained MOF film is soaked in acetone and stored for later use;
(5)利用自组装的装置评价MOF薄膜的渗透性能,并对膜的长期稳定性评价;(5) Using the self-assembled device to evaluate the permeability of the MOF film, and to evaluate the long-term stability of the film;
(6)所述MOF膜的制备方法是原位相转化;(6) the preparation method of the MOF film is in-situ phase inversion;
(7)所述MOF膜的合成温度为25-150℃;(7) the synthesis temperature of described MOF film is 25-150 ℃ ;
(8)所述MOF膜的合成时间为2-48h;(8) the synthesis time of the MOF film is 2-48h;
(9)所述MOF膜甲酸的量为0.08-2000μL/mg NU-906;(9) the amount of formic acid in the MOF membrane is 0.08-2000 μL/mg NU-906;
(10)所述渗透评价体系为20wt%-95wt%乙醇/水,操作温度20-120℃;20wt%-95wt%丁醇/水,操作温度为20-120℃。(10) The penetration evaluation system is 20wt%-95wt% ethanol/water, operating temperature is 20-120 °C ; 20wt%-95wt% butanol/water, operating temperature is 20-120 °C .
(11)当甲酸的量为2μL/mg NU-906时,100℃反应24h后制备的MOF膜对90wt%乙醇/水分离因子为564,通量为3.8kg/(m2·h);对90wt%丁醇/水分离因子为6030,通量为2.9kg/(m2·h)。(11) When the amount of formic acid was 2 μL/mg NU-906, the MOF membrane prepared after 100 °C reaction for 24 h had a separation factor of 564 for 90 wt% ethanol/water and a flux of 3.8 kg/(m 2 ·h); The 90 wt% butanol/water separation factor was 6030 and the flux was 2.9 kg/(m 2 ·h).
(12)当甲酸的量为2μL/mg NU-906时,100℃反应24h后制备的MOF膜厚度为160nm,膜的粗糙度为2.3nm,水接触角为23°。(12) When the amount of formic acid was 2 μL/mg NU-906, the thickness of the MOF film prepared after 100 °C reaction for 24 h was 160 nm, the film roughness was 2.3 nm, and the water contact angle was 23°.
实施例7:Embodiment 7:
(1)A液:将58.5mg氯化锆,24mg苯甲酸溶解于1.8mL N,N-二甲基甲酰胺中,80℃加热1h,冷却至室温;B液:36mg 1,4-二溴-2,3,5,6-四羧苯基取代苯溶解于1.8mL N,N-二甲基甲酰胺中;将配置的A液,B液及288mg苯甲酸混合均匀,100℃加热2-72h获得白色粉末状NU-906颗粒,待用;(1) Liquid A: dissolve 58.5 mg of zirconium chloride and 24 mg of benzoic acid in 1.8 mL of N,N-dimethylformamide, heat at 80°C for 1 h, and cool to room temperature; liquid B: 36 mg of 1,4-dibromo -2,3,5,6-Tetracarboxyphenyl-substituted benzene was dissolved in 1.8mL N,N-dimethylformamide; the prepared solution A, B and 288mg benzoic acid were mixed uniformly, heated at 100°C for 2- 72h to obtain white powdery NU-906 granules, ready for use;
(2)用砂纸将自制的二氧化硅载体表面打磨光滑后,涂覆50nm二氧化硅颗粒并在550℃下煅烧5h,得到表面光滑的二氧化硅载体;(2) after the surface of the self-made silica carrier is smoothed with sandpaper, 50nm silica particles are coated and calcined at 550° C. for 5h to obtain a silica carrier with a smooth surface;
(3)将250mg NU-906晶种分散在2.6mL N,N-二甲基甲酰胺中使单片负载量为500mg/cm2,利用湿涂的方式组装在改性的二氧化硅载体上形成致密的NU-906层,待用;(3) Disperse 250 mg of NU-906 seed crystals in 2.6 mL of N,N-dimethylformamide so that the single-chip loading is 500 mg/cm 2 , and assemble on the modified silica carrier by wet coating Form a dense layer of NU-906, ready for use;
(4)将预涂NU-906的载体置于具有支架的聚四氟乙烯内衬中,控制合成时间、合成温度及甲酸的量,甲酸蒸汽辅助NU-906颗粒通过原位相转化生成致密的MOF薄膜,反应结束后将获得的MOF薄膜浸泡在丙酮中保存,待用;(4) The pre-coated NU-906 carrier is placed in a PTFE liner with a stent, and the synthesis time, synthesis temperature and amount of formic acid are controlled, and the formic acid vapor assists the NU-906 particles to generate dense MOF film, after the reaction is completed, the obtained MOF film is soaked in acetone and stored for later use;
(5)利用自组装的装置评价MOF薄膜的渗透性能,并对膜的长期稳定性评价;(5) Using the self-assembled device to evaluate the permeability of the MOF film, and to evaluate the long-term stability of the film;
(6)所述MOF膜的制备方法是原位相转化;(6) the preparation method of the MOF film is in-situ phase inversion;
(7)所述MOF膜的合成温度为25-150℃;(7) the synthesis temperature of described MOF film is 25-150 ℃ ;
(8)所述MOF膜的合成时间为2-48h;(8) the synthesis time of the MOF film is 2-48h;
(9)所述MOF膜甲酸的量为0.08-2000μL/mg NU-906;(9) the amount of formic acid in the MOF membrane is 0.08-2000 μL/mg NU-906;
(10)所述渗透评价体系为20wt%-95wt%乙醇/水,操作温度20-120℃;20wt%-95wt%丁醇/水,操作温度为20-120℃。(10) The penetration evaluation system is 20wt%-95wt% ethanol/water, operating temperature is 20-120 °C ; 20wt%-95wt% butanol/water, operating temperature is 20-120 °C .
(11)当甲酸的量为2μL/mg NU-906时,100℃反应24h后制备的MOF膜对90wt%乙醇/水分离因子为597,通量为3.7kg/(m2·h);对90wt%丁醇/水分离因子为7869,通量为3.2kg/(m2·h)。(11) When the amount of formic acid was 2 μL/mg NU-906, the separation factor for 90wt% ethanol/water was 597 for the MOF membrane prepared after reaction at 100 °C for 24 h, and the flux was 3.7 kg/(m 2 ·h); The 90 wt% butanol/water separation factor was 7869 and the flux was 3.2 kg/(m 2 ·h).
(12)当甲酸的量为2μL/mg NU-906时,100℃反应24h后制备的MOF膜厚度为170nm,膜的粗糙度为2.1nm,水接触角为25°。(12) When the amount of formic acid was 2 μL/mg NU-906, the thickness of the MOF film prepared after 100 °C reaction for 24 h was 170 nm, the film roughness was 2.1 nm, and the water contact angle was 25°.
实施例8至16的工艺条件,详见表1(其他条件同实施1)The process conditions of
表1Table 1
综上,如图1至5所示,本研究在甲酸的量为2μL/mg NU-906且种子负载量为250mg/cm2时,100℃反应24h后通过原位相转化法制备的MOF膜厚度为110nm,膜的粗糙度为1.6nm,水接触角为15°。不同的合成条件下制备的MOF膜均较为致密且具有百纳米尺度的厚度,其中当种子负载量为250mg/cm2时,利用原位相转化方法制备的膜最薄,因此本研究可为超薄MOF的制备提供丰富的理论指导。同时在分离过程中,不同条件下制备出的MOF薄膜均表现出较佳的分离效果,为膜的工业应用奠定了坚实的基础。本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,并不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明的宗旨的情况下,还可以做出更多变形,这些均属于本发明的保护之内。In conclusion, as shown in Figures 1 to 5, in this study, MOF membranes prepared by in situ phase inversion method were prepared by in situ phase inversion after reaction at 100 °C for 24 h when the amount of formic acid was 2 μL/mg NU-906 and the seed loading was 250 mg/cm 2 . The thickness was 110 nm, the film roughness was 1.6 nm, and the water contact angle was 15°. The MOF films prepared under different synthesis conditions are relatively dense and have a thickness of 100 nanometers. When the seed loading is 250 mg/cm 2 , the film prepared by the in situ phase inversion method is the thinnest, so this study can be used for ultra The preparation of thin MOFs provides rich theoretical guidance. At the same time, in the separation process, the MOF films prepared under different conditions showed good separation effect, which laid a solid foundation for the industrial application of the membrane. The present invention is not limited to the above-mentioned specific embodiments. The above-mentioned specific embodiments are only illustrative and not restrictive. Those of ordinary skill in the art, under the inspiration of the present invention, do not depart from the spirit of the present invention. Under certain circumstances, more modifications can also be made, which all fall within the protection of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210027052.2A CN114367199B (en) | 2022-01-11 | 2022-01-11 | Method for preparing MOF film by in-situ phase inversion method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210027052.2A CN114367199B (en) | 2022-01-11 | 2022-01-11 | Method for preparing MOF film by in-situ phase inversion method and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114367199A true CN114367199A (en) | 2022-04-19 |
CN114367199B CN114367199B (en) | 2023-09-22 |
Family
ID=81144727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210027052.2A Active CN114367199B (en) | 2022-01-11 | 2022-01-11 | Method for preparing MOF film by in-situ phase inversion method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114367199B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116459805A (en) * | 2023-04-27 | 2023-07-21 | 天津大学 | Method for selective adsorption and separation of hexose sugars on zirconium-based metal-organic framework materials |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102125809A (en) * | 2010-01-13 | 2011-07-20 | 武少禹 | Method for improving performance of reverse osmosis composite membrane through vapor treatment |
CN106215866A (en) * | 2016-08-31 | 2016-12-14 | 太原理工大学 | The method that bimetallic MOFs material is prepared in steam assistant metal displacement |
WO2017218065A1 (en) * | 2016-06-17 | 2017-12-21 | Battelle Memorial Institute | System and process for continuous and controlled production of metal-organic frameworks and metal-organic framework composites |
CN107597190A (en) * | 2017-08-14 | 2018-01-19 | 湖北大学 | A kind of preparation method and applications of zeolite molecular sieve grain surface assembling metal organic framework film |
-
2022
- 2022-01-11 CN CN202210027052.2A patent/CN114367199B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102125809A (en) * | 2010-01-13 | 2011-07-20 | 武少禹 | Method for improving performance of reverse osmosis composite membrane through vapor treatment |
WO2017218065A1 (en) * | 2016-06-17 | 2017-12-21 | Battelle Memorial Institute | System and process for continuous and controlled production of metal-organic frameworks and metal-organic framework composites |
CN106215866A (en) * | 2016-08-31 | 2016-12-14 | 太原理工大学 | The method that bimetallic MOFs material is prepared in steam assistant metal displacement |
CN107597190A (en) * | 2017-08-14 | 2018-01-19 | 湖北大学 | A kind of preparation method and applications of zeolite molecular sieve grain surface assembling metal organic framework film |
Non-Patent Citations (1)
Title |
---|
KOUHEI SAKATA ET AL.: "Growth of Two-Dimensional Metal-Organic Framework Nanosheet Crystals on Graphite Substrates by Thermal Equilibrium Treatment in Acetic Acid Vapor", CHEMNANOMAT, vol. 1, no. 4, pages 259 - 263, XP055371123, DOI: 10.1002/cnma.201500062 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116459805A (en) * | 2023-04-27 | 2023-07-21 | 天津大学 | Method for selective adsorption and separation of hexose sugars on zirconium-based metal-organic framework materials |
Also Published As
Publication number | Publication date |
---|---|
CN114367199B (en) | 2023-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7618514B2 (en) | Ceramic selective membrane | |
Li et al. | Stiff metal–organic framework–polyacrylonitrile hollow fiber composite membranes with high gas permeability | |
Hou et al. | Formation of ultrathin, continuous metal–organic framework membranes on flexible polymer substrates | |
Tao et al. | A hollow ceramic fiber supported ZIF-8 membrane with enhanced gas separation performance prepared by hot dip-coating seeding | |
Shamsaei et al. | Rapid synthesis of ultrathin, defect-free ZIF-8 membranes via chemical vapour modification of a polymeric support | |
CN104144738B (en) | Porous Support-Zeolite Membrane Composite | |
Su et al. | Metal based gels as versatile precursors to synthesize stiff and integrated MOF/polymer composite membranes | |
Sekulić et al. | Microporous silica and doped silica membrane for alcohol dehydration by pervaporation | |
CN104549082A (en) | ZnO@ZIF-8 core-shell structure microspheres and preparation method thereof | |
CN107469648A (en) | A kind of preparation method of polytetrafluoroethylhollow hollow fiber composite membrane | |
CN114471200A (en) | A method for improving the preparation of Zr-based MOF membrane by an intermediate modification layer and its forward osmosis application | |
Nian et al. | Preparation of a pure ZIF-67 membrane by self-conversion of cobalt carbonate hydroxide nanowires for H 2 separation | |
CN114367199A (en) | Method for preparing MOF film by in-situ phase inversion method and application | |
Lu et al. | Sol–gel synthesis and characterization of mesoporous yttria-stabilized zirconia membranes with graded pore structure | |
Suthabanditpong et al. | Influence of CaCO3 pore-forming agent on porosity and thermal conductivity of cellulose acetate materials prepared by non-solvent induced phase separation | |
Yin et al. | Effect of boehmite sol on the performance of alumina microfiltration membranes | |
Wei et al. | Methylcellulose-assisted synthesis of a compact and thin NaA zeolite membrane | |
Qin et al. | Ultrafiltration carbon membranes from organic sol-gel process | |
Yacou et al. | One pot synthesis of hierarchical porous silica membrane material with dispersed Pt nanoparticles using a microwave-assisted sol–gel route | |
CN114316319B (en) | Method for preparing orientation MOF film by steam assistance and separation application | |
CN116531970A (en) | A kind of flexible zeolite molecular sieve composite membrane and its preparation method | |
CN114259888B (en) | Molecular sieve-metal organic framework composite membrane and preparation method and application thereof | |
JP4599557B2 (en) | Gas separation membrane and method for producing the same | |
CN115445401A (en) | Application of a whole-process green and sustainable ZIF-8 membrane in the separation of propylene/propane | |
JPH0871385A (en) | Carbon dioxide separator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |