CN114362836A - LED/LD array based transmitting-receiving integrated underwater wireless blue-green light communication system and method - Google Patents
LED/LD array based transmitting-receiving integrated underwater wireless blue-green light communication system and method Download PDFInfo
- Publication number
- CN114362836A CN114362836A CN202111433906.9A CN202111433906A CN114362836A CN 114362836 A CN114362836 A CN 114362836A CN 202111433906 A CN202111433906 A CN 202111433906A CN 114362836 A CN114362836 A CN 114362836A
- Authority
- CN
- China
- Prior art keywords
- led
- signal
- module
- modules
- parallel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000006854 communication Effects 0.000 title claims abstract description 96
- 238000004891 communication Methods 0.000 title claims abstract description 96
- 238000000034 method Methods 0.000 title claims abstract description 9
- 238000005070 sampling Methods 0.000 claims abstract description 22
- 238000001914 filtration Methods 0.000 claims abstract description 18
- 230000003321 amplification Effects 0.000 claims abstract description 14
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 14
- 230000003287 optical effect Effects 0.000 claims description 51
- 239000011521 glass Substances 0.000 claims description 15
- 238000007789 sealing Methods 0.000 claims description 15
- 238000012545 processing Methods 0.000 claims description 8
- 230000005622 photoelectricity Effects 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 abstract description 8
- 239000000428 dust Substances 0.000 abstract description 6
- 239000013535 sea water Substances 0.000 abstract description 5
- 230000010354 integration Effects 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 8
- 238000002955 isolation Methods 0.000 description 4
- 230000033228 biological regulation Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 230000007175 bidirectional communication Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Landscapes
- Optical Communication System (AREA)
Abstract
Description
技术领域technical field
本发明属于水下无线通信技术领域,具体涉及一种基于LED/LD阵列收发一体水下无线蓝绿光通信系统及方法。The invention belongs to the technical field of underwater wireless communication, and in particular relates to an integrated underwater wireless blue-green light communication system and method based on an LED/LD array transceiver.
背景技术Background technique
近年来,激光因其方向性好、单色性好、相干性好、信息传送量大、不易受电磁干扰等优点,而被广泛应用到空间科学研究。随着水下探测技术的发展,数据量日益增大,对水下高速通信提出了更高的要求。水下无线光通信具有高带宽、低功耗、低延迟的特点,可满足水下高速通信需求。In recent years, laser has been widely used in space scientific research due to its advantages of good directionality, good monochromaticity, good coherence, large amount of information transmission, and not easy to be affected by electromagnetic interference. With the development of underwater detection technology, the amount of data is increasing day by day, which puts forward higher requirements for underwater high-speed communication. Underwater wireless optical communication has the characteristics of high bandwidth, low power consumption, and low delay, which can meet the needs of underwater high-speed communication.
可见光波段范围的450nm-580nm蓝绿光波段,在水下传输信号强度衰减小,因此深入研究蓝绿光波段在水下、大气传输特性非常有必要。但是,现有水下移动平台存在对准精度低和易晃动,以及浑浊海水、海底勘探或施工过程中造成的扬尘及其他海底生物,会对传输信号光存在较大的损耗或完全遮挡,从而限制无线光通信设备在水下的进一步应用和推广。The 450nm-580nm blue-green light band in the visible light band has little attenuation of the transmission signal intensity underwater. Therefore, it is necessary to deeply study the transmission characteristics of the blue-green light band in the underwater and the atmosphere. However, the existing underwater mobile platforms have low alignment accuracy and easy shaking, as well as turbid seawater, dust and other seabed organisms caused during seabed exploration or construction, which will cause great loss or complete blockage of the transmitted signal light. Limit the further application and promotion of wireless optical communication equipment underwater.
发明内容SUMMARY OF THE INVENTION
为了解决现有水下移动平台存在对准精度低和易晃动,浑浊海水、扬尘及海底生物对传输信号光造成损耗或遮挡,影响通信建立和保持的技术问题,本发明提供了一种基于LED/LD阵列收发一体水下无线蓝绿光通信系统及方法。In order to solve the technical problems that the existing underwater mobile platform has low alignment accuracy and easy shaking, turbid seawater, dust and seabed organisms cause loss or occlusion of the transmitted signal light, and affect the establishment and maintenance of communication, the present invention provides an LED-based technology. /LD array transceiver integrated underwater wireless blue-green optical communication system and method.
为实现上述目的,本发明提供的技术方案是:For achieving the above object, the technical scheme provided by the present invention is:
一种基于LED/LD阵列收发一体水下无线蓝绿光通信系统,其特殊之处在于:包括两个耐压密封舱以及分别设置在两个耐压密封舱内的两个通信装置;An integrated underwater wireless blue-green light communication system based on LED/LD array transceiver, which is special in that it includes two pressure-resistant sealed cabins and two communication devices respectively arranged in the two pressure-resistant sealed cabins;
所述每个通信装置包括设置在耐压密封舱内的发射单元、信号处理器和接收单元;Each of the communication devices includes a transmitting unit, a signal processor and a receiving unit arranged in the pressure-resistant sealed cabin;
所述发射单元包括M个可调电压放大模块、M个并联驱动器、1个信号同步模块、M个并联偏压电流驱动模块和M组LED/LD串联模块,其中,M为整数且3≤M≤9;The transmitting unit includes M adjustable voltage amplification modules, M parallel drivers, 1 signal synchronization module, M parallel bias current driving modules and M groups of LED/LD series modules, where M is an integer and 3≤M ≤9;
所述信号处理器的输出与M个可调电压放大模块的输入分别相连,M个可调电压放大模块的输出分别与M个并联驱动器的输入相连,M个并联驱动器的输出通过信号同步模块分别与M个并联偏压电流驱动模块的输入相连,M个并联偏压电流驱动模块的输出分别与M组LED/LD串联模块的输入相连;The outputs of the signal processor are respectively connected with the inputs of the M adjustable voltage amplifying modules, the outputs of the M adjustable voltage amplifying modules are respectively connected with the inputs of the M parallel drivers, and the outputs of the M parallel drivers are respectively connected through the signal synchronization module. connected with the inputs of the M parallel bias current driving modules, and the outputs of the M parallel bias current driving modules are respectively connected with the inputs of the M groups of LED/LD series modules;
所述接收单元包括信号采样模块、信号滤波模块、信号放大模块、光电探测器和接收透镜;光电探测器位于接收透镜的光束焦点位置,且两者之间的光路上设有滤光组件;光电探测器的输出通过依次设置的信号放大模块、信号滤波模块、信号采样模块与信号处理器的输入相连;The receiving unit includes a signal sampling module, a signal filtering module, a signal amplifying module, a photodetector and a receiving lens; the photodetector is located at the focal position of the beam of the receiving lens, and a filter component is arranged on the optical path between the two; The output of the detector is connected with the input of the signal processor through the signal amplification module, the signal filtering module and the signal sampling module arranged in sequence;
所述耐压密封舱上设有玻璃窗口,玻璃窗口为向外侧凸的弧形结构,M组LED/LD串联模块的光源板和接收透镜均与玻璃窗口相对布置,且光源板与光电探测器共光轴;The pressure-resistant sealed cabin is provided with a glass window, and the glass window is an arc-shaped structure that is convex to the outside. common optical axis;
或者,M组LED/LD串联模块的光源板和接收透镜均设置在耐压密封舱上,耐压密封舱上安装光源板或接收透镜的位置为向外侧凸的弧形结构,且光源板与光电探测器共光轴;Alternatively, both the light source board and the receiving lens of the M group LED/LD series module are arranged on the pressure-resistant sealed cabin, and the position where the light source board or the receiving lens is installed on the pressure-resistant sealed cabin is an arc-shaped structure that is convex to the outside, and the light source board and The photodetectors share the same optical axis;
两个通信装置向外侧凸的弧形结构相对布置,其中一个通信装置的M组LED/LD串联模块同步输出的M路LED/LD信号,经信道传递到另外一个通信装置的接收透镜。The two communication devices are arranged opposite to the outwardly convex arc structure, and M LED/LD signals synchronously output by M groups of LED/LD series modules of one communication device are transmitted to the receiving lens of the other communication device through the channel.
进一步地,所述滤光组件包括沿光路依次设置的二向色滤光片、颜色滤光片,且二向色滤光片靠近光电探测器设置。Further, the filter assembly includes a dichroic filter and a color filter arranged in sequence along the optical path, and the dichroic filter is arranged close to the photodetector.
进一步地,所述光电探测器采用大面阵光电探测器。Further, the photodetector adopts a large area array photodetector.
进一步地,所述接收透镜为背向颜色滤光片方凸的透镜。Further, the receiving lens is a square convex lens facing away from the color filter.
进一步地,所述M为6。Further, the M is 6.
进一步地,所述M组LED/LD串联模块设置在同一平面电路光源板上。Further, the M groups of LED/LD series modules are arranged on the same plane circuit light source board.
进一步地,所述玻璃窗口为半球透明密封窗口。Further, the glass window is a hemispherical transparent sealing window.
同时基于上述基于LED/LD阵列收发一体水下无线蓝绿光通信系统,本发明还提了一种基于LED/LD阵列收发一体水下无线蓝绿光通信方法,包括以下步骤:At the same time, based on the above-mentioned integrated underwater wireless blue-green light communication system based on LED/LD array transceiver, the present invention also provides an integrated underwater wireless blue-green light communication method based on LED/LD array transceiver, including the following steps:
1.1)其中一个通信装置的信号处理器发送M路数字同步信号;1.1) The signal processor of one of the communication devices sends M digital synchronization signals;
1.2)M路数字同步信号经过M个可调电压放大模块放大后,送入M个并联驱动器,经信号同步模块的多路同步后被送至M个并联偏压电流驱动模块,M个并联偏压电流驱动模块驱动M组LED/LD串联模块,使每个LED/LD的工作电压处于线性范围内,并将数字信号调制到光信号上,使M组LED/LD串联模块同步输出M路LED/LD信号;1.2) After the M channels of digital synchronization signals are amplified by the M adjustable voltage amplifying modules, they are sent to the M parallel drivers. After the multi-channel synchronization of the signal synchronization module, they are sent to the M parallel bias current driving modules. The piezoelectric current drive module drives M groups of LED/LD series modules, so that the working voltage of each LED/LD is within the linear range, and modulates the digital signal to the optical signal, so that the M groups of LED/LD series modules can output M LEDs synchronously /LD signal;
1.3)M路LED/LD信号经水下信道传递到另外一个通信装置的接收透镜上,并经第二通信装置的滤光组件滤除背景光和杂光后,被第二通信装置的光电探测器接收;1.3) The M-channel LED/LD signal is transmitted to the receiving lens of another communication device through the underwater channel, and after the background light and stray light are filtered out by the filter component of the second communication device, it is detected by the photoelectricity of the second communication device. receiver;
1.4)光电探测器将接收到的LED/LD信号转换为电信号,并依次经信号放大模块的放大、信号滤波模块噪声滤除、信号采样模块高速信号采样后,进入信号处理器进行信号解调处理,实现通信。1.4) The photodetector converts the received LED/LD signal into an electrical signal, and then enters the signal processor for signal demodulation after amplification by the signal amplification module, noise filtering by the signal filtering module, and high-speed signal sampling by the signal sampling module. processing and communication.
与现有技术相比,本发明的优点是:Compared with the prior art, the advantages of the present invention are:
1、本发明基于LED/LD阵列同步发射和大面阵探测的应用,实现大功率大角度发射和宽视场接收,相对于单点大功率LED/LD和LD发射,可以极大提供水下光通信系统在复杂海洋环境下和复杂工况下的环境适应性和兼容性。1. Based on the application of LED/LD array synchronous emission and large area array detection, the present invention realizes high-power, large-angle emission and wide-field-of-view reception. Compared with single-point high-power LED/LD and LD emission, it can greatly provide underwater Environmental adaptability and compatibility of optical communication systems in complex marine environments and complex operating conditions.
2、本发明极大地提高了水下无线光通信系统的适用范围,在平台晃动、浑浊水质、扬尘、局部遮挡等不同环境下,始终保证光通信链路的快速建立和稳定保持。2. The invention greatly improves the applicable scope of the underwater wireless optical communication system, and always ensures the rapid establishment and stable maintenance of the optical communication link under different environments such as platform shaking, turbid water quality, dust, partial occlusion, etc.
3、相对于现有水下光学传感系统应用的360°的4Π空间密封技术、本发明的LED/LD阵列和宽视场接收技术可与之相结合,进一步有效提高水下光通信的发射角度和接收视场,实现全方位光链路覆盖,进而促进一点多水下光通信技术发展,具有广阔的应用前景和推广价值。3. Compared with the 360° 4Π space sealing technology applied by the existing underwater optical sensing system, the LED/LD array and the wide field of view receiving technology of the present invention can be combined with it to further effectively improve the emission of underwater optical communication. Angle and receiving field of view, to achieve all-round optical link coverage, and then promote the development of a little more underwater optical communication technology, has broad application prospects and promotion value.
4、本发明发射单元基于LED/LD阵列,可以实现大功率发射,可同时兼顾水下照明、引导和通信功能。4. The transmitting unit of the present invention is based on the LED/LD array, which can realize high-power transmission, and can simultaneously take into account the functions of underwater lighting, guidance and communication.
5、本发明系统适用于水下复杂环境下快速建链、稳定通信,提高水下无线光通信的建立时间和稳定性。5. The system of the present invention is suitable for rapid chain establishment and stable communication in complex underwater environment, and improves the establishment time and stability of underwater wireless optical communication.
附图说明Description of drawings
图1是本发明基于LED/LD阵列收发一体水下无线蓝绿光通信系统的原理结构框图;Fig. 1 is the principle structure block diagram of the present invention based on LED/LD array transceiver integrated underwater wireless blue-green light communication system;
图2是本发明实施例中第一通信装置的结构框图;2 is a structural block diagram of a first communication apparatus in an embodiment of the present invention;
图3是本发明实施例中第二通信装置的结构框图;3 is a structural block diagram of a second communication apparatus in an embodiment of the present invention;
其中,附图标记如下:Among them, the reference numerals are as follows:
1-第一通信装置,101-第一干舱高压耐压密封舱,110-第一信号处理器,111-第一可调电压放大模块,112-第一并联驱动器,113-第二可调电压放大模块,114-第二并联驱动器,115-第三可调电压放大模块,116-第三并联驱动器,117-第四可调电压放大模块,118-第四并联驱动器,119-第五可调电压放大模块,120-第五并联驱动器,121-第六可调电压放大模块,122-第六并联驱动器,123-第一信号同步模块,124-第一并联偏压电流驱动模块,125-第一组LED/LD串联模块,126-第二并联偏压电流驱动模块,127-第二组LED/LD串联模块,128-第三并联偏压电流驱动模块,129-第三组LED/LD串联模块,130-第四并联偏压电流驱动模块,131-第四组LED/LD串联模块,132-第五并联偏压电流驱动模块,133-第五组LED/LD串联模块,134-第六并联偏压电流驱动模块,135-第六组LED/LD串联模块,136-第一信号采样模块,137-第一信号滤波模块,138-第一信号放大模块,139-第一光电探测器,140-第一二向色滤光片,141-第一颜色滤光片,142-第一接收透镜;1- The first communication device, 101- The first dry cabin high pressure and pressure sealed cabin, 110- The first signal processor, 111- The first adjustable voltage amplifying module, 112- The first parallel driver, 113- The second adjustable Voltage amplifier module, 114-second parallel driver, 115-third adjustable voltage amplifier module, 116-third parallel driver, 117-fourth adjustable voltage amplifier module, 118-fourth parallel driver, 119-fifth adjustable voltage amplifier module Voltage regulation amplifier module, 120- the fifth parallel driver, 121- the sixth adjustable voltage amplifier module, 122- the sixth parallel driver, 123- the first signal synchronization module, 124- the first parallel bias current driver module, 125- The first group of LED/LD series modules, 126-the second parallel bias current driver module, 127-the second group of LED/LD series modules, 128-the third parallel bias current driver module, 129-the third group of LED/LD Series module, 130- the fourth parallel bias current drive module, 131- the fourth group of LED/LD series modules, 132- the fifth parallel bias current drive module, 133- the fifth group of LED/LD series modules, 134- the first Six parallel bias current drive modules, 135 - the sixth group of LED/LD series modules, 136 - the first signal sampling module, 137 - the first signal filtering module, 138 - the first signal amplification module, 139 - the first photodetector , 140-first dichroic filter, 141-first color filter, 142-first receiving lens;
2-第二通信装置,201-第二干舱高压耐压密封舱,210-第二信号处理器,211-第七可调电压放大模块,212-第七并联驱动器,213-第八可调电压放大模块,214-第八并联驱动器,215-第九可调电压放大模块,216-第九并联驱动器,217-第十可调电压放大模块,218-第十并联驱动器,219-第十一可调电压放大模块,220-第十一并联驱动器,221-第十二可调电压放大模块,222-第十二并联驱动器,223-第二信号同步模块,224-第七并联偏压电流驱动模块,225-第七组LED/LD串联模块,226-第八并联偏压电流驱动模块,227-第八组LED/LD串联模块,228-第九并联偏压电流驱动模块,229-第九组LED/LD串联模块,230-第十并联偏压电流驱动模块,231-第十组LED/LD串联模块,232-第十一并联偏压电流驱动模块,233-第十一组LED/LD串联模块,234-第十二并联偏压电流驱动模块,235-第十二组LED/LD串联模块,236-第二信号采样模块,237-第二信号滤波模块,238-第二信号放大模块,239-第二光电探测器,240-第二二向色滤光片,241-第二颜色滤光片,242-第二接收透镜。2- The second communication device, 201- The second dry cabin high pressure and pressure sealed cabin, 210- The second signal processor, 211- The seventh adjustable voltage amplifier module, 212- The seventh parallel driver, 213- The eighth adjustable Voltage amplifier module, 214-the eighth parallel driver, 215-the ninth adjustable voltage amplifier module, 216-the ninth parallel driver, 217-the tenth adjustable voltage amplifier module, 218-the tenth parallel driver, 219-the eleventh Adjustable voltage amplifier module, 220- the eleventh parallel driver, 221- the twelfth adjustable voltage amplifier module, 222- the twelfth parallel driver, 223- the second signal synchronization module, 224- the seventh parallel bias current driver Module, 225-seventh group LED/LD series module, 226-eighth parallel bias current drive module, 227-eighth group LED/LD series module, 228-ninth parallel bias current drive module, 229-ninth Group LED/LD series module, 230- tenth parallel bias current drive module, 231- tenth group LED/LD series module, 232- eleventh parallel bias current drive module, 233- eleventh group LED/LD Series module, 234- the twelfth parallel bias current drive module, 235- the twelfth group of LED/LD series modules, 236- the second signal sampling module, 237- the second signal filtering module, 238- the second signal amplifying module , 239 - the second photodetector, 240 - the second dichroic filter, 241 - the second color filter, 242 - the second receiving lens.
具体实施方式Detailed ways
以下结合附图和具体实施例对本发明的内容作进一步详细描述。The content of the present invention will be described in further detail below with reference to the accompanying drawings and specific embodiments.
首先需要说明的是,本发明中第一通信装置1和第二通信装置2中所用各电子元件(部件)均为成熟技术,且都有相应的市售产品。本领域技术人员在阅读理解申请文件的基础上,依据其掌握的无线电知识和各种数字信号处理技能完全可以再现本发明。First of all, it should be noted that the electronic components (components) used in the first communication device 1 and the second communication device 2 in the present invention are all mature technologies, and all have corresponding commercially available products. On the basis of reading and comprehending the application documents, those skilled in the art can fully reproduce the present invention according to their radio knowledge and various digital signal processing skills.
如图1所示,本发明一种基于LED/LD阵列收发一体水下无线蓝绿光通信系统包括两个耐压密封舱以及分别设置在两个耐压密封舱内的两个通信装置,通信装置可固定于耐压密封舱内部固定件上,或者设于耐压密封舱壁上玻璃窗口的相对位置。As shown in FIG. 1 , an underwater wireless blue-green light communication system based on an integrated LED/LD array transceiver of the present invention includes two pressure-resistant sealed cabins and two communication devices respectively arranged in the two pressure-resistant sealed cabins. The device can be fixed on the inner fixing member of the pressure-resistant sealed cabin, or set at the relative position of the glass window on the pressure-resistant sealed cabin wall.
两个密封舱分别为第一干舱高压耐压密封舱101和第二干舱高压耐压密封舱201,两个通信装置为分别设置在第一干舱高压耐压密封舱101内的第一通信装置1和第二干舱高压耐压密封舱201内的第二通信装置2,第一通信装置1和第二通信装置2结构组成一致,均包括发射单元和接收单元,以实现第一通信装置1和第二通信装置2双向无线通信功能,在复杂海水信道和工况下构成水下无线光通信系统。The two sealed cabins are the first dry cabin high pressure and pressure sealed
第一通信装置1如图2所示,包括设置在第一干舱高压耐压密封舱101内的第一发射单元、第一信号处理器110和第一接收单元;其中,第一信号处理器110具有同一信号至少六个用于同步输出基带信号的输出端口、至少一个用于输入的电信号输入接口,本实施例第一信号处理器110具有六个输出接口和一个输入接口。As shown in FIG. 2 , the first communication device 1 includes a first transmitting unit, a
第一发射单元包括安装在第一干舱高压耐压密封舱101中的第一可调电压放大模块111、第一并联驱动器112、第二可调电压放大模块113、第二并联驱动器114、第三可调电压放大模块115、第三并联驱动器116、第四可调电压放大模块117、第四并联驱动器118、第五可调电压放大模块119、第五并联驱动器120、第六可调电压放大模块121、第六并联驱动器122、第一信号同步模块123、第一并联偏压电流驱动模块124、第一组LED/LD串联模块125、第二并联偏压电流驱动模块126、第二组LED/LD串联模块127、第三并联偏压电流驱动模块128、第三组LED/LD串联模块129、第四并联偏压电流驱动模块130、第四组LED/LD串联模块131、第五并联偏压电流驱动模块132、第五组LED/LD串联模块133、第六并联偏压电流驱动模块134和第六组LED/LD串联模块135。The first transmitting unit includes a first adjustable voltage amplifier module 111, a first parallel driver 112, a second adjustable voltage amplifier module 113, a second parallel driver 114, a second adjustable voltage amplifier module 113, a second parallel driver 114, and a Three adjustable voltage amplifier modules 115, third parallel driver 116, fourth adjustable voltage amplifier module 117, fourth parallel driver 118, fifth adjustable voltage amplifier module 119, fifth parallel driver 120, sixth adjustable voltage amplifier Module 121, sixth parallel driver 122, first
第一信号处理器110的第一输出接口与第一可调电压放大模块111、第一并联驱动器112、第一信号同步模块123、第一并联偏压电流驱动模块124、第一组LED/LD串联模块125依次相连;第一信号处理器110的第二输出接口与第二可调电压放大模块113、第二并联驱动器114、第一信号同步模块123、第二并联偏压电流驱动模块126、第二组LED/LD串联模块127依次相连;第一信号处理器110的第三输出接口与第三可调电压放大模块115、第三并联驱动器116、第一信号同步模块123、第三并联偏压电流驱动模块128、第三组LED/LD串联模块129依次相连;第一信号处理器110的第四输出接口与第四可调电压放大模块117、第四并联驱动器118、第一信号同步模块123、第四并联偏压电流驱动模块130、第四组LED/LD串联模块131依次相连;第一信号处理器110的第五输出接口与第五可调电压放大模块119、第五并联驱动器120、第一信号同步模块123、第五并联偏压电流驱动模块132、第五组LED/LD串联模块133依次相连;第一信号处理器110的第六输出接口与第六可调电压放大模块121、第六并联驱动器122、第一信号同步模块123、第六并联偏压电流驱动模块134、第六组LED/LD串联模块135依次相连。The first output interface of the
第一组LED/LD串联模块125、第二组LED/LD串联模块127、第三组LED/LD串联模块129、第四组LED/LD串联模块131、第五组LED/LD串联模块133和第六组LED/LD串联模块135可合理布设于同一平面电路光源板Ⅰ上,本实施例第一干舱高压耐压密封舱101的壁上设有能透射激光的玻璃窗口,优选玻璃窗口为半球透明密封窗口;光源板Ⅰ与第一干舱高压耐压密封舱101的玻璃窗口相对布置。在其它实施例中,光源板Ⅰ可直接嵌于第一干舱高压耐压密封舱101的的壁上。The first group of LED/LD series modules 125, the second group of LED/LD series modules 127, the third group of LED/LD series modules 129, the fourth group of LED/LD series modules 131, the fifth group of LED/LD series modules 133 and The sixth group of LED/LD series modules 135 can be reasonably arranged on the same plane circuit light source board I. In this embodiment, the wall of the high-pressure and pressure-
第一信号处理器110用于数字信号调制并发送信号、接收信号并解调处理,第一可调电压放大模块111、第二可调电压放大模块113、第三可调电压放大模块115、第四可调电压放大模块117、第五可调电压放大模块119和第六可调电压放大模块121用于分别对第一信号处理器110发送的数据信号进行放大处理,第一并联驱动器112、第二并联驱动器114、第三并联驱动器116、第四并联驱动器118、第五并联驱动器120和第六并联驱动器122用于对串联LED/LD模块进行并联多级电流驱动,第一信号同步模块123用于对第一并联驱动器112输出的第一路驱动信号、第二并联驱动器114输出的第二路驱动信号、第三并联驱动器116输出的第三路驱动信号、第四并联驱动器118输出的第四路驱动信号、第五并联驱动器120输出的第五路驱动信号和第六并联驱动器122输出的第六路驱动信号进行同步处理,使第一组LED/LD串联模块、第二组LED/LD串联模块、第三组LED/LD串联模块、第四组LED/LD串联模块、第五组LED/LD串联模块和第六组LED/LD串联模块输出光信号同步。The
第一接收单元包括安装在第一干舱高压耐压密封舱101中的第一信号采样模块136、第一信号滤波模块137、第一信号放大模块138、第一光电探测器139、第一二向色滤光片140、第一颜色滤光片141和第一接收透镜142。The first receiving unit includes a first
第一光电探测器139、第一信号放大模块138、第一信号滤波模块137和第一信号采样模块136依次连接,第一信号采样模块136的输出与第一信号处理器110的输入相连;第一光电探测器139与第一接收透镜142相对布置,第一接收透镜142为凸透镜,第一光电探测器139位于第一接收透镜142光束焦点位置,两者之间光路依次放置第一二向色滤光片140和第一颜色滤光片141;第一接收透镜142设于第一干舱高压耐压密封舱101的空腔中,第一接收透镜142与第一干舱高压耐压密封舱101的玻璃窗口相对布置,且光源板Ⅰ与第一光电探测器139共光轴。The
第一通信装置1的发射单元和接收单元共用第一信号处理器110;以及发射单元和接收单元共用一个半球透明密封窗口,LED/LD阵列光源板位于半球中心截面,第一光电探测器139感光面位于半球接收透镜球心位置;LED/LD阵列光源(光源板Ⅰ)和第一光电探测器139共光轴。The transmitting unit and the receiving unit of the first communication device 1 share the
第二通信装置2如图3所示,包括设置在第二干舱高压耐压密封舱201内的第二发射单元、第二信号处理器和第二接收单元;其中,第二信号处理器210具有同一信号至少六个用于同步输出基带信号的输出端口、至少一个用于输入的电信号输入接口,第二信号处理器210的输出端口与第一信号处理器110的输出端口相等。本实施例第二信号处理器210具有六个输出接口和一个输入接口。As shown in FIG. 3 , the second communication device 2 includes a second transmitting unit, a second signal processor and a second receiving unit disposed in the high-pressure and pressure-resistant sealed chamber 201 of the second dry chamber; wherein, the second signal processor 210 There are at least six output ports for synchronously outputting baseband signals and at least one electrical signal input interface for inputting the same signal. The output port of the second signal processor 210 is equal to the output port of the
第二发射单元包括安装在第二干舱高压耐压密封舱201内的第七可调电压放大模块211、第七并联驱动器212、第八可调电压放大模块213、第八并联驱动器214、第九可调电压放大模块215、第九并联驱动器216、第十可调电压放大模块217、第十并联驱动器218、第十一可调电压放大模块219、第十一并联驱动器220、第十二可调电压放大模块221、第十二并联驱动器222、第二信号同步模块223、第七并联偏压电流驱动模块224、第七组LED/LD串联模块225、第八并联偏压电流驱动模块226、第八组LED/LD串联模块227、第九并联偏压电流驱动模块228、第九组LED/LD串联模块229、第十并联偏压电流驱动模块230、第十组LED/LD串联模块231、第十一并联偏压电流驱动模块232、第十一组LED/LD串联模块233、第十二并联偏压电流驱动模块234和第十二组LED/LD串联模块235。The second transmitting unit includes a seventh adjustable voltage amplifier module 211 , a seventh parallel driver 212 , an eighth adjustable voltage amplifier module 213 , an eighth parallel driver 214 , a seventh adjustable voltage amplifier module 213 , an eighth parallel driver 214 , Nine adjustable voltage amplifier modules 215, ninth parallel driver 216, tenth adjustable voltage amplifier module 217, tenth parallel driver 218, eleventh adjustable voltage amplifier module 219, eleventh parallel driver 220, twelfth adjustable voltage amplifier The voltage regulation amplifier module 221, the twelfth parallel driver 222, the second
第二信号处理器210的第一输出接口与第七可调电压放大模块211、第七并联驱动器212、第二信号同步模块223、第七并联偏压电流驱动模块224、第七组LED/LD串联模块225依次相连;第二信号处理器210的第二输出接口与第八可调电压放大模块213、第八并联驱动器214、第二信号同步模块223、第八并联偏压电流驱动模块226、第八组LED/LD串联模块227依次相连;第二信号处理器210的第三输出接口与第九可调电压放大模块215、第九并联驱动器216、第二信号同步模块223、第九并联偏压电流驱动模块228、第九组LED/LD串联模块229依次相连;第二信号处理器210的第四输出接口与第十可调电压放大模块217、第十并联驱动器218、第二信号同步模块223、第十并联偏压电流驱动模块230、第十组LED/LD串联模块231依次相连;第二信号处理器210的第五输出接口与第十一可调电压放大模块219、第十一并联驱动器220、第二信号同步模块223、第十一并联偏压电流驱动模块232、第十一组LED/LD串联模块233依次相连;第二信号处理器210的第六输出接口与第十二可调电压放大模块221、第十二并联驱动器222、第二信号同步模块223、第十二并联偏压电流驱动模块234、第十二组LED/LD串联模块235依次相连。The first output interface of the second signal processor 210 is connected to the seventh adjustable voltage amplifying module 211 , the seventh parallel driver 212 , the second
第七组LED/LD串联模块225、第八组LED/LD串联模块227、第九组LED/LD串联模块229、第十组LED/LD串联模块231、第十一组LED/LD串联模块233和第十二组LED/LD串联模块235布设于同一平面电路光源板Ⅱ上,本实施例第二干舱高压耐压密封舱201的壁面上设有能透射激光的玻璃窗口,优选玻璃窗口为半球透明密封窗口;光源板Ⅱ与第二干舱高压耐压密封舱201的玻璃窗口相对布置。在其它实施例中,者光源板Ⅱ可直接嵌于第二干舱高压耐压密封舱201的的壁上。The seventh group of LED/LD series modules 225, the eighth group of LED/LD series modules 227, the ninth group of LED/LD series modules 229, the tenth group of LED/LD series modules 231, the eleventh group of LED/LD series modules 233 The twelfth group of LED/LD series modules 235 are arranged on the same plane circuit light source board II. In this embodiment, the wall surface of the high-pressure and pressure-resistant sealing chamber 201 of the second dry chamber is provided with a glass window that can transmit laser light. Preferably, the glass window is The hemispherical transparent sealing window; the light source board II is arranged opposite to the glass window of the high-pressure and pressure-resistant sealing chamber 201 of the second dry chamber. In other embodiments, the light source panel II can be directly embedded on the wall of the second dry chamber high-pressure and pressure-resistant sealed chamber 201 .
第二信号处理器210用于数字信号调制并发送信号、接收信号并解调处理,第七可调电压放大模块211、第八可调电压放大模块213、第九可调电压放大模块215、第十可调电压放大模块217、第十一可调电压放大模块219和第十二可调电压放大模块221用于分别对第二信号处理器210发送的数据信号进行放大处理,第七并联驱动器212、第八并联驱动器214、第九并联驱动器216、第十并联驱动器218、第十一并联驱动器220和第十二并联驱动器222用于对串联LED/LD模块进行并联多级电流驱动,第二信号同步模块223用于对第七并联驱动器212输出的第一路驱动信号、第八并联驱动器214输出的第二路驱动信号、第九并联驱动器216输出的第三路驱动信号、第十并联驱动器218输出的第四路驱动信号、第十一并联驱动器220输出的第五路驱动信号和第十二并联驱动器222输出的第六路驱动信号进行同步处理,使第七组LED/LD串联模块225、第八组LED/LD串联模块227、第九组LED/LD串联模块229、第十组LED/LD串联模块231、第十一组LED/LD串联模块233、第十二组LED/LD串联模块235输出光信号同步。The second signal processor 210 is used for digital signal modulation and transmission, signal reception and demodulation processing. The seventh adjustable voltage amplifying module 211, the eighth adjustable voltage amplifying module 213, the ninth adjustable voltage amplifying module 215, the The ten adjustable voltage amplifying module 217 , the eleventh adjustable voltage amplifying module 219 and the twelfth adjustable voltage amplifying module 221 are used to respectively amplify the data signals sent by the second signal processor 210 , and the seventh parallel driver 212 , the eighth parallel driver 214 , the ninth parallel driver 216 , the tenth parallel driver 218 , the eleventh parallel driver 220 and the twelfth parallel driver 222 are used for parallel multi-level current driving for the series LED/LD modules, and the second signal The synchronization module 223 is used for the first drive signal output by the seventh parallel driver 212 , the second drive signal output by the eighth parallel driver 214 , the third drive signal output by the ninth parallel driver 216 , and the tenth parallel driver 218 The fourth drive signal output, the fifth drive signal output by the eleventh parallel driver 220 and the sixth drive signal output by the twelfth parallel driver 222 are processed synchronously, so that the seventh group of LED/LD series modules 225, The eighth group of LED/LD series modules 227, the ninth group of LED/LD series modules 229, the tenth group of LED/LD series modules 231, the eleventh group of LED/LD series modules 233, the twelfth group of LED/LD series modules 235 output optical signal synchronization.
第二接收单元包括安装在第二干舱高压耐压密封舱201中的第二信号采样模块236、第二信号滤波模块237、第二信号放大模块238、第二光电探测器239、第二二向色滤光片240、第二颜色滤光片241和第二接收透镜242;The second receiving unit includes a second signal sampling module 236, a second signal filtering module 237, a second signal amplifying module 238, a second photodetector 239, a second signal amplifying module 238, a second photodetector 239, a second signal a dichroic filter 240, a second color filter 241 and a second receiving lens 242;
第二光电探测器239、第二信号放大模块238、第二信号滤波模块237和第二信号采样模块236依次连接,第二信号采样模块236的输出与第二信号处理器210的输入相连;第二光电探测器239与第二接收透镜242相对布置,第二接收透镜242为凸透镜,第二光电探测器239位于第二接收透镜242光束焦点位置,两者之间光路依次放置第二二向色滤光片240和第二颜色滤光片241;第二接收透镜242设于第二干舱高压耐压密封舱201空腔中,第二接收透镜242与第二干舱高压耐压密封舱201的玻璃窗口相对布置,且光源板Ⅱ与第二光电探测器239共光轴。The second photodetector 239, the second signal amplifying module 238, the second signal filtering module 237 and the second signal sampling module 236 are connected in sequence, and the output of the second signal sampling module 236 is connected to the input of the second signal processor 210; Two photodetectors 239 are arranged opposite to the second receiving lens 242, the second receiving lens 242 is a convex lens, the second photodetector 239 is located at the focal position of the beam of the second receiving lens 242, and the second dichroic is placed in order in the optical path between the two The filter 240 and the second color filter 241; the second receiving lens 242 is arranged in the cavity of the second dry chamber high pressure and pressure sealing chamber 201, and the second receiving lens 242 is connected to the second dry chamber high pressure and pressure sealing chamber 201 The glass windows are arranged opposite to each other, and the light source plate II and the second photodetector 239 share the same optical axis.
第二通信装置2的发射单元和接收单元共用第二信号处理器210;以及发射单元和接收单元共用一个半球透明密封窗口,LED/LD阵列光源板位于半球中心截面,第二光电探测器239感光面位于半球接收透镜球心位置;LED/LD阵列光源(光源板Ⅱ)和第二光电探测器239共光轴。现有技术主要通过物理隔离来实现LED/LD光源和大面阵光电探测器的隔离,主要采用两个密封舱体在物理上隔离,以收发分离方式实现,这样每个平台需安装两个设备,从而实现通信功能。若光源LED/LD光源和光电探测器采用同一密封舱安装,带来问题是无法保证收发隔离度,本端信号反射过大,无法保证对端信号解调,因此本发明采用半双工+颜色滤光片+窄带滤光片组合方式,解决隔离问题,收发一体可以大大减小系统复杂性和成本,扩大应用范围。The transmitting unit and the receiving unit of the second communication device 2 share the second signal processor 210; and the transmitting unit and the receiving unit share a hemispherical transparent sealing window, the LED/LD array light source board is located in the central section of the hemisphere, and the second photodetector 239 receives light The surface is located at the center of the hemisphere receiving lens; the LED/LD array light source (light source board II) and the second photodetector 239 share the same optical axis. The existing technology mainly realizes the isolation of the LED/LD light source and the large-area array photodetector through physical isolation. It mainly uses two sealed cabins to physically isolate and realize the separation of transceivers, so that each platform needs to install two devices. , so as to realize the communication function. If the light source LED/LD light source and the photoelectric detector are installed in the same sealed compartment, the problem is that the transceiver isolation cannot be guaranteed, the local signal reflection is too large, and the opposite end signal demodulation cannot be guaranteed. Therefore, the present invention adopts half-duplex + color The combination of optical filter and narrow-band optical filter can solve the isolation problem. The integrated transceiver can greatly reduce the complexity and cost of the system and expand the scope of application.
系统要实现有效大角度发射,而LED/LD单光源无法满足要求,且呈现高斯分布方式,无法满足大角度均匀发射要求,因此,本发明提出LED/LD阵列方式实现发射,基于二次配光,合理布局,通过LightTools进行远处光场强度分布和系统链路计算,在保证低功耗、散热和同步情况下,6组LED/LD串联模块为最优解,可实现LD光源≥120°有效发射角度,LED≥150°有效发射角度。The system needs to achieve effective large-angle emission, but the LED/LD single light source cannot meet the requirements, and the Gaussian distribution mode cannot meet the large-angle uniform emission requirements. Therefore, the present invention proposes an LED/LD array method to achieve emission, based on secondary light distribution. , Reasonable layout, through LightTools for distant light field intensity distribution and system link calculation, under the condition of ensuring low power consumption, heat dissipation and synchronization, 6 groups of LED/LD series modules are the optimal solution, which can achieve LD light source ≥ 120° Effective emission angle, LED≥150°effective emission angle.
本实施例基于LED/LD阵列收发一体水下无线光通信装置的工作过程具体如下:The working process of the integrated underwater wireless optical communication device based on the LED/LD array transceiver in this embodiment is as follows:
第一通信装置1中的第一信号处理器110产生并发送六路数字同步信号,分别为第一路信号、第二路信号、第三路信号、第四路信号、第五路信号和第二路信号;The
第一路信号经过第一可调电压放大模块111的放大送入第一并联驱动器112转换,然后进入第一信号同步模块123的多路同步后,被送至第一并联偏压电流驱动模块124,第一并联偏压电流驱动模块124驱动第一组LED/LD串联模块125,使LED/LD的工作电压处于线性范围内,并将数字信号调制到光信号上;第二路信号经过第二可调电压放大模块113的放大送入第二并联驱动器114转换,然后进入第一信号同步模块123的多路同步后,被送至第二并联偏压电流驱动模块126,第二并联偏压电流驱动模块126驱动第二组LED/LD串联模块127,使LED/LD的工作电压处于线性范围内,并将数字信号调制到光信号上;第三路信号经过第三可调电压放大模块115的放大送入第三并联驱动器116转换,然后进入第一信号同步模块123的多路同步后,被送至第三并联偏压电流驱动模块128,第三并联偏压电流驱动模块128驱动第三组LED/LD串联模块129,使LED/LD的工作电压处于线性范围内,并将数字信号调制到光信号上;第四路信号经过第四可调电压放大模块117的放大送入第四并联驱动器118转换,然后进入第一信号同步模块123的多路同步后,被送至第四并联偏压电流驱动模块130,第四并联偏压电流驱动模块130驱动第四组LED/LD串联模块131,使LED/LD的工作电压处于线性范围内,并将数字信号调制到光信号上;第五路信号经过第五可调电压放大模块119的放大送入第五并联驱动器120转换,然后进入第一信号同步模块123的多路同步后,被送至第五并联偏压电流驱动模块132,第五并联偏压电流驱动模块132驱动第五组LED/LD串联模块133,使LED/LD的工作电压处于线性范围内,并将数字信号调制到光信号上;第六路信号经过第六可调电压放大模块121的放大送入第六并联驱动器122转换,然后进入第一信号同步模块123的多路同步后,被送至第六并联偏压电流驱动模块134,第六并联偏压电流驱动模块134驱动第六组LED/LD串联模块135,使LED/LD的工作电压处于线性范围内,并将数字信号调制到光信号上;The first signal is amplified by the first adjustable voltage amplifying module 111 and sent to the first parallel driver 112 for conversion, and then entered into the first
六组LED/LD串联模块(第一组LED/LD串联模块125、第二组LED/LD串联模块127、第三组LED/LD串联模块129、第四组LED/LD串联模块131、第五组LED/LD串联模块133和第六组LED/LD串联模块135)的六路LED/LD信号同步输出,经水下信道传递到第二通信装置2的第二接收透镜242上,第二颜色滤光片241和第二二向色滤光片240放置在第二接收透镜242和第二光电探测器239之间光路上,第二颜色滤光片241和第二二向色滤光片240滤除背景光和杂光后,经第二光电探测器239转换为电信号,电信号分别依次经过第二信号放大模块238的放大、第二信号滤波模块237对噪声的滤除后,被送至第二信号采样模块236,经第二信号采样模块236高速信号采样后,然后经并行高速通信接口进入第二信号处理器210,对输入电信号进行信号解调处理,这样实现单向通信功能。Six groups of LED/LD series modules (the first group of LED/LD series modules 125, the second group of LED/LD series modules 127, the third group of LED/LD series modules 129, the fourth group of LED/LD series modules 131, the fifth group of LED/LD series modules 129, the fifth group of LED/LD series modules The six-channel LED/LD signals of the group LED/LD series module 133 and the sixth group LED/LD series module 135) are synchronously output, and transmitted to the second receiving lens 242 of the second communication device 2 through the underwater channel, and the second color filter The light plate 241 and the second dichroic filter 240 are placed on the optical path between the second receiving lens 242 and the second photodetector 239, and the second color filter 241 and the second dichroic filter 240 filter After the background light and stray light are removed, the second photodetector 239 converts the electrical signal into an electrical signal. The electrical signal is amplified by the second signal amplifying module 238 and filtered by the second signal filtering module 237 in sequence, and then sent to the The second signal sampling module 236, after sampling the high-speed signal by the second signal sampling module 236, enters the second signal processor 210 through the parallel high-speed communication interface, and performs signal demodulation processing on the input electrical signal, thus realizing the one-way communication function.
同时,第二通信装置2中的第二信号处理器210产生并发送六路数字同步信号,分别为第七路信号、第八路信号、第九路信号、第十路信号、第十一路信号和第十二路信号;At the same time, the second signal processor 210 in the second communication device 2 generates and transmits six digital synchronization signals, which are the seventh signal, the eighth signal, the ninth signal, the tenth signal, and the eleventh signal. and the twelfth signal;
第七路信号经过第七可调电压放大模块211的放大送入第七并联驱动器112转换,然后进入第二信号同步模块223的多路同步后,被送至第七并联偏压电流驱动模块224,第七并联偏压电流驱动模块224驱动第七组LED/LD串联模块225,使LED/LD的工作电压处于线性范围内,并将数字信号调制到光信号上;第八路信号经过第八可调电压放大模块213的放大送入第八并联驱动器214转换,然后进入第二信号同步模块223的多路同步后,被送至第八并联偏压电流驱动模块226,第八并联偏压电流驱动模块226驱动第八组LED/LD串联模块227,使LED/LD的工作电压处于线性范围内,并将数字信号调制到光信号上;第九路信号经过第九可调电压放大模块215的放大送入第九并联驱动器转换216,然后进入第二信号同步模块223的多路同步后,被送至第九并联偏压电流驱动模块228,第九并联偏压电流驱动模块228驱动第九组LED/LD串联模块229,使LED/LD的工作电压处于线性范围内,并将数字信号调制到光信号上;第十路信号经过第十可调电压放大模块217的放大送入第十并联驱动器218转换,然后进入第二信号同步模块223的多路同步后,被送至第十并联偏压电流驱动模块230,第十并联偏压电流驱动模块230驱动第十组LED/LD串联模块231,使LED/LD的工作电压处于线性范围内,并将数字信号调制到光信号上;第十一路信号经过第十一可调电压放大模块219的放大送入第十一并联驱动器220转换,然后进入第二信号同步模块223的多路同步后,被送至第十一并联偏压电流驱动模块232,第十一并联偏压电流驱动模块232驱动第十一组LED/LD串联模块233,使LED/LD的工作电压处于线性范围内,并将数字信号调制到光信号上;第十二路信号经过第十二可调电压放大模块221的放大送入第十二并联驱动器222转换,然后进入第二信号同步模块223的多路同步后,被送至第十二并联偏压电流驱动模块234,第十二并联偏压电流驱动模块234驱动第十二组LED/LD串联模块235,使LED/LD的工作电压处于线性范围内,并将数字信号调制到光信号上;The seventh channel signal is amplified by the seventh adjustable voltage amplifying module 211 and sent to the seventh parallel driver 112 for conversion, and then entered into the second
六组LED/LD串联模块(第七组LED/LD串联模块225、第八组LED/LD串联模块227、第九组LED/LD串联模块229、第十组LED/LD串联模块231、第十一组LED/LD串联模块233和第十二组LED/LD串联模块235)的六路LED/LD信号同步输出,经水下信道传递到第一通信装置1的第一接收透镜142上,第一颜色滤光片141和第一二向色滤光片140放置在第一接收透镜142和第一光电探测器139之间光路上,第一颜色滤光片141和第一二向色滤光片140滤除背景光和杂光,经第一光电探测器139转换为电信号,电信号分别依次经过第一信号放大模块138的放大、第一信号滤波模块137噪声滤除和第一信号采样模块136高速信号采样,再经高速通信接口进入第一信号处理器110进行信号解调处理,从而实现双向完整通信功能。Six groups of LED/LD series modules (the seventh group of LED/LD series modules 225, the eighth group of LED/LD series modules 227, the ninth group of LED/LD series modules 229, the tenth group of LED/LD series modules 231, the tenth group of LED/LD series modules 231, the tenth group of LED/LD series modules The six-channel LED/LD signals of a group of LED/LD series modules 233 and the twelfth group of LED/LD series modules 235) are synchronously output, and transmitted to the first receiving lens 142 of the first communication device 1 through the underwater channel. The color filter 141 and the first dichroic filter 140 are placed on the optical path between the first receiving lens 142 and the
本实施例第一通信装置1和第二通信装置2的发射单元中LED/LD阵列通过合理布局,实现大功率发射和大角度光场均匀分布进行同时传输,该技术应用目的是用于提高光通信系统在平台低对准和晃动,浑浊海水、海底勘探或施工过程中造成的扬尘及其他海底生物遮挡环境下,提高光通信链路建立和保持的能力和兼容性,保证系统在水下复杂环境下链路快速建立和稳定保持。In this embodiment, the LED/LD arrays in the transmitting units of the first communication device 1 and the second communication device 2 are reasonably arranged to realize simultaneous transmission of high-power emission and uniform distribution of large-angle light fields. The communication system can improve the ability and compatibility of the establishment and maintenance of optical communication links under the environment of low platform alignment and shaking, turbid seawater, dust caused by seabed exploration or construction, and other seabed biological shelters, and ensure that the system is complex underwater. The link is quickly established and stable in the environment.
第一通信装置1和第二通信装置2的接收单元中光电探测器采用大面阵高灵敏度探测器,通过接收透镜进一步提高接收光信号强度,通过颜色滤光片和二向色滤光片进行背景光和杂光的抑制和消除,提高系统接收灵敏度,提高系统在同一水质条件下的可通信距离和接收视场。The photodetector in the receiving unit of the first communication device 1 and the second communication device 2 adopts a large area array high-sensitivity detector, and the received light signal intensity is further improved through the receiving lens, and the color filter and the dichroic filter are used for the detection. Suppression and elimination of background light and stray light, improve the receiving sensitivity of the system, and improve the communicable distance and receiving field of view of the system under the same water quality conditions.
基于大功率大角度发射和宽视场接收技术的光通信设备即使平台低对准和晃动、浑浊水质、扬尘、局部遮挡等不同环境下,也可以保证系统可以建立链路和保持,从而极大提高水下无线蓝绿光通信系统的适用范围,使得系统在不同海域、湖水下正常使用,同时降低对搭载平台间对准性要求。Optical communication equipment based on high-power, wide-angle emission and wide-field-of-view receiving technology can ensure that the system can establish and maintain links even in different environments such as low platform alignment and shaking, turbid water quality, dust, and partial occlusion, thereby greatly reducing Improve the scope of application of the underwater wireless blue-green optical communication system, so that the system can be used normally in different sea areas and underwater lakes, and at the same time reduce the alignment requirements between the carrying platforms.
第一通信装置1和第二通信装置2的发射单元中的LED/LD阵列光源发射,光源发射功率较大。作为附属技术效果,发射光源还可以用于水下照明和水下平台回收引导光源。The LED/LD array light sources in the emission units of the first communication device 1 and the second communication device 2 emit, and the emission power of the light sources is relatively large. As a secondary technical effect, the emission light source can also be used for underwater lighting and underwater platform recovery guide light source.
最后,需要注意的是,以上列举的仅是本发明的具体实施例。显然,本发明不限于以上实施例,还可以有很多变形,如LED/LD阵列换成LD阵列,单光源功率增大、数量的减小,发射增加光学透镜等。本领域的普通技术人员能从本发明公开的内容中直接导出或联想到的所有变形,均应认为是本发明的保护范围。Finally, it should be noted that the above enumerations are only specific embodiments of the present invention. Obviously, the present invention is not limited to the above embodiments, and many modifications are possible, such as replacing the LED/LD array with an LD array, increasing the power of a single light source, decreasing the number, and increasing the emission of optical lenses. All deformations that those of ordinary skill in the art can directly derive or associate from the disclosed content of the present invention shall be considered as the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111433906.9A CN114362836B (en) | 2021-11-29 | 2021-11-29 | Underwater wireless blue-green light communication method based on LED/LD array transceiver |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111433906.9A CN114362836B (en) | 2021-11-29 | 2021-11-29 | Underwater wireless blue-green light communication method based on LED/LD array transceiver |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114362836A true CN114362836A (en) | 2022-04-15 |
CN114362836B CN114362836B (en) | 2023-01-06 |
Family
ID=81096664
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111433906.9A Active CN114362836B (en) | 2021-11-29 | 2021-11-29 | Underwater wireless blue-green light communication method based on LED/LD array transceiver |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114362836B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104038292A (en) * | 2014-04-04 | 2014-09-10 | 中国科学院上海光学精密机械研究所 | Underwater short-distance high-speed wireless optical information transparent transmission device |
CN106330329A (en) * | 2016-08-22 | 2017-01-11 | 浙江大学 | Wireless optical communication device and method based on direct modulation DPSSL |
CN107302401A (en) * | 2017-06-17 | 2017-10-27 | 浙江大学 | A kind of underwater wireless optical communication apparatus and method based on wavelength-division multiplex technique |
US20200252128A1 (en) * | 2017-05-31 | 2020-08-06 | University Of Science And Technology Of China | Visible light communication transceiver and visible light communication system |
CN112511227A (en) * | 2020-12-08 | 2021-03-16 | 中国科学技术大学 | MIMO visible light communication system based on LED array |
-
2021
- 2021-11-29 CN CN202111433906.9A patent/CN114362836B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104038292A (en) * | 2014-04-04 | 2014-09-10 | 中国科学院上海光学精密机械研究所 | Underwater short-distance high-speed wireless optical information transparent transmission device |
CN106330329A (en) * | 2016-08-22 | 2017-01-11 | 浙江大学 | Wireless optical communication device and method based on direct modulation DPSSL |
US20200252128A1 (en) * | 2017-05-31 | 2020-08-06 | University Of Science And Technology Of China | Visible light communication transceiver and visible light communication system |
CN107302401A (en) * | 2017-06-17 | 2017-10-27 | 浙江大学 | A kind of underwater wireless optical communication apparatus and method based on wavelength-division multiplex technique |
CN112511227A (en) * | 2020-12-08 | 2021-03-16 | 中国科学技术大学 | MIMO visible light communication system based on LED array |
Also Published As
Publication number | Publication date |
---|---|
CN114362836B (en) | 2023-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106059678B (en) | The two-way free space laser communication system of gigabit Ethernet telemetry | |
CN104980225B (en) | A kind of optical module of the interior transparent transmission monitoring signal of band based on amplitude modulation(PAM) | |
CN102882604B (en) | Miniaturization multichannel two-way signaling fiber-optic transfer assembly | |
CN107302401B (en) | Underwater wireless optical communication device and method based on wavelength division multiplexing technology | |
CN105515680B (en) | Underwater Internet of things system based on blue-ray LED visible light communication | |
CN201048380Y (en) | Free atmosphere ultraviolet communication machine | |
GB1597014A (en) | Optical communications transmission arrangements | |
CN116248192A (en) | Multimode high-speed optical communication method, system and device based on underwater mobile platform | |
CN105530055A (en) | An underwater wireless red light communication device and method thereof | |
Góis et al. | Development and validation of blue ray, an optical modem for the MEDUSA class AUVs | |
CN214154519U (en) | Laser optical shutter | |
CN114499696B (en) | Underwater blue-green light high-speed full-duplex communication-in-motion system and method | |
CN114362836B (en) | Underwater wireless blue-green light communication method based on LED/LD array transceiver | |
CN110113110B (en) | Underwater visible light communication device | |
CN110061776B (en) | Lighting, sensor and communication integrated systems and devices for underwater vehicles | |
CN202918300U (en) | Miniaturized multi-path two-way signal optical fiber transmission component | |
US20040213587A1 (en) | Apparatus for optical communication using a large-area primary reflector | |
Leccese et al. | State-of-the art and perspectives of underwater optical wireless communications | |
WO2011026233A1 (en) | Optical communication device, system and method | |
CN217770085U (en) | Underwater full-duplex LED optical imaging MIMO real-time communication system | |
Saksvik et al. | BlueLink: A Bidirectional Optical Modem for High-Speed Underwater Communication | |
CN116886190A (en) | Visible light-based telescopic audio information sending method | |
CN102404051B (en) | Multichannel wireless optical bus device | |
CN113162688B (en) | Visible light two-way communication and positioning system | |
CN116045969B (en) | Near-field visual navigation method for carrier-based aircraft guided by light pulse modulation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |