CN114359590A - NFT image work infringement detection method, device, and computer storage medium - Google Patents
NFT image work infringement detection method, device, and computer storage medium Download PDFInfo
- Publication number
- CN114359590A CN114359590A CN202111479650.5A CN202111479650A CN114359590A CN 114359590 A CN114359590 A CN 114359590A CN 202111479650 A CN202111479650 A CN 202111479650A CN 114359590 A CN114359590 A CN 114359590A
- Authority
- CN
- China
- Prior art keywords
- image
- nft
- detected
- work
- similarity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 claims abstract description 66
- 230000000694 effects Effects 0.000 claims description 16
- 238000004590 computer program Methods 0.000 claims description 7
- 238000012216 screening Methods 0.000 claims description 4
- 238000001914 filtration Methods 0.000 claims description 2
- 230000006870 function Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 238000000605 extraction Methods 0.000 description 6
- 238000012552 review Methods 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 238000013527 convolutional neural network Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- 235000006679 Mentha X verticillata Nutrition 0.000 description 1
- 235000002899 Mentha suaveolens Nutrition 0.000 description 1
- 235000001636 Mentha x rotundifolia Nutrition 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000013441 quality evaluation Methods 0.000 description 1
- 238000007637 random forest analysis Methods 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000011524 similarity measure Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Landscapes
- Image Analysis (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
技术领域technical field
本说明书实施例涉及计算机技术领域,尤其涉及一种NFT图像作品侵权检测方法、装置、及计算机存储介质。The embodiments of this specification relate to the field of computer technology, and in particular, to a method, device, and computer storage medium for detecting infringement of NFT image works.
背景技术Background technique
随着互联网技术的快速发展,大量图像原创作品已经广泛应用于社会的各个领域中,但相应原创作品被侵权的问题也愈发严重,例如,为了在公开的数字艺术品非同质化代币(Non-Fungible Token,NFT)市场中谋利,部分不法分子经常利用图像编辑等手段制作相似的数字图像艺术品来牟取暴利。With the rapid development of Internet technology, a large number of original image works have been widely used in various fields of society, but the problem of infringement of corresponding original works has become more and more serious. (Non-Fungible Token, NFT) market for profit, some criminals often use image editing and other means to make similar digital image artworks to make huge profits.
因此,由于NFT作品侵权而导致的法律纠纷越来越多,原创作者的权益受到了侵害。鉴于此,如何检测NFT作品侵权成为亟需解决的问题。Therefore, there are more and more legal disputes caused by the infringement of NFT works, and the rights and interests of the original authors have been violated. In view of this, how to detect the infringement of NFT works has become an urgent problem to be solved.
发明内容SUMMARY OF THE INVENTION
本说明书实施例提供了一种NFT图像作品侵权检测方法、装置、及计算机存储介质,可以有效检测NFT作品是否侵权。The embodiments of this specification provide a method, a device, and a computer storage medium for detecting infringement of an NFT image work, which can effectively detect whether an NFT work is infringing.
第一方面,本说明书实施例提供了一种非同质代币NFT图像作品侵权检测方法,所述方法包括:In the first aspect, the embodiments of this specification provide a method for detecting infringement of a non-fungible token NFT image work, the method comprising:
将待检测NFT图像作品与图像数据库中的多个图像的图像特征进行对比,得到所述待检测NFT图像作品与所述图像数据库中的图像的相似度;Comparing the image features of the NFT image work to be detected and multiple images in the image database to obtain the similarity between the NFT image work to be detected and the images in the image database;
若所述待检测NFT图像作品与所述图像数据库中的任意一个所述图像的相似度大于预设相似度阈值,则确定所述待检测NFT图像作品侵权。If the similarity between the NFT image work to be detected and any one of the images in the image database is greater than a preset similarity threshold, it is determined that the NFT image work to be detected is infringing.
第二方面,本说明书提供了一种非同质代币NFT图像作品侵权检测装置,所述装置包括:In the second aspect, this specification provides a non-fungible token NFT image work infringement detection device, the device includes:
对比模块,用于将待检测NFT图像作品与图像数据库中的多个图像的图像特征进行对比,得到所述待检测NFT图像作品与所述图像数据库中的图像的相似度;A comparison module, configured to compare the image features of the NFT image work to be detected and the images in the image database to obtain the similarity between the NFT image work to be detected and the images in the image database;
确定模块,用于若所述待检测NFT图像作品与所述图像数据库中的任意一个所述图像的相似度大于预设相似度阈值,则确定所述待检测NFT图像作品侵权。A determining module, configured to determine that the NFT image work to be detected is infringing if the similarity between the NFT image work to be detected and any one of the images in the image database is greater than a preset similarity threshold.
第三方面,说明书实施例提供一种计算机存储介质,所述计算机存储介质存储有多条指令,所述指令适于由处理器加载并执行上述的方法步骤。In a third aspect, the embodiments of the specification provide a computer storage medium, where the computer storage medium stores a plurality of instructions, and the instructions are suitable for being loaded by a processor and executing the above-mentioned method steps.
第四方面,本说明书实施例提供一种电子设备,可包括:处理器和存储器;In a fourth aspect, the embodiments of this specification provide an electronic device, which may include: a processor and a memory;
其中,所述存储器存储有计算机程序,所述计算机程序适于由所述处理器加载并执行上述的方法步骤。Wherein, the memory stores a computer program, and the computer program is adapted to be loaded by the processor and execute the above-mentioned method steps.
本说明书一些实施例提供的技术方案带来的有益效果至少包括:The beneficial effects brought by the technical solutions provided by some embodiments of this specification include at least:
本说明书可以通过将待检测NFT图像作品与图像数据库中的多个图像的图像特征进行对比,得到待检测NFT图像作品与图像数据库中的图像的相似度;若待检测NFT图像作品与所述图像数据库中的任意一个图像的相似度大于预设相似度阈值,则确定待检测NFT图像作品侵权。由此,本说明书一方面利用图像特征比对的方式完成对NFT作品的侵权检测,这样避免由于对NFT作品稍作修改,例如缩放或者编辑少量像素导致无法检测出侵权,提高了侵权检测的准确率。另一方面无需创作者提供大量的证据来证明图像的权属信息,节省了大量的人力物力,避免了人工审核、上传审核结果等繁琐的工作,还提高了侵权检测的效率。This specification can obtain the similarity between the NFT image work to be detected and the images in the image database by comparing the image features of the NFT image work to be detected and the images in the image database; if the NFT image work to be detected is similar to the image If the similarity of any image in the database is greater than the preset similarity threshold, it is determined that the NFT image work to be detected is infringing. Therefore, on the one hand, this specification uses the method of image feature comparison to complete the infringement detection of NFT works, so as to avoid the inability to detect infringement due to slight modifications to the NFT works, such as scaling or editing a small number of pixels, and improve the accuracy of infringement detection. Rate. On the other hand, the creator does not need to provide a lot of evidence to prove the ownership information of the image, which saves a lot of manpower and material resources, avoids tedious work such as manual review and uploading review results, and improves the efficiency of infringement detection.
附图说明Description of drawings
为了更清楚地说明本说明书实施例中的技术方案,下面将对实施例中所需使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本说明书的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present specification, the accompanying drawings required in the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some embodiments of the present specification. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without any creative effort.
图1a为本说明书实施例提供的一个待检测NFT图像作品;Fig. 1a is an NFT image work to be detected provided by the embodiment of this specification;
图1b为本说明书实施例提供的热点新闻中的图像;Fig. 1b is an image in a hot news provided by an embodiment of the present specification;
图2为本说明书实施例提供的一种NFT图像作品侵权检测方法的流程示意图;2 is a schematic flowchart of a method for detecting infringement of an NFT image work provided by an embodiment of the present specification;
图3为本说明书实施例提供的另一种NFT图像作品侵权检测方法的流程示意图;3 is a schematic flowchart of another method for detecting infringement of NFT image works provided by the embodiment of the present specification;
图4a为本说明书实施例提供的又一个待检测NFT图像作品;Fig. 4a is another NFT image work to be detected provided by the embodiment of this specification;
图4b为本说明书实施例提供的又一个待检测NFT图像作品的一个局部特征图;Fig. 4b is a local feature map of another NFT image work to be detected provided by the embodiment of this specification;
图4c为本说明书实施例提供的又一个待检测NFT图像作品的另一个局部特征图;Fig. 4c is another partial feature map of another NFT image work to be detected provided by the embodiment of this specification;
图5为本说明书实施例提供的再一种NFT图像作品侵权检测方法的流程示意图;5 is a schematic flowchart of yet another method for detecting infringement of an NFT image work provided by an embodiment of the present specification;
图6为本说明书实施例提供的一种NFT图像作品侵权检测方法的应用场景图;6 is an application scenario diagram of a method for detecting infringement of an NFT image work provided by an embodiment of the present specification;
图7为本说明书实施例提供的一种NFT图像作品侵权检测装置的结构示意图;7 is a schematic structural diagram of an NFT image work infringement detection device provided by an embodiment of the present specification;
图8为本说明书实施例提供的一种电子设备的结构示意图。FIG. 8 is a schematic structural diagram of an electronic device according to an embodiment of the present specification.
具体实施方式Detailed ways
下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本说明书相一致的所有实施方式。相反,它们仅是如所附权利要求书中所详述的、本说明书的一些方面相一致的装置和方法的例子。Where the following description refers to the drawings, the same numerals in different drawings refer to the same or similar elements unless otherwise indicated. The implementations described in the illustrative examples below are not intended to represent all implementations consistent with this specification. Rather, they are merely examples of apparatus and methods consistent with some aspects of this specification, as recited in the appended claims.
在本说明书的描述中,需要理解的是,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本说明书中的具体含义。此外,在本说明书的描述中,除非另有说明,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。In the description of this specification, it should be understood that the terms "first", "second" and the like are used for descriptive purposes only, and cannot be construed as indicating or implying relative importance. For those of ordinary skill in the art, the specific meanings of the above terms in this specification can be understood in specific situations. Also, in the description of this specification, unless otherwise specified, "a plurality" means two or more. "And/or", which describes the association relationship of the associated objects, means that there can be three kinds of relationships, for example, A and/or B, which can mean that A exists alone, A and B exist at the same time, and B exists alone. The character "/" generally indicates that the associated objects are an "or" relationship.
随着区块链技术的快速发展,基于区块链基础设施之上的数字艺术品NFT交易等也迎来了发展的契机。具体地,NFT是一种被称为区块链数位账本上的数据单位,每个NFT可以代表一个独特的数码资料。由于其不能互换,非同质化代币可以代表数位文件,如画作、声音、影片、游戏中的项目或其他形式的创意作品。进一步,NFT可以被用于所有权的验证,并允许NFT表征的NFT图像作品在数字市场上交易和出售。With the rapid development of blockchain technology, digital artwork NFT transactions based on blockchain infrastructure have also ushered in an opportunity for development. Specifically, NFT is a data unit called a blockchain digital ledger, and each NFT can represent a unique digital data. Since they are not interchangeable, non-fungible tokens can represent digital files such as paintings, sounds, videos, in-game items, or other forms of creative work. Further, NFTs can be used for verification of ownership and allow NFT-represented NFT image works to be traded and sold on digital marketplaces.
可能地,NFT图像作品交易平台可以包括用户上传的图像作品以及该图像作品对应的NFT。例如,OpenSea是目前全球最大的综合NFT图像作品交易平台,用户可以在平台上铸造、展示、交易、以及拍卖NFT。Possibly, the NFT image work trading platform may include the image work uploaded by the user and the NFT corresponding to the image work. For example, OpenSea is currently the world's largest comprehensive NFT image work trading platform. Users can mint, display, trade, and auction NFTs on the platform.
如图1a所示的NFT图像作品所有权持有者为小王,小王可以在NFT图像作品交易平台上通过NFT对其进行交易,即将该NFT图像作品的所有权卖给其他人。如图1b所示的热点新闻中的图像其所有权持有者为小张,观察图1a和图1b可以发现,两幅图像中的内容相同,它们之间的区别仅在于图1a是在图1b的图像作品上添加了虚拟边框,相应地,图1a和图1b生成的NFT不同。因此,若该NFT图像作品的真实持有者为小张,则小王在NFT图像作品交易平台对该NFT作品进行交易时就侵犯了小张的所有权。因此,本说明书的提出了针对NFT图像作品交易平台上的NFT图像作品进行侵权检测的方法,以减少NFT图像作品交易平台上出现的侵权纠纷。As shown in Figure 1a, the owner of the ownership of the NFT image work is Xiao Wang, and Xiao Wang can trade it through NFT on the NFT image work trading platform, that is, sell the ownership of the NFT image work to others. As shown in Figure 1b, the image in the hot news is owned by Xiaozhang. Looking at Figure 1a and Figure 1b, it can be found that the content in the two images is the same, and the only difference between them is that Figure 1a is in Figure 1b. A virtual border is added to the image works of , and accordingly, the NFTs generated in Figure 1a and Figure 1b are different. Therefore, if the real holder of the NFT image work is Xiao Zhang, then Xiao Wang infringes the ownership of Xiao Zhang when he trades the NFT work on the NFT image work trading platform. Therefore, this specification proposes a method for detecting infringement of NFT image works on the NFT image work trading platform, so as to reduce infringement disputes on the NFT image work trading platform.
接下来结合图1a和图1b介绍的NFT对应的NFT图像作品来介绍本说明书一个或多个实施例提供的NFT图像作品侵权检测方法。该NFT图像作品侵权检测方法用于非同质代币NFT图像作品交易平台。Next, the method for detecting infringement of NFT image works provided by one or more embodiments of this specification will be introduced in conjunction with the NFT image works corresponding to the NFTs described in FIG. 1a and FIG. 1b. The NFT image work infringement detection method is used for the non-fungible token NFT image work trading platform.
在本说明书一个或多个实施例中,图2所示,提供了一种NFT图像作品侵权检测方法的流程示意图。如图2所示,该NFT图像作品侵权检测方法可以包括如下步骤:In one or more embodiments of this specification, as shown in FIG. 2 , a schematic flowchart of a method for detecting infringement of an NFT image work is provided. As shown in Figure 2, the method for detecting infringement of NFT image works may include the following steps:
步骤202,将待检测NFT图像作品与图像数据库中的多个图像的图像特征进行对比,得到待检测NFT图像作品与图像数据库中的图像的相似度。Step 202: Compare the image features of the NFT image work to be detected and the images in the image database to obtain the similarity between the NFT image work to be detected and the images in the image database.
其中,本说明书实施例中的待检测NFT图像作品为NFT作品。Wherein, the NFT image work to be detected in the embodiment of this specification is an NFT work.
可选地,待检测NFT图像作品为NFT图像作品交易平台中的NFT图像作品。由于NFT图像作品交易平台上的NFT图像作品的数量庞大,为了减小侵权检测的数据量,进一步地,待检测NFT图像作品可以是NFT图像作品交易平台中活跃度高于第一预设阈值的NFT图像作品。其中,活跃度可以通过NFT图像作品的交易次数、浏览次数等表示。第一预设阈值例如可以是40%,也即是说待检测NFT图像作品为NFT图像作品交易平台中交易量排前40%的NFT图像作品,或者待检测图像为NFT图像作品交易平台中浏览量排前40%的NFT图像作品等。Optionally, the NFT image work to be detected is an NFT image work in the NFT image work trading platform. Due to the huge number of NFT image works on the NFT image works trading platform, in order to reduce the amount of data for infringement detection, further, the NFT image works to be detected may be those whose activity level is higher than the first preset threshold in the NFT image works trading platform. NFT image works. Among them, the activity can be represented by the number of transactions and the number of browsing of NFT image works. The first preset threshold can be, for example, 40%, that is to say, the NFT image works to be detected are the NFT image works with the top 40% transaction volume in the NFT image works trading platform, or the images to be detected are browsed on the NFT image works trading platform. The top 40% of NFT image works, etc.
可选地,待检测NFT图像作品为待上传至NFT图像作品交易平台的NFT图像作品。若检测得到待检测NFT图像作品未侵权其他图像作品,即待检测NFT图像作品与图像数据库中的任意一个图像的相似度均小于或等于预设相似度阈值,则允许将其上传至NFT图像作品交易平台。Optionally, the NFT image work to be detected is an NFT image work to be uploaded to the NFT image work trading platform. If it is detected that the NFT image work to be detected does not infringe other image works, that is, the similarity between the NFT image work to be detected and any image in the image database is less than or equal to the preset similarity threshold, it is allowed to upload it to the NFT image work trading platform.
具体地,图像数据库中的图像为热点事件信息中的图像,热点事件信息为浏览量大于第二预设阈值的事件信息。第二预设阈值用为预先设定的浏览量。例如,第二预设阈值为10万。具体地,热点事件信息可以是各网站上浏览量大于第二预设阈值的事件。具体可通过网络爬虫的方式获取各网站上的数据。可以知道的是,热点事件通常具备时效性,随着时间的推移,事件的热度可能会降低。因此,图像数据库中的图像可以每隔一段时间更新一次。例如但不限于每周更新一次,或者每月更新一次,或者每三个月更新一次等。那么热点事件的浏览量即为这一段时间内的总浏览量。具体地,热点事件可以包括以文字和图片形式表达的热点新闻、以视频形式传递的热点视频、以音频附加图片形式播报的热点音频等。Specifically, the images in the image database are images in the hotspot event information, and the hotspot event information is event information whose pageviews are greater than the second preset threshold. The second preset threshold is used as a preset pageview amount. For example, the second preset threshold is 100,000. Specifically, the hot event information may be events whose pageviews on each website are greater than the second preset threshold. Specifically, the data on each website can be obtained by means of a web crawler. It can be known that hot events are usually time-sensitive, and the popularity of events may decrease over time. Therefore, the images in the image database can be updated every so often. For example, but not limited to, it is updated once a week, or once a month, or once every three months, etc. Then the number of pageviews of the hot event is the total number of pageviews in this period of time. Specifically, the hot event may include hot news expressed in the form of text and pictures, hot video delivered in the form of video, hot audio broadcast in the form of audio and pictures, and the like.
具体地,本说明书实施例可以采用结构相似性(Structural Similarity,SSIM)、余弦相似度、直方图、以及归一化互信息等技术手段衡量待检测NFT图像作品与图像数据库中各个图像之间的相似度。Specifically, the embodiments of this specification can use technical means such as structural similarity (Structural Similarity, SSIM), cosine similarity, histogram, and normalized mutual information to measure the relationship between the NFT image work to be detected and each image in the image database. similarity.
具体地,结构相似性是一种全参考的图像质量评价指标,其可以分别从亮度、对比度、结构三个方面度量图像相似性。在实际应用中,可以利用滑动窗将图像分块,令分块总数为N,考虑到窗口形状对分块的影响,采用高斯加权计算每一窗口的均值、方差以及协方差,然后计算对应块的结构相似度SSIM,最后将平均值作为两图像的结构相似性度量,即平均结构相似性SSIM。余弦相似度是把图像表示成一个向量,通过计算向量之间的余弦距离来表征待检测NFT图像作品与图像数据库中各个图像之间的相似度。直方图可以描述一幅图像中颜色的全局分布,进而可以通过比较待检测NFT图像作品与图像数据库中各个图像之间颜色分布确定它们之间的相似度。归一化互信息可以理解为是待检测NFT图像作品中包含的图像数据库中的图像的信息量,它的值越大代表图像之间的相似性越高,它在两幅图像的灰度级数相似的情况下有良好的配准精度,较高的可靠性。Specifically, structural similarity is a full-reference image quality evaluation index, which can measure image similarity from three aspects: brightness, contrast, and structure. In practical applications, a sliding window can be used to divide the image into blocks, so that the total number of blocks is N. Considering the influence of the shape of the window on the blocks, Gaussian weighting is used to calculate the mean, variance and covariance of each window, and then the corresponding block is calculated. The structural similarity SSIM of , and finally the average value is used as the structural similarity measure of the two images, that is, the average structural similarity SSIM. Cosine similarity is to represent the image as a vector, and to represent the similarity between the NFT image work to be detected and each image in the image database by calculating the cosine distance between the vectors. The histogram can describe the global distribution of colors in an image, and then the similarity between them can be determined by comparing the color distribution between the NFT image work to be detected and each image in the image database. The normalized mutual information can be understood as the information amount of the images in the image database contained in the NFT image work to be detected. The larger its value is, the higher the similarity between the images is. In the case of similar numbers, it has good registration accuracy and high reliability.
步骤204,若待检测NFT图像作品与图像数据库中的任意一个图像的相似度大于预设相似度阈值,则确定待检测NFT图像作品侵权。
其中,预设相似度阈值可以理解为用于确定待检测NFT图像作品是否存在侵权风险的阈值。例如,相似度的取值范围处于0~1之间,预设相似度阈值可以设定为0.7。在待检测NFT图像作品与图像数据库中的任意一个图像的相似度大于0.7的情况下,可以确定待检测NFT图像作品侵权了图像数据库中的图像。The preset similarity threshold can be understood as a threshold used to determine whether the NFT image work to be detected has a risk of infringement. For example, the value range of the similarity is between 0 and 1, and the preset similarity threshold may be set to 0.7. In the case where the similarity between the NFT image work to be detected and any image in the image database is greater than 0.7, it can be determined that the NFT image work to be detected infringes the images in the image database.
进一步地,为了固定待检测NFT图像作品侵权的证据,在本说明书实施例中确定待检测NFT图像作品侵权之后,还可以将待检测NFT图像作品与侵权对象(即图像数据库中与待检测NFT图像作品相似度大于预设相似度阈值的图像),以及两者之间具体的相似度上传至区块链,以利用区块链不可篡改的特性完成证据固定,防止他人修改检测结果。具体地,若待检测NFT图像作品为待上传至NFT图像作品交易平台的NFT图像作品,若待检测NFT图像作品与图像数据库中的任意一个图像的相似度小于或等于预设相似度阈值,即待检测NFT图像作品未侵权图像数据库中的图像作品,则本说明书实施例可以将待检测NFT图像作品上传至NFT图像作品交易平台。例如,若图像数据库中不存在任意一个图像与用户的NFT图像作品之间的相似度大于预设相似度阈值0.7,也就是图像数据库中的每一个图像均与待上传至NFT图像作品交易平台的NFT图像作品之间的相似度小于或等于预设相似度阈值,则可以确定该待上传至NFT图像作品交易平台的NFT图像作品不存在侵权行为,NFT图像作品交易平台可以接收该NFT图像作品,用户可以在NFT图像作品交易平台上利用该NFT图像作品对应的NFT在区块链上对其进行交易或拍卖。Further, in order to fix the evidence of infringement of the NFT image work to be detected, after determining the infringement of the NFT image work to be detected in the embodiment of this specification, the NFT image work to be detected and the infringing object (that is, the image database and the NFT image to be detected) can also be combined. The similarity of the work is greater than the preset similarity threshold), and the specific similarity between the two is uploaded to the blockchain, so as to use the non-tamperable feature of the blockchain to complete the evidence fixation and prevent others from modifying the detection results. Specifically, if the NFT image work to be detected is an NFT image work to be uploaded to the NFT image work trading platform, if the similarity between the NFT image work to be detected and any image in the image database is less than or equal to the preset similarity threshold, that is, If the NFT image work to be detected does not infringe the image work in the image database, the embodiment of this specification can upload the NFT image work to be detected to the NFT image work trading platform. For example, if there is no image in the image database and the similarity between the user's NFT image work is greater than the preset similarity threshold of 0.7, that is, each image in the image database is related to the image to be uploaded to the NFT image work trading platform. If the similarity between NFT image works is less than or equal to the preset similarity threshold, it can be determined that there is no infringement of the NFT image work to be uploaded to the NFT image work trading platform, and the NFT image work trading platform can receive the NFT image work, Users can use the NFT corresponding to the NFT image work on the NFT image work trading platform to trade or auction it on the blockchain.
本说明书实施例可以通过将待检测NFT图像作品与图像数据库中的多个图像的图像特征进行对比,得到待检测NFT图像作品与图像数据库中的图像的相似度;若待检测NFT图像作品与所述图像数据库中的任意一个图像的相似度大于预设相似度阈值,则确定待检测NFT图像作品侵权。由此,本说明书实施例一方面利用图像特征比对的方式完成对NFT作品的侵权检测,这样避免由于对NFT作品稍作修改,例如缩放或者编辑少量像素导致检侵权测失效,提高了侵权检测的准确率。另一方面无需创作者提供大量的证据来证明图像的权属信息,节省了大量的人力物力,避免了人工审核、上传审核结果等繁琐的工作,还提高了侵权检测的效率。In the embodiment of this specification, the similarity between the NFT image work to be detected and the images in the image database can be obtained by comparing the image features of the NFT image work to be detected and the images in the image database; If the similarity of any image in the image database is greater than the preset similarity threshold, it is determined that the NFT image work to be detected is infringing. Therefore, on the one hand, the embodiments of this specification use the method of image feature comparison to complete the infringement detection of NFT works, so as to avoid the failure of infringement detection due to slight modifications to the NFT works, such as scaling or editing a small number of pixels, and improve the infringement detection. 's accuracy. On the other hand, the creator does not need to provide a lot of evidence to prove the ownership information of the image, which saves a lot of manpower and material resources, avoids tedious work such as manual review and uploading review results, and improves the efficiency of infringement detection.
在本说明书实施例中的图像特征可以包括全局特征和局部特征。图3所示,提供了一种NFT图像作品侵权检测方法的流程示意图。如图3所示,该NFT图像作品侵权检测方法可以包括如下步骤:The image features in the embodiments of this specification may include global features and local features. As shown in FIG. 3 , a schematic flowchart of a method for detecting infringement of an NFT image work is provided. As shown in Figure 3, the method for detecting infringement of NFT image works may include the following steps:
步骤302,提取待检测NFT图像作品的全局特征及局部特征。
可以理解的是,本说明书实施例中图像的全局特征是指可以表示整幅图像上的特征,用于描述图像的颜色和形状等整体特征。局部特征是指图像中一些局部出现的特征,这个局部是指一些能够稳定出现并且具有较好可区分性的边缘或角点等特征。It can be understood that, the global features of an image in the embodiments of the present specification refer to features that can represent the entire image, and are used to describe overall features such as color and shape of the image. Local features refer to some features that appear locally in the image, and this local refers to some features such as edges or corners that can appear stably and have better distinguishability.
具体地,可以提取待检测NFT图像作品中的颜色特征、纹理特征、以及形状特征,作为待检测NFT图像作品的全局特征;可以提取待检测NFT图像作品的边缘、角点、线、曲线、以及预设属性区域,确定待检测NFT图像作品的局部特征。其中,预设属性区域用于表示预先设定的每类NFT图像作品中特有的区域,例如,风景类作品中,变化缓慢的天空。Specifically, color features, texture features, and shape features in the NFT image work to be detected can be extracted as the global features of the NFT image work to be detected; edges, corners, lines, curves, and The preset attribute area determines the local features of the NFT image work to be detected. The preset attribute area is used to represent a preset specific area of each type of NFT image work, for example, a slowly changing sky in a landscape work.
参见图4a-图4c所示的待检测NFT图像作品,可以理解的是,可以通过图4a提取待检测NFT图像作品的全局特征,例如,行人衣服的颜色、天空的颜色、以及交通灯的形状等。图4b为提取待检测NFT图像作品的边缘、角点等局部特征的图像,进一步地,通过图4b可以观察到行人的姿态信息。图4c为对待检测NFT图像作品划分网格后的图像,具体地,可以对网格图像中的某些区域(例如,云朵的边缘区域、行人各运动关节区域)进行特征提取,最后将多个特征融合起来作为最终局部特征。Referring to the NFT image works to be detected shown in Figures 4a-4c, it can be understood that the global features of the NFT image works to be detected can be extracted through Figure 4a, for example, the color of pedestrians' clothes, the color of the sky, and the shape of traffic lights Wait. Figure 4b is an image for extracting local features such as edges and corners of the NFT image work to be detected. Further, the posture information of pedestrians can be observed through Figure 4b. Figure 4c is the image after the NFT image work to be detected is divided into grids. Specifically, feature extraction can be performed on certain areas in the grid image (for example, the edge area of clouds and the movement joint areas of pedestrians), and finally a plurality of The features are fused together as final local features.
步骤304,将待检测NFT图像作品的全局特征及局部特征,分别与图像数据库中的多个图像的全局特征及局部特征对比,得到待检测NFT图像作品与图像数据库中的图像的相似度。Step 304: Compare the global features and local features of the NFT image work to be detected with the global features and local features of multiple images in the image database to obtain the similarity between the NFT image work to be detected and the images in the image database.
具体地,本说明书可以采用深度卷积神经网络(Convolutional NeuralNetworks,CNN)通过对全局上下文环境和局部精细特征检测进行建模,即采用不同的预训练策略对不同类别的NFT图像作品进行有效的全局特征预训练;并通过循环网络对不同类别的NFT图像作品进一步提取细化的特征。这样就可以将待检测NFT图像作品输入深度卷积神经网络输出待检测NFT图像作品与图像数据库中的图像的相似度,以提高比对的准确性。Specifically, this specification can use a deep convolutional neural network (Convolutional Neural Networks, CNN) to model the global context environment and local fine feature detection, that is, use different pre-training strategies to perform effective global operations on different types of NFT image works. Feature pre-training; and further extract refined features for different categories of NFT image works through a recurrent network. In this way, the NFT image work to be detected can be input into the deep convolutional neural network to output the similarity between the NFT image work to be detected and the image in the image database, so as to improve the accuracy of comparison.
步骤306,若待检测NFT图像作品与图像数据库中的任意一个图像的相似度大于预设相似度阈值,则确定待检测NFT图像作品侵权。
具体地,步骤306与步骤204一致,此处不再赘述。Specifically,
由此,本说明书中的实施例可以结合待检测NFT图像作品和图像数据库中各图像的全局上下文信息与局部精细检测特征来准确计算图像之间的相似度;还可以基于深度卷积神经网络的循环结构进行反复迭代以过滤噪声信息的影响,从而提高待检测NFT图像作品的检测精度。Therefore, the embodiments in this specification can accurately calculate the similarity between images by combining the global context information and local fine detection features of the NFT image work to be detected and each image in the image database; it can also be based on the deep convolutional neural network. The loop structure is repeatedly iterated to filter the influence of noise information, thereby improving the detection accuracy of the NFT image work to be detected.
本说明书实施例中,图5所示,提供了一种NFT图像作品侵权检测方法的流程示意图。如图5所示,该NFT图像作品侵权检测方法可以包括如下步骤:In the embodiment of this specification, as shown in FIG. 5 , a schematic flowchart of a method for detecting infringement of an NFT image work is provided. As shown in Figure 5, the method for detecting infringement of NFT image works may include the following steps:
步骤502,获取热点事件信息。
具体地,热点事件信息为浏览量大于第二预设阈值的事件信息。第二预设阈值用为预先设定的浏览量。例如,第二预设阈值为10万。具体地,热点事件信息可以是各网站上浏览量大于第二预设阈值的事件。具体可通过网络爬虫的方式获取各网站上的数据。可以知道的是,热点事件通常具备时效性,随着时间的推移,事件的热度可能会降低。因此,图像数据库中的图像可以每隔一段时间更新一次。例如但不限于每周更新一次,或者每月更新一次,或者每三个月更新一次等。那么热点事件的浏览量即为这一段时间内的总浏览量。Specifically, the hot event information is event information with a pageview greater than a second preset threshold. The second preset threshold is used as a preset pageview amount. For example, the second preset threshold is 100,000. Specifically, the hot event information may be events whose pageviews on each website are greater than the second preset threshold. Specifically, the data on each website can be obtained by means of a web crawler. It can be known that hot events are usually time-sensitive, and the popularity of events may decrease over time. Therefore, the images in the image database can be updated every so often. For example, but not limited to, it is updated once a week, or once a month, or once every three months, etc. Then the number of pageviews of the hot event is the total number of pageviews in this period of time.
进一步地,本说明书实施例还可以提取热点事件信息的权属信息,并将热点事件信息的权属信息保存在权属数据库中。其中,权属数据库可看作是特定的存储空间,专门用于存储热点事件的权属信息。Further, in the embodiment of the present specification, the ownership information of the hot event information can also be extracted, and the ownership information of the hot event information can be stored in the ownership database. Among them, the ownership database can be regarded as a specific storage space, which is specially used to store the ownership information of hot events.
其中,权属信息用于表示热点事件信息对应的创作者信息或创作机构信息,例如,热点新闻中图像的作者信息(如作者的姓名、联系方式、通信地址等信息)。The ownership information is used to represent creator information or creation organization information corresponding to the hot event information, for example, the author information of the images in the hot news (such as the author's name, contact information, mailing address, etc.).
步骤504,对热点事件中的文字信息进行语义分析,得到热点事件的语义信息。
可以理解的是,本说明书实施例可以通过语义分析对热点事件中的文字信息进行文本分类、情感分析等技术手段,确定热点事件的类别、标签、关键词等。It can be understood that, in the embodiment of this specification, technical means such as text classification and sentiment analysis can be performed on the text information in the hot event through semantic analysis, so as to determine the category, label, keyword, etc. of the hot event.
具体地,本说明书可以通过文本预处理、文本特征提取、以及传统的机器学习方法(例如贝叶斯,支持向量机、随机森林模型等)对热点事件进行文本分类,得到热点事件的类别、标签、关键词等。Specifically, this specification can perform text classification on hot events through text preprocessing, text feature extraction, and traditional machine learning methods (such as Bayesian, support vector machine, random forest model, etc.) to obtain the category and label of hot events. , keywords, etc.
具体地,本说明书可以基于预设的情感词典的方法,先对热点事件中的文本信息进行分词和停用词处理等预处理,再利用情感词典对文本信息进行字符串匹配,从而挖掘正面和负面信息。例如,通过情感分析可以挖掘热点事件在各个维度的评价信息,从而明确图像的类别、标签、关键词。比如环境保护、环境污染、民生、战争、疫情防控等多个维度。Specifically, based on the preset sentiment dictionary method, this specification can first perform preprocessing such as word segmentation and stop word processing on the text information in hot events, and then use the sentiment dictionary to perform string matching on the text information, so as to mine positive and negative Negative information. For example, sentiment analysis can mine the evaluation information of hot events in various dimensions, so as to clarify the category, label, and keyword of the image. Such as environmental protection, environmental pollution, people's livelihood, war, epidemic prevention and control and other dimensions.
可以理解的是,情感词典可以基于微博、新闻、论坛、知网等数据来源构建的,当然也可以通过现有的语料来训练情感词典。可能地,本说明书还可以对热点事件中的音频信息和/或视频信息进行语义分析,得到热点事件的语义信息。It is understandable that the sentiment dictionary can be constructed based on data sources such as Weibo, news, forums, HowNet, etc. Of course, the sentiment dictionary can also be trained by existing corpus. Possibly, the present specification can also perform semantic analysis on the audio information and/or video information in the hot event to obtain the semantic information of the hot event.
具体地,本说明书可以将热点事件中包含的视频信息和/或音频信息转换成文本信息,再对文本信息进行语义分析得到热点事件的语义信息,即热点事件的类别、标签、关键词等信息。Specifically, this specification can convert the video information and/or audio information contained in the hot event into text information, and then perform semantic analysis on the text information to obtain the semantic information of the hot event, that is, the category, label, keyword and other information of the hot event. .
步骤506,将热点事件的语义信息保存在语义数据库中,并将热点事件的图像信息保存在图像数据库中。Step 506: Save the semantic information of the hot event in the semantic database, and save the image information of the hot event in the image database.
具体地,本说明书实施例可以将提取到的热点事件的类别、标签、关键词等信息保存到语义数据库,并将该热点事件中的图像信息保存到图像数据库中,以形成一一对应的关系。其中,语义数据库可看作是特定的存储空间,专门用于存储热点事件的语义信息。Specifically, in the embodiment of the present specification, information such as the category, label, and keyword of the extracted hot event can be saved in the semantic database, and the image information in the hot event can be saved in the image database, so as to form a one-to-one correspondence relationship . Among them, the semantic database can be regarded as a specific storage space, which is specially used to store the semantic information of hot events.
相应地,本说明书实施例还可以基于语义信息相似度从NFT图像作品交易平台中筛选待检测NFT图像作品,以缩小待检测NFT图像作品范围减少后续计算资源。Correspondingly, the embodiments of the present specification can also filter the NFT image works to be detected from the NFT image works trading platform based on the similarity of semantic information, so as to narrow the scope of the NFT image works to be detected and reduce subsequent computing resources.
可能地,本说明书实施例可以确定NFT图像作品交易平台中活跃度高于第一预设阈值的第一图像集;进一步地,确定第一图像集中每一个图像与语义数据库中的语义信息相似度;并从第一图像集中筛选与语义数据库中的语义信息相似度大于预设语义相似度阈值的第二图像集,第二图像集可以包括至少一个候选图像,待检测NFT图像作品为第二图像集中的任意一个候选图像。Possibly, the embodiment of this specification can determine the first image set whose activity is higher than the first preset threshold in the NFT image work trading platform; further, determine the similarity between each image in the first image set and the semantic information in the semantic database ; And from the first image set, the second image set whose similarity with the semantic information in the semantic database is greater than the preset semantic similarity threshold, the second image set can include at least one candidate image, and the NFT image work to be detected is the second image any candidate image in the set.
例如,可以过滤掉NFT图像作品交易平台中活跃度低于40%(第一预设阈值)的图像得到第一图像集,并基于第一图像集中各NFT图像作品对应的类别、标签、或关键词等信息确定其与语义数据库中各热点事件的类别、标签、或关键词等信息的相似度,以从第一图像集中筛选与语义数据库中的语义信息相似度大于60%(预设语义相似度阈值)的第二图像集。这样就可以基于该第二图像集中的NFT图像作品进行检测,以进一步缩小检测NFT图像作品范围减少后续计算资源。For example, images with an activity level lower than 40% (the first preset threshold) in the NFT image work trading platform can be filtered to obtain a first image set, and based on the category, label, or key corresponding to each NFT image work in the first image set Words and other information determine the similarity with the categories, labels, or keywords of each hot event in the semantic database, so that the similarity with the semantic information in the semantic database is greater than 60% (preset semantic similarity) from the first image set. degree threshold) of the second image set. In this way, detection can be performed based on the NFT image works in the second image set, so as to further narrow the scope of detecting the NFT image works and reduce subsequent computing resources.
不限于上述先确定NFT图像作品交易平台活跃度高于第一预设阈值的第一图像集,再从第一图像集中筛选与语义数据库中的语义信息相似度大于预设语义相似度阈值的第二图像集,再具体实现中还可以先确定NFT图像作品交易平台与语义数据库中的语义信息相似度大于预设语义相似度阈值的第二图像集,再从第二图像集中筛选出活跃度高于第一预设阈值的第一图像集,本说明书实施例对此不作限定。It is not limited to the above-mentioned first image set whose activity degree of the NFT image work trading platform is higher than the first preset threshold, and then the first image set whose similarity with the semantic information in the semantic database is greater than the preset semantic similarity threshold is selected from the first image set. Second image set. In the specific implementation, it is also possible to first determine the second image set whose semantic information similarity between the NFT image work trading platform and the semantic database is greater than the preset semantic similarity threshold, and then filter out the second image set with high activity. The first image set with the first preset threshold is not limited in this embodiment of the present specification.
可能地,本说明书实施例还可以将第二图像集中每一个图像与语义数据库中的语义信息相似度上传至区块链,以完成过程证据的固定。Possibly, the embodiment of the present specification may also upload the similarity between each image in the second image set and the semantic information in the semantic database to the blockchain, so as to complete the fixation of the process evidence.
步骤508,将待检测NFT图像作品与图像数据库中的多个图像的图像特征进行对比,得到待检测NFT图像作品与图像数据库中的图像的相似度。Step 508: Compare the image features of the NFT image work to be detected and the images in the image database to obtain the similarity between the NFT image work to be detected and the images in the image database.
具体地,步骤508与步骤202一致,此处不再赘述。Specifically,
步骤510,若待检测NFT图像作品与图像数据库中的任意一个图像的相似度大于预设相似度阈值,则确定待检测NFT图像作品侵权。Step 510: If the similarity between the NFT image work to be detected and any image in the image database is greater than the preset similarity threshold, it is determined that the NFT image work to be detected is infringing.
具体地,步骤510与步骤204一致,此处不再赘述。Specifically,
进一步地,在确定待检测图像侵权之后,本说明书实施例提供的NFT图像作品侵权检测方法还可以通知版权者(被侵权方),以维护版权者的权益。具体如下:Further, after it is determined that the image to be detected is infringed, the NFT image work infringement detection method provided by the embodiments of this specification can also notify the copyright owner (infringed party) to protect the rights and interests of the copyright owner. details as follows:
步骤512,根据权属数据库确定与待检测NFT图像作品的相似度大于预设相似度阈值的图像对应的权属信息。Step 512: Determine, according to the ownership database, ownership information corresponding to the image whose similarity of the NFT image work to be detected is greater than a preset similarity threshold.
其中,本说明书实施例中的权属数据库用于表示保存热点事件中图像信息对应的权属信息的数据库。Wherein, the ownership database in the embodiment of this specification is used to represent a database that stores the ownership information corresponding to the image information in the hot event.
可以理解的是,在待检测NFT图像作品与图像数据库中热点事件对应的相似度大于预设相似度阈值的情况下,可以利用权属数据库中存储的权属信息确定图像数据库中热点事件对应的权属信息,即作者的姓名、联系方式、通信地址等信息。It can be understood that in the case that the similarity corresponding to the NFT image work to be detected and the hot event in the image database is greater than the preset similarity threshold, the ownership information stored in the ownership database can be used to determine the corresponding hot event in the image database. Ownership information, that is, the author's name, contact information, mailing address and other information.
步骤514,基于权属信息向与待检测NFT图像作品的相似度大于预设相似度阈值的图像的版权者发送通知消息。
具体地,本说明书实施例在待检测NFT图像作品与图像数据库中热点事件对应的相似度大于预设相似度阈值的情况下,可以将图像数据库中热点事件对应的NFT图像作品的权属信息发送给NFT图像作品交易平台中待检测NFT图像作品的版权所有者,以提醒该版权所有者其作品可能存在侵权问题。Specifically, in the embodiment of this specification, when the similarity corresponding to the NFT image work to be detected and the hot event in the image database is greater than the preset similarity threshold, the ownership information of the NFT image work corresponding to the hot event in the image database can be sent. To the copyright owner of the NFT image work to be detected in the NFT image work trading platform to remind the copyright owner that there may be infringement problems in his work.
可能地,本说明书实施例还可以将待检测NFT图像作品的侵权细节,即相似的全局图像特征和/或局部图像特征发送给该待检测NFT图像作品的版权所有者。Possibly, the embodiments of this specification may also send the infringement details of the NFT image work to be detected, that is, similar global image features and/or local image features, to the copyright owner of the NFT image work to be detected.
进一步地,本说明书实施例中的NFT图像作品交易平台还可以提示已存储在区块链中的待检测NFT图像作品的版权所有者确认其NFT图像作品是否存在侵权行为,并提示其相应的法律风险、建议下架。针对未上传到区块链的待检测NFT图像作品,本说明书实施例中的NFT图像作品交易平台可以提示待检测NFT图像作品的版权所有者其NFT图像作品存在侵权风险、并拒绝该待检测NFT图像作品上传到NFT图像作品交易平台。Further, the NFT image work trading platform in the embodiment of this specification can also prompt the copyright owner of the NFT image work to be detected that has been stored in the blockchain to confirm whether the NFT image work is infringing, and prompt its corresponding legal Risk, it is recommended to remove from the shelf. For the NFT image works to be detected that have not been uploaded to the blockchain, the NFT image work trading platform in the embodiment of this specification may prompt the copyright owner of the NFT image work to be detected that the NFT image work has a risk of infringement, and reject the NFT to be detected. The image works are uploaded to the NFT image works trading platform.
可能地,本说明书实施例可以将与待检测NFT图像作品的相似度大于预设相似度阈值的图像对应的权属信息上传至区块链,以完成过程证据的固定,防止检测过程中的比对信息被篡改使得NFT图像作品交易平台的检测结果发生错误,增大NFT图像作品交易平台可能发生侵权纠纷的风险。Possibly, in the embodiment of this specification, the ownership information corresponding to the image whose similarity of the NFT image work to be detected is greater than the preset similarity threshold can be uploaded to the blockchain, so as to complete the fixation of the process evidence and prevent the comparison of the detection process. The tampering of the information makes the detection results of the NFT image work trading platform wrong, which increases the risk of infringement disputes on the NFT image work trading platform.
参见图6,在一个具体的例子中,从门户网站获取到的热点新闻标题为“小红书滤镜景点事件当事人回应”下的文本信息,得到语义信息:小红书、景点、三亚蓝房子、粉红沙滩等词语后,对NFT图像作品交易平台上各NFT图像作品在语义数据库中的语义信息进行检索,得到多张大于语义相似度阈值60%的图像集(即待检测NFT图像作品)。进一步地,可以提取该热点新闻标题下的图像,并基于图像数据库中各待检测NFT图像作品的全局特征和局部特征确定是否存在与该热点新闻标题下的图像之间相似度大于相似度阈值0.7的待检测NFT图像作品,若存在多张待检测NFT图像作品与该热点新闻标题下的图像之间相似度大于图像相似度阈值0.7,则进一步地,可以提取热点新闻标题下图像对应的作者相关信息(权属信息),向多张存在侵权风险的待检测NFT图像作品的版权所有者发送侵权通知,以避免可能产生的侵权纠纷。Referring to Figure 6, in a specific example, the text information obtained from the portal website under the title of "Little Red Book Filter Scenic Spots and Events Party Responses" obtains semantic information: Xiaohongshu, Scenic Spots, Sanya Blue House After the words such as , pink beach, etc., the semantic information of each NFT image work on the NFT image work trading platform in the semantic database is retrieved, and multiple image sets (that is, the NFT image works to be detected) that are greater than 60% of the semantic similarity threshold are obtained. Further, the image under the hot news title can be extracted, and based on the global features and local features of each NFT image work to be detected in the image database, it is determined whether there is a similarity with the image under the hot news title greater than the similarity threshold of 0.7. The NFT image works to be detected, if there are multiple NFT image works to be detected and the image under the hot news title, the similarity is greater than the image similarity threshold of 0.7, then further, the corresponding author related images under the hot news title can be extracted. Information (ownership information), and send infringement notices to the copyright owners of multiple NFT image works to be detected that are at risk of infringement, so as to avoid possible infringement disputes.
由此,本说明书实施例可以通过获取热点事件和NFT图像作品交易平台中活跃度较高的NFT图像作品,并基于热点事件中的图像和NFT图像作品交易平台中活跃度较高的NFT图像作品的语义相似度筛选得到第一图像集以缩小待检测NFT图像作品的检测范围达到节省计算资源的目的,再基于热点事件中的图像和NFT图像作品交易平台中活跃度较高的图像作品之间的图像相似度即可确定第一图像集是否存在具有侵权风险的待检测NFT图像作品,这样就可以避免直接比对NFT时因图像编辑或变换造成的检测结果不准确等问题。进一步地,还可以通过权属数据库中将相关的权属信息以及侵权细节(相似的图像特征)发送给NFT图像作品交易平台中可能存在侵权风险的图像作品的版权所有者,并将所有的比对结果上传到区块链中,这样不仅降低了NFT图像作品交易平台可能产生侵权纠纷的风险,还有效地固定了过程证据。Therefore, the embodiments of this specification can obtain hot events and NFT image works with high activity in the NFT image work trading platform, and based on the images in hot events and NFT image works with high activity in the NFT image work trading platform. The semantic similarity of the first image set is obtained by filtering the first image set to narrow the detection range of the NFT image works to be detected to achieve the purpose of saving computing resources. It can be determined whether there is an NFT image work to be detected with the risk of infringement in the first image set, so as to avoid problems such as inaccurate detection results caused by image editing or transformation when directly comparing NFTs. Further, the relevant ownership information and infringement details (similar image features) can also be sent to the copyright owner of the image work that may have the risk of infringement in the NFT image work trading platform through the ownership database, and all comparisons can be made. The results are uploaded to the blockchain, which not only reduces the risk of possible infringement disputes on the NFT image work trading platform, but also effectively fixes the process evidence.
上述对本说明书特定实施例进行了描述。其它实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作或步骤可以按照不同于实施例中的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序才能实现期望的结果。在某些实施方式中,多任务处理和并行处理也是可以的或者可能是有利的。The foregoing describes specific embodiments of the present specification. Other embodiments are within the scope of the appended claims. In some cases, the actions or steps recited in the claims can be performed in an order different from that in the embodiments and still achieve desirable results. Additionally, the processes depicted in the figures do not necessarily require the particular order shown, or sequential order, to achieve desirable results. In some embodiments, multitasking and parallel processing are also possible or may be advantageous.
图7是本说明书实施例提供的NFT图像作品侵权检测装置的结构示意图。所述装置用于非同质代币NFT图像作品交易平台,并执行本说明书上述任一实施例NFT图像作品侵权检测方法。如图7所示,该NFT图像作品侵权检测装置可以包括:FIG. 7 is a schematic structural diagram of a device for detecting infringement of an NFT image work provided by an embodiment of this specification. The device is used in a non-fungible token NFT image work trading platform, and executes the NFT image work infringement detection method according to any of the above-mentioned embodiments of this specification. As shown in Figure 7, the NFT image work infringement detection device may include:
对比模块71,用于将待检测NFT图像作品与图像数据库中的多个图像的图像特征进行对比,得到所述待检测NFT图像作品与所述图像数据库中的图像的相似度;The comparison module 71 is used to compare the image features of the NFT image work to be detected and the images in the image database to obtain the similarity between the NFT image work to be detected and the images in the image database;
确定模块72,用于若所述待检测NFT图像作品与所述图像数据库中的任意一个所述图像的相似度大于预设相似度阈值,则确定所述待检测NFT图像作品侵权。The determining module 72 is configured to determine that the NFT image work to be detected is infringing if the similarity between the NFT image work to be detected and any one of the images in the image database is greater than a preset similarity threshold.
本说明书实施例可以通过将待检测NFT图像作品与图像数据库中的多个图像的图像特征进行对比,得到待检测NFT图像作品与图像数据库中的图像的相似度;若待检测NFT图像作品与所述图像数据库中的任意一个图像的相似度大于预设相似度阈值,则确定待检测NFT图像作品侵权。由此,本说明书实施例一方面利用图像特征比对的方式完成对NFT作品的侵权检测,这样避免由于对NFT作品稍作修改,例如缩放或者编辑少量像素导致无法检测出侵权,提高了侵权检测的准确率。另一方面无需创作者提供大量的证据来证明图像的权属信息,节省了大量的人力物力,避免了人工审核、上传审核结果等繁琐的工作,还提高了侵权检测的效率。In the embodiment of this specification, the similarity between the NFT image work to be detected and the images in the image database can be obtained by comparing the image features of the NFT image work to be detected and the images in the image database; If the similarity of any image in the image database is greater than the preset similarity threshold, it is determined that the NFT image work to be detected is infringing. Therefore, on the one hand, the embodiments of this specification use the method of image feature comparison to complete the infringement detection of NFT works, so as to avoid the failure to detect infringement due to slight modifications to the NFT works, such as scaling or editing a small number of pixels, and improve the infringement detection. 's accuracy. On the other hand, the creator does not need to provide a lot of evidence to prove the ownership information of the image, which saves a lot of manpower and material resources, avoids tedious work such as manual review and uploading review results, and improves the efficiency of infringement detection.
在一些实施例中,所述对比模块71,包括:In some embodiments, the comparison module 71 includes:
提取单元,用于提取所述待检测NFT图像作品的全局特征及局部特征;an extraction unit for extracting the global features and local features of the NFT image work to be detected;
对比单元,用于将所述待检测NFT图像作品的全局特征及局部特征,分别与所述图像数据库中的多个图像的全局特征及局部特征对比,得到所述待检测NFT图像作品与所述图像数据库中的图像的相似度。The comparison unit is used to compare the global features and local features of the NFT image work to be detected with the global features and local features of a plurality of images in the image database to obtain the NFT image work to be detected and the Similarity of images in an image database.
在一些实施例中,所述提取单元,具体用于:In some embodiments, the extraction unit is specifically used for:
基于所述待检测NFT图像作品的颜色特征、纹理特征、以及形状特征,确定所述待检测NFT图像作品的全局特征;Determine the global feature of the NFT image work to be detected based on the color feature, texture feature, and shape feature of the NFT image work to be detected;
基于所述待检测NFT图像作品的边缘、角点、线、曲线、以及预设属性区域,确定所述待检测NFT图像作品的局部特征。Based on the edges, corners, lines, curves, and preset attribute areas of the NFT image work to be detected, local features of the NFT image work to be detected are determined.
在一些实施例中,所述待检测NFT图像作品为NFT图像作品交易平台中活跃度高于第一预设阈值的图像。In some embodiments, the NFT image work to be detected is an image whose activity level is higher than a first preset threshold in the NFT image work trading platform.
在一些实施例中,所述待检测图像为待上传至NFT交易平台的图像;In some embodiments, the image to be detected is an image to be uploaded to the NFT trading platform;
所述装置还包括:The device also includes:
待检测NFT图像作品上传模块,用于若所述待检测NFT图像作品与所述图像数据库中的任意一个所述图像的相似度小于或等于所述预设相似度阈值,则将所述待检测NFT图像作品上传至所述NFT图像作品交易平台。The uploading module of the NFT image work to be detected is used to upload the NFT image work to be detected if the similarity between the NFT image work to be detected and any one of the images in the image database is less than or equal to the preset similarity threshold. The NFT image works are uploaded to the NFT image works trading platform.
在一些实施例中,所述图像数据库中的图像为热点事件信息中的图像,所述热点事件信息为浏览量大于第二预设阈值的事件信息。In some embodiments, the images in the image database are images in hot event information, and the hot event information is event information whose pageviews are greater than a second preset threshold.
在一些实施例中,所述装置还包括:In some embodiments, the apparatus further includes:
获取模块,用于获取所述热点事件信息;an acquisition module for acquiring the hot event information;
语义信息对比模块,用于对所述热点事件中的文字信息进行语义分析,得到所述热点事件的语义信息;a semantic information comparison module, configured to perform semantic analysis on the text information in the hot event to obtain the semantic information of the hot event;
语义信息保存模块,用于将所述热点事件的语义信息保存在语义数据库中,并将所述热点事件的图像信息保存在图像数据库中;a semantic information saving module, used for saving the semantic information of the hot event in the semantic database, and saving the image information of the hot event in the image database;
所述装置还包括:The device also includes:
第一图像集确定模块,用于确定所述NFT图像作品交易平台中活跃度高于第一预设阈值的第一图像集;a first image set determination module, configured to determine a first image set whose activity level is higher than a first preset threshold in the NFT image work trading platform;
筛选模块,用于从所述第一图像集中筛选与所述语义数据库中的语义信息相似度大于预设语义相似度阈值的第二图像集,所述第二图像集包括至少一个候选图像,所述待检测NFT图像作品为所述第二图像集中的任意一个候选图像。A screening module, configured to screen a second image set whose similarity with the semantic information in the semantic database is greater than a preset semantic similarity threshold from the first image set, where the second image set includes at least one candidate image, and the The NFT image work to be detected is any candidate image in the second image set.
在一些实施例中,所述获取模块之后,所述装置还包括:In some embodiments, after the acquiring module, the apparatus further includes:
权属信息提取模块,用于提取所述热点事件信息的权属信息,并将所述热点事件信息的权属信息保存在权属数据库中;a title information extraction module, configured to extract the title information of the hot event information, and save the title information of the hot event information in the title database;
所述装置还包括:The device also includes:
权属信息确定模块,用于根据所述权属数据库确定与所述待检测NFT图像作品的相似度大于预设相似度阈值的图像对应的权属信息;A title information determination module, configured to determine, according to the title database, the title information corresponding to the image whose similarity of the NFT image work to be detected is greater than a preset similarity threshold;
消息发送模块,用于基于所述权属信息向与所述待检测NFT图像作品的相似度大于预设相似度阈值的图像的版权者发送通知消息。A message sending module, configured to send a notification message to the copyright owner of an image whose similarity with the NFT image work to be detected is greater than a preset similarity threshold based on the ownership information.
在一些实施例中,所述装置还包括:图像相似度上传模块,用于将所述待检测NFT图像作品与所述图像数据库中与所述待检测NFT图像作品相似度大于预设相似度阈值的图像的相似度上传至区块链。In some embodiments, the apparatus further includes: an image similarity uploading module, configured to upload the similarity between the NFT image work to be detected and the NFT image work to be detected in the image database that is greater than a preset similarity threshold The similarity of the images is uploaded to the blockchain.
在一些实施例中,所述装置还包括:In some embodiments, the apparatus further includes:
语义信息相似度确定模块,用于确定所述第一图像集中每一个图像与所述语义数据库中的语义信息相似度;a semantic information similarity determination module, configured to determine the similarity between each image in the first image set and the semantic information in the semantic database;
所述装置还包括:The device also includes:
语义信息相似度上传模块,用于将所述第二图像集中每一个图像与所述语义数据库中的语义信息相似度上传至区块链。The semantic information similarity uploading module is configured to upload the similarity between each image in the second image set and the semantic information in the semantic database to the blockchain.
在一些实施例中,所述装置还包括:权属信息上传模块,用于将与所述待检测NFT图像作品的相似度大于预设相似度阈值的图像对应的权属信息上传至区块链。In some embodiments, the apparatus further includes: an ownership information uploading module, configured to upload the ownership information corresponding to the image whose similarity of the NFT image work to be detected is greater than a preset similarity threshold to the blockchain .
在一些实施例中,所述装置还包括:热点事件语义信息对比模块,用于对所述热点事件中的音频信息和/或视频信息进行语义分析,得到所述热点事件的语义信息。In some embodiments, the apparatus further includes: a hot-spot event semantic information comparison module, configured to perform semantic analysis on the audio information and/or video information in the hot-spot event to obtain semantic information of the hot-spot event.
需要说明的是,上述实施例提供的NFT图像作品侵权检测装置在执行NFT图像作品侵权检测方法时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将设备的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的NFT图像作品侵权检测装置与NFT图像作品侵权检测方法实施例属于同一构思,其体现实现过程详见方法实施例,这里不再赘述。It should be noted that, when the NFT image work infringement detection device provided in the above embodiment executes the NFT image work infringement detection method, only the division of the above functional modules is used as an example for illustration. In practical applications, the above functions can be allocated as required. It is completed by different functional modules, that is, the internal structure of the device is divided into different functional modules to complete all or part of the functions described above. In addition, the NFT image work infringement detection device provided in the above embodiment and the NFT image work infringement detection method embodiment belong to the same concept, and the embodiment and implementation process thereof are detailed in the method embodiment, which will not be repeated here.
上述本说明书一个或多个实施例序号仅仅为了描述,不代表实施例的优劣。The above-mentioned serial numbers of one or more embodiments in this specification are only for description, and do not represent the advantages or disadvantages of the embodiments.
请参见图8,为本说明书一个或多个实施例提供了一种电子设备的结构示意图。如图8所示,所述电子设备80可以包括:至少一个处理器81,至少一个网络接口84,用户接口83,存储器85,至少一个通信总线82。Referring to FIG. 8 , a schematic structural diagram of an electronic device is provided in one or more embodiments of the present specification. As shown in FIG. 8 , the
其中,通信总线82用于实现这些组件之间的连接通信。Among them, the
其中,用户接口83可以包括显示屏(Display)、摄像头(Camera),可选用户接口83还可以包括标准的有线接口、无线接口。The
其中,网络接口84可选的可以包括标准的有线接口、无线接口(如WI-FI接口)。Wherein, the
其中,处理器81可以包括一个或者多个处理核心。处理器81利用各种借口和线路连接整个电子设备80内的各个部分,通过运行或执行存储在存储器85内的指令、程序、代码集或指令集,以及调用存储在存储器85内的数据,执行电子设备80的各种功能和处理数据。可选的,处理器81可以采用数字信号处理(Digital Signal Processing,DSP)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、可编程逻辑阵列(Programmable LogicArray,PLA)中的至少一种硬件形式来实现。处理器801可集成处理器(Central ProcessingUnit,CPU)、图像处理器(Graphics Processing Unit,GPU)和调制解调器等中的一种或几种的组合。其中,CPU主要处理操作系统、用户界面和应用程序等;GPU用于负责显示屏所需要显示的内容的渲染和绘制;调制解调器用于处理无线通信。可以理解的是,上述调制解调器也可以不集成到处理器81中,单独通过一块芯片进行实现。The
其中,存储器85可以包括随机存储器(Random Access Memory,RAM),也可以包括只读存储器(Read-Only Memory)。可选的,该存储器85包括非瞬时性计算机可读介质(non-transitory computer-readable storage medium)。存储器85可用于存储指令、程序、代码、代码集或指令集。存储器805可包括存储程序区和存储数据区,其中,存储程序区可存储用于实现操作系统的指令、用于至少一个功能的指令(比如触控功能、声音播放功能、图像播放功能等)、用于实现上述各个方法实施例的指令等;存储数据区可存储上面各个方法实施例中涉及到的数据等。存储器85可选的还可以是至少一个位于远离前述处理器81的存储装置。如图8所示,作为一种计算机存储介质的存储器85中可以包括操作系统、网络通信模块、用户接口模块以及NFT图像作品侵权检测应用程序。The
在图8所示的电子设备80中,用户接口83主要用于为用户提供输入的接口,获取用户输入的数据;而处理器81可以用于调用存储器85中存储的NFT图像作品侵权检测应用程序,并具体执行以下操作:In the
将待检测NFT图像作品与图像数据库中的多个图像的图像特征进行对比,得到所述待检测NFT图像作品与所述图像数据库中的图像的相似度;Comparing the image features of the NFT image work to be detected and multiple images in the image database to obtain the similarity between the NFT image work to be detected and the images in the image database;
若所述待检测NFT图像作品与所述图像数据库中的任意一个所述图像的相似度大于预设相似度阈值,则确定所述待检测NFT图像作品侵权。If the similarity between the NFT image work to be detected and any one of the images in the image database is greater than a preset similarity threshold, it is determined that the NFT image work to be detected is infringing.
在一种可能的实施例中,所述处理器81在执行所述将待检测NFT图像作品与图像数据库中的多个图像的图像特征进行对比,得到所述待检测NFT图像作品与所图像数据库中的图像的相似度时,具体执行:In a possible embodiment, the
提取所述待检测NFT图像作品的全局特征及局部特征;Extracting the global features and local features of the NFT image work to be detected;
将所述待检测NFT图像作品的全局特征及局部特征,分别与所述图像数据库中的多个图像的全局特征及局部特征对比,得到所述待检测NFT图像作品与所述图像数据库中的图像的相似度。Compare the global features and local features of the NFT image work to be detected with the global features and local features of multiple images in the image database to obtain the NFT image work to be detected and the image in the image database. similarity.
在一种可能的实施例中,所述处理器81在执行所述提取所述待检测NFT图像作品的全局特征和局部特征时,具体执行:In a possible embodiment, when the
基于所述待检测NFT图像作品的颜色特征、纹理特征、以及形状特征,确定所述待检测NFT图像作品的全局特征;Determine the global feature of the NFT image work to be detected based on the color feature, texture feature, and shape feature of the NFT image work to be detected;
基于所述待检测NFT图像作品的边缘、角点、线、曲线、以及预设属性区域,确定所述待检测NFT图像作品的局部特征。Based on the edges, corners, lines, curves, and preset attribute areas of the NFT image work to be detected, local features of the NFT image work to be detected are determined.
在一种可能的实施例中,所述待检测NFT图像作品为NFT图像作品交易平台中活跃度高于第一预设阈值的图像。In a possible embodiment, the NFT image work to be detected is an image whose activity level is higher than a first preset threshold in the NFT image work trading platform.
在一种可能的实施例中,所述待检测图像为待上传至NFT交易平台的图像;In a possible embodiment, the image to be detected is an image to be uploaded to the NFT trading platform;
所述处理器81在执行所述得到所述待检测NFT图像作品与所图像数据库中的图像的相似度之后,还执行:After the
若所述待检测NFT图像作品与所述图像数据库中的任意一个所述图像的相似度小于或等于所述预设相似度阈值,则将所述待检测NFT图像作品上传至所述NFT图像作品交易平台。If the similarity between the NFT image work to be detected and any one of the images in the image database is less than or equal to the preset similarity threshold, upload the NFT image work to be detected to the NFT image work trading platform.
在一种可能的实施例中,所述图像数据库中的图像为热点事件信息中的图像,所述热点事件信息为浏览量大于第二预设阈值的事件信息。In a possible embodiment, the images in the image database are images in hotspot event information, and the hotspot event information is event information whose pageview volume is greater than a second preset threshold.
在一种可能的实施例中,所述处理器81在执行所述将待检测NFT图像作品与图像数据库中的多个图像的图像特征进行对比之前,还执行:In a possible embodiment, before the
获取所述热点事件信息;obtain the hot event information;
对所述热点事件中的文字信息进行语义分析,得到所述热点事件的语义信息;Perform semantic analysis on the text information in the hot event to obtain the semantic information of the hot event;
将所述热点事件的语义信息保存在语义数据库中,并将所述热点事件的图像信息保存在图像数据库中;saving the semantic information of the hot event in the semantic database, and saving the image information of the hot event in the image database;
所述处理器81在执行所述将待检测NFT图像作品与图像数据库中的多个图像的图像特征进行对比之前,还执行:Before the
确定所述NFT图像作品交易平台中活跃度高于第一预设阈值的第一图像集;Determine the first image set whose activity is higher than the first preset threshold in the NFT image work trading platform;
从所述第一图像集中筛选与所述语义数据库中的语义信息相似度大于预设语义相似度阈值的第二图像集,所述第二图像集包括至少一个候选图像,所述待检测NFT图像作品为所述第二图像集中的任意一个候选图像。A second image set whose similarity with the semantic information in the semantic database is greater than a preset semantic similarity threshold is selected from the first image set, where the second image set includes at least one candidate image, the NFT image to be detected The work is any candidate image in the second image set.
在一种可能的实施例中,所述处理器81在执行所述获取所述热点事件信息之后,还执行:In a possible embodiment, after the
提取所述热点事件信息的权属信息,并将所述热点事件信息的权属信息保存在权属数据库中;extracting the ownership information of the hot event information, and saving the ownership information of the hot event information in the ownership database;
所述确定所述待检测NFT图像作品侵权之后,所述方法还包括:After determining that the to-be-detected NFT image work is infringed, the method further includes:
根据所述权属数据库确定与所述待检测NFT图像作品的相似度大于预设相似度阈值的图像对应的权属信息;Determine the ownership information corresponding to the image whose similarity of the NFT image work to be detected is greater than the preset similarity threshold according to the ownership database;
基于所述权属信息向与所述待检测NFT图像作品的相似度大于预设相似度阈值的图像的版权者发送通知消息。Based on the ownership information, a notification message is sent to the copyright owner of the image whose similarity with the NFT image work to be detected is greater than a preset similarity threshold.
在一种可能的实施例中,所述处理器81在执行所述确定所述待检测NFT图像作品侵权之后,还执行:将所述待检测NFT图像作品与所述图像数据库中与所述待检测NFT图像作品相似度大于预设相似度阈值的图像的相似度上传至区块链。In a possible embodiment, after performing the determining of the infringement of the NFT image work to be detected, the
在一种可能的实施例中,所述处理器81在执行所述确定所述NFT图像作品交易平台中活跃度高于第一预设阈值的第一图像集之后,所述处理器81在执行所述从所述第一图像集中筛选与所述语义数据库中的语义信息相似度大于预设语义相似度阈值的第二图像集之前,还执行:In a possible embodiment, after the
确定所述第一图像集中每一个图像与所述语义数据库中的语义信息相似度;determining the similarity between each image in the first image set and the semantic information in the semantic database;
所述从所述第一图像集中筛选与所述语义数据库中的语义信息相似度大于预设语义相似度阈值的第二图像集之后,所述方法还包括:After the screening of the second image set with the semantic information similarity in the semantic database greater than the preset semantic similarity threshold from the first image set, the method further includes:
将所述第二图像集中每一个图像与所述语义数据库中的语义信息相似度上传至区块链。Upload the similarity between each image in the second image set and the semantic information in the semantic database to the blockchain.
在一种可能的实施例中,所述处理器81在执行所述根据所述权属数据库确定与所述待检测NFT图像作品的相似度大于预设相似度阈值的图像对应的权属信息之后,还执行:将与所述待检测NFT图像作品的相似度大于预设相似度阈值的图像对应的权属信息上传至区块链。In a possible embodiment, after the
在一种可能的实施例中,所述处理器81在执行所述获取所述热点事件信息之后,还执行:对所述热点事件中的音频信息和/或视频信息进行语义分析,得到所述热点事件的语义信息。In a possible embodiment, after performing the acquiring of the hot event information, the
本说明书一个或多个实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机或处理器上运行时,使得计算机或处理器执行上述图2-图3、以及图5所示实施例中的一个或多个步骤。上述NFT图像作品侵权检测装置的各组成模块如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在所述计算机可读取存储介质中。One or more embodiments of the present specification also provide a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, when executed on a computer or a processor, the computer or the processor causes the computer or processor to execute the above-mentioned FIG. 2 - Figure 3, and one or more steps in the embodiment shown in Figure 5. If each component module of the above-mentioned NFT image work infringement detection device is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in the computer-readable storage medium.
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本说明书一个或多个实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字多功能光盘(Digital Versatile Disc,DVD))、或者半导体介质(例如,固态硬盘(Solid StateDisk,SSD))等。In the above-mentioned embodiments, it may be implemented in whole or in part by software, hardware, firmware or any combination thereof. When implemented in software, it can be implemented in whole or in part in the form of a computer program product. The computer program product includes one or more computer instructions. The computer program instructions, when loaded and executed on a computer, produce, in whole or in part, the procedures or functions described in accordance with one or more embodiments of this specification. The computer may be a general purpose computer, special purpose computer, computer network, or other programmable device. The computer instructions may be stored in or transmitted over a computer-readable storage medium. The computer instructions can be sent from a website site, computer, server, or data center via wired (eg, coaxial cable, fiber optic, Digital Subscriber Line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) another website site, computer, server or data center for transmission. The computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes an integration of one or more available media. The available media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, Digital Versatile Disc (DVD)), or semiconductor media (eg, Solid State Disk (SSD) ))Wait.
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,可以通过计算机程序来指令相关的硬件来完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。而前述的存储介质包括:制度存储器(Read Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可存储程序代码的介质。在不冲突的情况下,本实施例和实施方案中的技术特征可以任意组合。Those of ordinary skill in the art can understand that all or part of the processes in the methods of the above embodiments can be implemented by instructing the relevant hardware through a computer program, and the program can be stored in a computer-readable storage medium. When the program is executed, The processes of the embodiments of the various methods described above may be included. The aforementioned storage medium includes: a system memory (Read Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk and other media that can store program codes. The technical features in this embodiment and the implementation can be combined arbitrarily if there is no conflict.
以上所述的实施例仅仅是本说明书的优选实施例方式进行描述,并非对本说明书的范围进行限定,在不脱离本说明书的设计精神的前提下,本领域普通技术人员对本说明书的技术方案作出的各种变形及改进,均应落入本说明书的权利要求书确定的保护范围内。The above-mentioned embodiments are only the preferred embodiments of this specification to describe, and do not limit the scope of this specification. Without departing from the design spirit of this specification, those of ordinary skill in the art can make technical solutions of this specification. Various modifications and improvements shall fall within the protection scope determined by the claims of this specification.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111479650.5A CN114359590B (en) | 2021-12-06 | 2021-12-06 | NFT image work infringement detection method, NFT image work infringement detection device and computer storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111479650.5A CN114359590B (en) | 2021-12-06 | 2021-12-06 | NFT image work infringement detection method, NFT image work infringement detection device and computer storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114359590A true CN114359590A (en) | 2022-04-15 |
CN114359590B CN114359590B (en) | 2024-11-01 |
Family
ID=81097346
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111479650.5A Active CN114359590B (en) | 2021-12-06 | 2021-12-06 | NFT image work infringement detection method, NFT image work infringement detection device and computer storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114359590B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115495712A (en) * | 2022-09-28 | 2022-12-20 | 支付宝(杭州)信息技术有限公司 | Digital work processing method and device |
CN115905913A (en) * | 2022-10-14 | 2023-04-04 | 支付宝(杭州)信息技术有限公司 | Method and device for detecting digital collection |
CN116340386A (en) * | 2023-03-09 | 2023-06-27 | 北京京航计算通讯研究所 | NFT data rights and interests identification method and system of distributed AI system |
EP4311157A1 (en) * | 2022-07-19 | 2024-01-24 | Nagravision Sarl | Method for generating an nft associated with a digital asset, method for verifying a similarity between digital assets, corresponding computer program products and devices |
IT202200022182A1 (en) * | 2022-10-27 | 2024-04-27 | Carlo Maria Rebay | Method for storing information about works of art in a database |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040093202A1 (en) * | 2001-03-14 | 2004-05-13 | Uwe Fischer | Method and system for the automatic detection of similar or identical segments in audio recordings |
CN107204183A (en) * | 2016-03-18 | 2017-09-26 | 百度在线网络技术(北京)有限公司 | A kind of audio file detection method and device |
US20170357875A1 (en) * | 2016-06-08 | 2017-12-14 | International Business Machines Corporation | Detecting usage of copyrighted video content using object recognition |
CN110096639A (en) * | 2019-01-25 | 2019-08-06 | 重庆易保全网络科技有限公司 | A kind of infringement monitoring evidence collecting method, device and terminal device |
CN110851761A (en) * | 2020-01-15 | 2020-02-28 | 支付宝(杭州)信息技术有限公司 | Infringement detection method, device and equipment based on block chain and storage medium |
US20200090007A1 (en) * | 2018-09-17 | 2020-03-19 | Cognizant Technology Solutions India Pvt. Ltd. | System and method for recognizing logos |
WO2020063523A1 (en) * | 2018-09-29 | 2020-04-02 | 北京国双科技有限公司 | Image detection method and device |
CN111310129A (en) * | 2020-02-20 | 2020-06-19 | 北京海益同展信息科技有限公司 | Method, device and storage medium for maintaining right of image |
CN111353062A (en) * | 2018-12-21 | 2020-06-30 | 华为技术有限公司 | Image retrieval method, device and equipment |
CN112241704A (en) * | 2020-10-16 | 2021-01-19 | 百度(中国)有限公司 | Method and device for judging portrait infringement, electronic equipment and storage medium |
CN112417381A (en) * | 2020-12-11 | 2021-02-26 | 中国搜索信息科技股份有限公司 | Method and device for rapidly positioning infringement image applied to image copyright protection |
CN112417847A (en) * | 2020-11-19 | 2021-02-26 | 湖南红网新媒体集团有限公司 | News content safety monitoring method, system, device and storage medium |
CN112507160A (en) * | 2020-12-03 | 2021-03-16 | 平安科技(深圳)有限公司 | Automatic judgment method and device for trademark infringement, electronic equipment and storage medium |
CN112579986A (en) * | 2020-12-25 | 2021-03-30 | 特赞(上海)信息科技有限公司 | Image infringement detection method, device and system |
CN113435391A (en) * | 2021-07-09 | 2021-09-24 | 支付宝(杭州)信息技术有限公司 | Method and device for identifying infringement video |
CN113691514A (en) * | 2021-08-16 | 2021-11-23 | 重庆易保全网络科技有限公司 | Internet data-based supervision and evidence-obtaining method |
-
2021
- 2021-12-06 CN CN202111479650.5A patent/CN114359590B/en active Active
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040093202A1 (en) * | 2001-03-14 | 2004-05-13 | Uwe Fischer | Method and system for the automatic detection of similar or identical segments in audio recordings |
CN107204183A (en) * | 2016-03-18 | 2017-09-26 | 百度在线网络技术(北京)有限公司 | A kind of audio file detection method and device |
US20170357875A1 (en) * | 2016-06-08 | 2017-12-14 | International Business Machines Corporation | Detecting usage of copyrighted video content using object recognition |
US20200090007A1 (en) * | 2018-09-17 | 2020-03-19 | Cognizant Technology Solutions India Pvt. Ltd. | System and method for recognizing logos |
WO2020063523A1 (en) * | 2018-09-29 | 2020-04-02 | 北京国双科技有限公司 | Image detection method and device |
CN111353062A (en) * | 2018-12-21 | 2020-06-30 | 华为技术有限公司 | Image retrieval method, device and equipment |
CN110096639A (en) * | 2019-01-25 | 2019-08-06 | 重庆易保全网络科技有限公司 | A kind of infringement monitoring evidence collecting method, device and terminal device |
CN110851761A (en) * | 2020-01-15 | 2020-02-28 | 支付宝(杭州)信息技术有限公司 | Infringement detection method, device and equipment based on block chain and storage medium |
CN111310129A (en) * | 2020-02-20 | 2020-06-19 | 北京海益同展信息科技有限公司 | Method, device and storage medium for maintaining right of image |
CN112241704A (en) * | 2020-10-16 | 2021-01-19 | 百度(中国)有限公司 | Method and device for judging portrait infringement, electronic equipment and storage medium |
CN112417847A (en) * | 2020-11-19 | 2021-02-26 | 湖南红网新媒体集团有限公司 | News content safety monitoring method, system, device and storage medium |
CN112507160A (en) * | 2020-12-03 | 2021-03-16 | 平安科技(深圳)有限公司 | Automatic judgment method and device for trademark infringement, electronic equipment and storage medium |
CN112417381A (en) * | 2020-12-11 | 2021-02-26 | 中国搜索信息科技股份有限公司 | Method and device for rapidly positioning infringement image applied to image copyright protection |
CN112579986A (en) * | 2020-12-25 | 2021-03-30 | 特赞(上海)信息科技有限公司 | Image infringement detection method, device and system |
CN113435391A (en) * | 2021-07-09 | 2021-09-24 | 支付宝(杭州)信息技术有限公司 | Method and device for identifying infringement video |
CN113691514A (en) * | 2021-08-16 | 2021-11-23 | 重庆易保全网络科技有限公司 | Internet data-based supervision and evidence-obtaining method |
Non-Patent Citations (1)
Title |
---|
陈仕先;尹丹;: "基于内容的图像检索关键技术", 内江科技, no. 04, 25 April 2011 (2011-04-25) * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4311157A1 (en) * | 2022-07-19 | 2024-01-24 | Nagravision Sarl | Method for generating an nft associated with a digital asset, method for verifying a similarity between digital assets, corresponding computer program products and devices |
WO2024017903A1 (en) * | 2022-07-19 | 2024-01-25 | Nagravision Sarl | Method for generating an nft associated with a digital asset, method for verifying a similarity between digital assets, corresponding computer program products and devices |
CN115495712A (en) * | 2022-09-28 | 2022-12-20 | 支付宝(杭州)信息技术有限公司 | Digital work processing method and device |
CN115495712B (en) * | 2022-09-28 | 2024-04-16 | 支付宝(杭州)信息技术有限公司 | Digital work processing method and device |
CN115905913A (en) * | 2022-10-14 | 2023-04-04 | 支付宝(杭州)信息技术有限公司 | Method and device for detecting digital collection |
CN115905913B (en) * | 2022-10-14 | 2024-03-12 | 支付宝(杭州)信息技术有限公司 | Method and device for detecting digital collection |
IT202200022182A1 (en) * | 2022-10-27 | 2024-04-27 | Carlo Maria Rebay | Method for storing information about works of art in a database |
CN116340386A (en) * | 2023-03-09 | 2023-06-27 | 北京京航计算通讯研究所 | NFT data rights and interests identification method and system of distributed AI system |
CN116340386B (en) * | 2023-03-09 | 2024-05-07 | 北京京航计算通讯研究所 | NFT data rights and interests identification method and system of distributed AI system |
Also Published As
Publication number | Publication date |
---|---|
CN114359590B (en) | 2024-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114359590B (en) | NFT image work infringement detection method, NFT image work infringement detection device and computer storage medium | |
US11176142B2 (en) | Method of data query based on evaluation and device | |
WO2021042521A1 (en) | Contract automatic generation method, computer device and computer non-volatile storage medium | |
US20180336931A1 (en) | Automatic and intelligent video sorting | |
US20210406549A1 (en) | Method and apparatus for detecting information insertion region, electronic device, and storage medium | |
CN107193962B (en) | Intelligent map matching method and device for Internet promotion information | |
CN110418161A (en) | Video reviewing method and device, electronic equipment and readable storage medium storing program for executing | |
CN109189959B (en) | Method and device for constructing image database | |
CN111212303B (en) | Video recommendation method, server and computer-readable storage medium | |
US20180025215A1 (en) | Anonymous live image search | |
CN103377258A (en) | Method and device for classification display of microblog information | |
CN107229731B (en) | Method and apparatus for classifying data | |
CN108898587A (en) | Picture processing method, picture processing device and terminal equipment | |
CN111432138B (en) | Video stitching method and apparatus, computer readable medium and electronic device | |
CN103617192A (en) | Method and device for clustering data objects | |
CN112069335A (en) | Image classification method and device, electronic equipment and storage medium | |
CN115661302A (en) | Video editing method, device, equipment and storage medium | |
CN108932704B (en) | Picture processing method, picture processing device and terminal equipment | |
CN104317903B (en) | The recognition methods of the chapters and sections integrality of chapters and sections formula text and device | |
CN117251761A (en) | Data object classification method and device, storage medium and electronic device | |
CN107133644B (en) | Digital Library Content Analysis System and Method | |
US20140351064A1 (en) | Directional Filmstrip Display in Street View | |
CN108898169A (en) | Picture processing method, picture processing device and terminal equipment | |
CN112711718A (en) | Review information auditing method, device, medium and electronic equipment | |
CN110335114A (en) | Product classification method, device and equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20220701 Address after: 310000 801-11 section B, 8th floor, 556 Xixi Road, Xihu District, Hangzhou City, Zhejiang Province Applicant after: Alipay (Hangzhou) Information Technology Co.,Ltd. Applicant after: Ant blockchain Technology (Shanghai) Co.,Ltd. Address before: 310000 801-11 section B, 8th floor, 556 Xixi Road, Xihu District, Hangzhou City, Zhejiang Province Applicant before: Alipay (Hangzhou) Information Technology Co.,Ltd. |
|
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20240921 Address after: Room 803, 8th floor, 618 waima Road, Huangpu District, Shanghai 200001 Applicant after: Ant blockchain Technology (Shanghai) Co.,Ltd. Country or region after: China Address before: 310000 801-11 section B, 8th floor, 556 Xixi Road, Xihu District, Hangzhou City, Zhejiang Province Applicant before: Alipay (Hangzhou) Information Technology Co.,Ltd. Country or region before: China Applicant before: Ant blockchain Technology (Shanghai) Co.,Ltd. |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant |