CN114354685A - 利用水泥浆水化放热量预测静液柱压力的方法 - Google Patents

利用水泥浆水化放热量预测静液柱压力的方法 Download PDF

Info

Publication number
CN114354685A
CN114354685A CN202210022564.XA CN202210022564A CN114354685A CN 114354685 A CN114354685 A CN 114354685A CN 202210022564 A CN202210022564 A CN 202210022564A CN 114354685 A CN114354685 A CN 114354685A
Authority
CN
China
Prior art keywords
cement paste
hydration
time
heat release
hydration heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210022564.XA
Other languages
English (en)
Other versions
CN114354685B (zh
Inventor
刘开强
马勇
杨涛
焦利宾
王福云
张占武
林航
赵军
郭子铭
张兴国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Petroleum University
Original Assignee
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Petroleum University filed Critical Southwest Petroleum University
Priority to CN202210022564.XA priority Critical patent/CN114354685B/zh
Publication of CN114354685A publication Critical patent/CN114354685A/zh
Application granted granted Critical
Publication of CN114354685B publication Critical patent/CN114354685B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种利用水泥浆水化放热量预测静液柱压力的方法,包括:校核和准备活性热微量热仪,配制水泥浆,取水泥浆至活性热微量热仪用试样瓶中,连续采集水泥浆水化48小时内的水化放热量,获取水泥浆的水化放热量曲线,选取t1时刻范围内的水泥浆水化放热量曲线,并记录范围端点水泥浆水化放热量,计算t1时刻范围内水泥浆的水化放热量,获取水化放热量和水化时间的变化曲线,一阶求导获取水化放热量变化速率,获得该变化速率与水化时间的关系曲线,并归一化处理该变化速率结果,计算水泥浆柱高度和水泥浆密度,即可计算出任一t时刻水泥浆的静液柱压力。本发明的优点是:步骤简单、结果准确,能有效的预测水泥浆静液柱压力。

Description

利用水泥浆水化放热量预测静液柱压力的方法
技术领域
本发明涉及石油与天然气井固井工程技术领域,特别涉及一种利用水泥浆水化放热量预测静液柱压力的方法。
背景技术
油气井固井工程中,液态水泥浆被注入地层与套管间的环空间隙中,利用其静液压力平衡地层压力;当水泥浆硬化形成水泥环,则要求其能有效层间封隔。现场作业发现,天然气极易窜入塑性态水泥浆中,造成早期气窜问题,破坏油气井固井安全与质量。经大量研究发现,在水泥浆塑性态阶段其静液柱压力将明显降低(业界也称为“失重”),将在水泥浆柱与地层间产生负压差,为早期气窜提供驱动力。为了解决早期气窜问题,学者提出了井口加压(憋压)候凝技术[1],即在水泥浆柱顶部注入压力,以补充候凝阶段水泥浆静液压力损失量,减少水泥浆柱与地层间的负压差。但由于缺乏对水泥浆静液柱压力时变规律的定量认识和预测方法,工程应用常由经验确定注入压力值。一旦注入压力过高,会造成井漏降低固井质量;但注入压力过低,又难以实现防止早期气窜的目的。因此,亟需准确掌握水泥浆候凝阶段静液柱压力时变规律,以精确指导井口加压候凝技术,为解决油气井固井早期气窜问题奠定重要基础。
目前,学者通过建立水泥浆静液柱压力评价装置(Zeng Y,Lu P,Zhou S,etal.Anew prediction model for hydrostatic pressure reduction of anti-gaschanneling cement slurry based on large-scale physical modeling experiments[J].Journal of Petroleum Science and Engineering,2019,172:259–268),研究了井眼尺寸、养护条件及性能对水泥浆静液压力的影响。基于实验结果,学者提出了多种理论去解释水泥浆静液柱压力降低的机理,包括颗粒沉降机理、桥堵机理、体积收缩机理和胶凝悬挂机理。在这些机理中,Sabins等(Sabins F L,Tinsley J M,Sutton D L.Transition timeof cement slurry between the fluid and set states[J].Society of PetroleumEngineers Journal,1982,22(6):875–882.)提出的胶凝悬挂机理被普遍接受,该机理解释水泥浆静液压力降低的直接原因是水泥水化发展其静胶凝强度,使水泥浆重力作用于外界面(井壁和套管壁)。基于该机理,利用水泥浆的静胶凝强度,建立了预测水泥浆静液压力的“剪切-应力”模型,该模型描述水泥浆的静液压力随其静胶凝强度的增加而降低,且呈线性变化关系,如式(1)所示:
Figure BDA0003463223210000021
式中,τ(t)为t时刻水泥浆的静胶凝强度,Pa;h为水泥浆柱的高度,m;Dw为井眼内径,m;D0为套管外径,m。基于胶凝悬挂机理和该数学模型,学者提出水泥浆静胶凝强度从48Pa发展至240Pa的过渡时间为早期气窜危险时间,水泥浆设计时应尽量缩短该过渡时间以提高水泥浆的抗早期气窜能力。然而,大量实验结果显示,水泥浆静液压力与静胶凝强度不是线性关系,“剪切应力”模型并不能准确描述水泥浆静液压力时变规律(Kaiqiang Liu,Xiaowei Cheng,Xingguo Zhang,et al.Effect of the hydration rate andmicrostructure of Portland cement slurry on hydrostatic pressure transfer[J].Powder Technology,2019,352:251–261.)。
另外,目前超深层油气资源成为世界勘探开发热点,超深井的高温高压环境和压力敏感地层给固井工程带来了巨大挑战。且水泥浆静液柱压力是决定固井工艺、安全和质量的关键性能。然而,在实际固井工程中,固井水泥浆柱高达数千米,服役环境的温差超过几十度、压差超过几十兆帕;且静液柱压力实验流程复杂、测试时间长且极易破坏实验装置等因素,所以要想完全通过实验获取工程应用环境中水泥浆的静液柱压力难度极大,且现有模型难以准确预测水泥浆的静液柱压力。而水泥浆静液柱压力降低是其水化过程的一种物理变化,其实质是水化产物改变了水泥浆的微观结构。为此,亟需建立新的水泥浆静液柱压力预测方法,为优化油气井固井工艺、保证固井安全与质量提供支撑。
发明内容
本发明针对现有技术的缺陷,提供了一种利用水泥浆水化放热量预测静液柱压力的方法。
为了实现以上发明目的,本发明采取的技术方案如下:
一种利用水泥浆水化放热量预测静液柱压力的方法,包括以下步骤:
步骤1,依据GB/T 12959-2008标准,校核和准备水泥浆水化放热量实验所用活性热微量热仪,并将活性热微量热仪保温至实验所需温度;
步骤2,依据GB/T 19139-2012标准,取样、称量实验所用样品,并配制成水泥浆;
步骤3,立即取约5g水泥浆至活性热微量热仪用试样瓶中,密封后放入活性热微量热仪测试通道内,连续采集水泥浆水化48小时内的水化放热量,获取水泥浆的水化放热量曲线;
步骤4,确定水泥浆静液柱压力降低为零的时间点t1,并以此选取初始时刻t0至t1时刻范围内的水泥浆水化放热量曲线,并记录t0时刻水泥浆水化放热量为Q(t0),t1时刻水泥浆水化放热量为Q(t1);
步骤5,根据公式Q(t1)-Q(t)计算t0至t1时刻范围内水泥浆的水化放热量,Q获取Q(t1)-Q(t)和水化时间t的变化曲线,t为t0至t1时刻范围内任一时刻,Q(t)为任意t时刻水泥浆水化放热量;
步骤6,对Q(t1)-Q(t)和水化时间t的变化曲线进行一阶求导,获得α(t)随水化时间t的关系曲线
Figure BDA0003463223210000041
α(t)为Q(t1)-Q(t)函数t时刻的变化速率;
步骤7,根据公式
Figure BDA0003463223210000042
归一化处理α(t),α(t0)为Q(t1)-Q(t)函数t0时刻的变化速率,α(t1)为Q(t1)-Q(t)函数t1时刻的变化速率;
步骤8,根据流体静液柱压力计算公式P(t0)=ρgh,式中,P(t0)为t0时刻水泥浆静液柱压力,kPa;ρ为水泥浆密度,g/cm3;g为重力加速度,kg/N;h为水泥浆柱高度,m,计算水泥浆柱高度和水泥浆密度;
步骤9,根据公式
Figure BDA0003463223210000043
计算出任意t时刻水泥浆的静液柱压力P(t)。
与现有技术相比,本发明的优点在于:
本发明测试水泥浆水化放热量的试验步骤简单、结果准确,且基于水泥浆水化放热量建立的其静液柱压力预测方法,能有效的预测水泥浆静液柱压力,为量化指导油气井井口加压候凝技术,和研发油气井防早期气窜技术和措施具有重要意义。
附图说明
图1是本发明实施例一种利用水泥浆水化放热量预测静液柱压力的方法流程图;
图2是本发明实施例水泥浆的水化放热量测试结果图;
图3是本发明实施例水泥浆的静液柱压力测试结果图;
图4是本发明实施例水泥浆的Q(t1)-Q(t)和水化时间t的变化曲线图;
图5是本发明实施例α(t)随水化时间t的关系曲线图;
图6是本发明实施例水泥浆静液柱压力(P(t))的预测结果图。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚明白,以下根据附图并列举实施例,对本发明做进一步详细说明。
如图1所示,一种利用水泥浆水化放热量预测静液柱压力的方法,包括以下步骤:
(1)依据GB/T 12959-2008标准,校核和准备水泥浆水化放热量实验所用活性热微量热仪,并将活性热微量热仪保温至实验所需的30℃;
(2)样品称量600g高抗硫酸盐G级油井水泥、6g降失水剂和264g自来水,并根据GB/T19139-2012标准混配水泥浆;取约5g水泥浆至活性热微量热仪(TAM Air,TA仪器)的试样瓶中,密封,将该试样瓶置于活性热微量热仪的测试通道中,关闭通道,连续采集水泥浆的放热量至24小时;
(4)样品称量5000g高抗硫酸盐G级油井水泥、50g降失水剂和2200g自来水,并根据GB/T19139-2012标准混配水泥浆;取约4L水泥浆至固井环空水泥浆失重测试装置(该装置在中国发明专利中公开,公开号为:CN102392634A)中,连续采集水泥浆的静液柱压力直至水泥浆静液柱压力降至零;
(5)根据水泥浆静液柱压力测试曲线,确定水泥浆静液柱压力降低为零的时间点(t1),并以此选取初始时刻(t0)至t1时刻范围内的水泥浆水化放热量曲线,并记录t0时刻水泥浆水化放热量为Q(t0),t1时刻水泥浆水化放热量为Q(t1);
(6)根据公式Q(t1)-Q(t)(Q(t)为任意t时刻水泥浆水化放热量),计算t0至t1时刻范围内水泥浆的水化放热量,获取Q(t1)-Q(t)和水化时间t的变化曲线;
(7)对Q(t1)-Q(t)和水化时间t的变化曲线进行一阶求导,获得α(t)随水化时间t的关系曲线
Figure BDA0003463223210000061
(8)根据公式
Figure BDA0003463223210000062
归一化处理α(t)随水化时间t的关系曲线;
(9)根据流体静液柱压力计算公式(P(t0)=ρgh,式中,P(t0)为t0时刻水泥浆静液柱压力,kPa;ρ为水泥浆密度,g/cm3;g为重力加速度,kg/N;h为水泥浆柱高度,m),计算水泥浆柱高度;
(10)根据公式
Figure BDA0003463223210000063
即可计算出任意t时刻水泥浆的静液柱压力P(t)。
如图2所示,可发现水泥浆水化放热量随水化时间增加而增加,且水化早期水泥浆放热量降低;
如图3所示,可发现水泥浆静液柱压力随水化时间增加而降低,当水化时间增至360分钟后,水泥浆静液柱压力降低速率明显加快。且当水泥浆水化时间增至560分钟时,该水泥浆静液柱压力降至零。由图2可知,此时水泥浆的放热量增量约为6J/g;
如图4所示,可发现水泥浆静液柱压力降低为零t1时刻的放热量与任意t时刻的放热量之差[Q(t1)-Q(t)]随水化时间增加而降低;
如图5所示,可发现对[Q(t1)-Q(t)]与水化时间的关系曲线计算水化时间的微分,获得的
Figure BDA0003463223210000064
与水化时间的变化曲线与水泥浆静液柱压力曲线的变化趋势相近;
如图6所示,可发现
Figure BDA0003463223210000065
与水化时间的变化曲线进行归一化处理后,乘于水泥浆的初始静液柱压力(由P(t0)=ρgh计算获得),即可计算出水泥浆静液柱压力降低曲线。
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的实施方法,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。

Claims (1)

1.一种利用水泥浆水化放热量预测静液柱压力的方法,其特征在于,包括以下步骤:
步骤1,依据GB/T 12959-2008标准,校核和准备水泥浆水化放热量实验所用活性热微量热仪,并将活性热微量热仪保温至实验所需温度;
步骤2,依据GB/T 19139-2012标准,取样、称量实验所用样品,并配制成水泥浆;
步骤3,立即取约5g水泥浆至活性热微量热仪用试样瓶中,密封后放入活性热微量热仪测试通道内,连续采集水泥浆水化48小时内的水化放热量,获取水泥浆的水化放热量曲线;
步骤4,确定水泥浆静液柱压力降低为零的时间点t1,并以此选取初始时刻t0至t1时刻范围内的水泥浆水化放热量曲线,并记录t0时刻水泥浆水化放热量为Q(t0),t1时刻水泥浆水化放热量为Q(t1);
步骤5,根据公式Q(t1)-Q(t)计算t0至t1时刻范围内水泥浆的水化放热量,获取Q(t1)-Q(t)和水化时间t的变化曲线,t为t0至t1时刻范围内的任一时刻,Q(t)为任意t时刻水泥浆水化放热量;
步骤6,对Q(t1)-Q(t)和水化时间t的变化曲线进行一阶求导,获得α(t)随水化时间t的关系曲线
Figure FDA0003463223200000011
α(t)为Q(t1)-Q(t)函数t时刻的变化速率;
步骤7,根据公式
Figure FDA0003463223200000012
归一化处理α(t),α(t0)为Q(t1)-Q(t)函数t0时刻的变化速率,α(t1)为Q(t1)-Q(t)函数t1时刻的变化速率;
步骤8,根据流体静液柱压力计算公式P(t0)=ρgh,式中,P(t0)为t0时刻水泥浆静液柱压力,kPa;ρ为水泥浆密度,g/cm3;g为重力加速度,kg/N;h为水泥浆柱高度,m,计算水泥浆柱高度和水泥浆密度;
步骤9,根据公式
Figure FDA0003463223200000021
计算出任意t时刻水泥浆的静液柱压力P(t)。
CN202210022564.XA 2022-01-10 2022-01-10 利用水泥浆水化放热量预测静液柱压力的方法 Active CN114354685B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210022564.XA CN114354685B (zh) 2022-01-10 2022-01-10 利用水泥浆水化放热量预测静液柱压力的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210022564.XA CN114354685B (zh) 2022-01-10 2022-01-10 利用水泥浆水化放热量预测静液柱压力的方法

Publications (2)

Publication Number Publication Date
CN114354685A true CN114354685A (zh) 2022-04-15
CN114354685B CN114354685B (zh) 2023-11-10

Family

ID=81108389

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210022564.XA Active CN114354685B (zh) 2022-01-10 2022-01-10 利用水泥浆水化放热量预测静液柱压力的方法

Country Status (1)

Country Link
CN (1) CN114354685B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2045422U (zh) * 1988-12-17 1989-10-04 吴克信 快装套管头
US6267003B1 (en) * 1999-12-28 2001-07-31 Eastman Kodak Company Method for measuring changes in osmotic pressure
CN103512839A (zh) * 2013-09-24 2014-01-15 西南石油大学 一种胶凝态水泥浆渗透率的测试方法
CN107843721A (zh) * 2016-09-19 2018-03-27 中国石油化工股份有限公司 一种水泥浆失重压力和防气窜能力的评价装置
US20180147505A1 (en) * 2016-06-16 2018-05-31 Lake Region Manufacturing, Inc. Composite column for use in high pressure liquid chromatography
CN108104796A (zh) * 2017-11-13 2018-06-01 中国海洋石油总公司 气窜模拟测试装置以及测试方法
CN109900855A (zh) * 2017-12-07 2019-06-18 中国石油化工股份有限公司 用于评价易水化粘土或钻井液的实验装置及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2045422U (zh) * 1988-12-17 1989-10-04 吴克信 快装套管头
US6267003B1 (en) * 1999-12-28 2001-07-31 Eastman Kodak Company Method for measuring changes in osmotic pressure
CN103512839A (zh) * 2013-09-24 2014-01-15 西南石油大学 一种胶凝态水泥浆渗透率的测试方法
US20180147505A1 (en) * 2016-06-16 2018-05-31 Lake Region Manufacturing, Inc. Composite column for use in high pressure liquid chromatography
CN107843721A (zh) * 2016-09-19 2018-03-27 中国石油化工股份有限公司 一种水泥浆失重压力和防气窜能力的评价装置
CN108104796A (zh) * 2017-11-13 2018-06-01 中国海洋石油总公司 气窜模拟测试装置以及测试方法
CN109900855A (zh) * 2017-12-07 2019-06-18 中国石油化工股份有限公司 用于评价易水化粘土或钻井液的实验装置及方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KAIQIANG LIU等: ""Quantitative determination of the hydrostatic pressure of oil-well cement slurry using its hydration kinetics"", 《CONSTRUCTION AND BUILDING MATERIALS》, vol. 340, no. 18, pages 1 - 12 *
朱海金;刘爱萍;安少辉;许加星;: "水泥浆静液柱压力评价实验方法研究", 油田化学, no. 03 *
李明忠;蒋新立;李德红;刘福;李季;: "泡沫固井水泥浆密度与环空液柱压力变化规律研究", 探矿工程(岩土钻掘工程), no. 11 *

Also Published As

Publication number Publication date
CN114354685B (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
CN106884635B (zh) 一种低、特低渗透油藏co2驱最小混相压力的测定方法
CN106644871A (zh) 超临界二氧化碳压裂液对油气储层渗流影响评价装置与方法
CN109781604B (zh) 一种水泥浆测窜方法
CN110907334B (zh) 一种砾岩全直径岩心径向流油水相对渗透率测量装置及方法
CN204024635U (zh) 一种油气井水泥环密封特性模拟测试装置
CN106442264A (zh) 一种高温高压渗透率测试装置
CN111504898A (zh) 评价高温高压条件下水泥环界面胶结强度实验装置及方法
CN102455277A (zh) 一种高压下岩石气测渗透率的装置及方法
CN103983533B (zh) 一种含气页岩裂隙演化与渗流特征测试装置及方法
CN108119132B (zh) 致密砂岩气藏近井带径向渗流含水饱和度模拟装置及方法
Dong et al. Effect of dynamic pseudo threshold pressure gradient on well production performance in low-permeability and tight oil reservoirs
CN112924300A (zh) 深层超深层岩石高温-渗流-应力-化学耦合试验系统
CN114354685A (zh) 利用水泥浆水化放热量预测静液柱压力的方法
Meng et al. Measurement of cement in-situ mechanical properties with consideration of poroelasticity
CN108732064A (zh) 一种高温高密度钻井液沉降稳定性测试装置及方法
CN110424947B (zh) 一种测量固井第一界面微环隙大小的方法
CN109781538B (zh) 固井水泥石外源性自修复材料修复能力评价装置及方法
CN111305806B (zh) 自支撑裂缝导流能力的分析方法及装置
CN115263274B (zh) 一种页岩气井支撑裂缝临界出砂流速测试装置及方法
CN107387072B (zh) 一种高温高压气液置换室内模拟评价装置
CN116678789A (zh) 一种页岩油藏双重介质中气液传质能力评价方法和装置
CN211013850U (zh) 模拟高温高盐条件下材料力学性能试验装置
CN111255444B (zh) 一种地层油气相对渗透率测定方法
CN111300617B (zh) 一种高温高压水泥石养护装置及水泥石的制备方法
CN113791015B (zh) 聚合物溶液驱替稠油的启动压力梯度测试装置及测试方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant