CN114353689A - An underwater three-dimensional imaging system based on binocular single detector - Google Patents
An underwater three-dimensional imaging system based on binocular single detector Download PDFInfo
- Publication number
- CN114353689A CN114353689A CN202111479971.5A CN202111479971A CN114353689A CN 114353689 A CN114353689 A CN 114353689A CN 202111479971 A CN202111479971 A CN 202111479971A CN 114353689 A CN114353689 A CN 114353689A
- Authority
- CN
- China
- Prior art keywords
- mirror
- lens
- reflector
- detector
- optical window
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Studio Devices (AREA)
Abstract
本发明提出了一种水下三维成像系统,包括:控制模块、照明模块和成像模块;控制模块连接照明模块和成像模块,控制模块用于控制照明模块和成像模块的开启或关闭,和记录成像模块形成的图像;照明模块包括照明光源和匀光组件,匀光组件用于使照明光源发出的照明光均匀,完成对目标的照明;成像模块包括镜头组件和探测器,镜头组件用于引导目标反射的光信号到达探测器成像。该水下三维成像系统将单个探测器结合光学元件,利用光学元件将原本空间上分开的两幅图像成像到同一个探测器上,具体是空间上在同一个探测器上分开,或者是时间上在同一个探测器上分开,构建出分辨率高、成像距离远、成像速度快的水下三维成像系统。
The present invention provides an underwater three-dimensional imaging system, comprising: a control module, an illumination module and an imaging module; the control module is connected to the illumination module and the imaging module, and the control module is used to control the opening or closing of the illumination module and the imaging module, and record the imaging The image formed by the module; the illumination module includes an illumination light source and a uniform light component, and the uniform light component is used to make the illumination light emitted by the illumination light source uniform to complete the illumination of the target; the imaging module includes a lens assembly and a detector, and the lens assembly is used to guide the target. The reflected light signal reaches the detector for imaging. The underwater three-dimensional imaging system combines a single detector with an optical element, and uses the optical element to image two images that were originally spatially separated on the same detector, specifically, the space is separated on the same detector, or the temporal Separated on the same detector, an underwater three-dimensional imaging system with high resolution, long imaging distance and fast imaging speed is constructed.
Description
技术领域technical field
本发明涉及三维成像技术领域,尤其涉及一种基于双目单探测器的水下三维成像系统。The invention relates to the technical field of three-dimensional imaging, in particular to an underwater three-dimensional imaging system based on a binocular single detector.
背景技术Background technique
在水下三维成像技术中,一般的水下双目立体视觉系统采用了主动照明光源、双光学系统、双探测器的组合。一方面是因为典型的面阵型感光芯片价格不再是影响三维成像系统成本的主要原因,另一方面是采用双探测器能够简化光学系统设计,而且双探测器的软件标定与图像处理也日趋简化。所以典型的水下双目立体视觉系统采用的都是双探测器的设计。In the underwater 3D imaging technology, the general underwater binocular stereo vision system adopts the combination of active illumination light source, dual optical system and dual detector. On the one hand, the price of the typical area array photosensitive chip is no longer the main factor affecting the cost of the 3D imaging system. On the other hand, the use of dual detectors can simplify the optical system design, and the software calibration and image processing of the dual detectors are also becoming more and more simplified. . Therefore, the typical underwater binocular stereo vision system adopts the design of double detectors.
但是因为水体环境对电磁波有强烈的吸收与散射,现有的水下光学成像技术存在成像质量差,成像距离短的问题。因此,典型的水下双目立体视觉系统也有成像距离近,距离分辨率受水体环境影响较大的缺陷。为提高三维光学成像距离,新的照明光源和感光探测器正在被广泛试验与研究。这其中有代表性的技术有:基于条纹管的三维成像技术、点扫描水下三维成像技术、利用距离选通成像重构水下三维图像的技术等。However, due to the strong absorption and scattering of electromagnetic waves by the water environment, the existing underwater optical imaging technology has the problems of poor imaging quality and short imaging distance. Therefore, the typical underwater binocular stereo vision system also has the defects that the imaging distance is short, and the distance resolution is greatly affected by the water environment. To improve the 3D optical imaging distance, new illumination sources and photodetectors are being extensively tested and researched. The representative technologies include: 3D imaging technology based on streak tube, point scanning underwater 3D imaging technology, and technology of reconstructing underwater 3D images using range-gated imaging.
相比之下,激光距离选通技术有精度高、成像距离较长等特点。但利用激光距离选通成像获得的三维图像,需要高精度的激发脉冲同步控制,往往要到达皮秒级的同步精度,增大了系统的复杂度,难以实现。如果利用两套探测器和光学系统构成传统的双目立体视觉成像系统,不仅控制系统复杂度升高,还有成本急剧升高的问题。In contrast, laser distance gating technology has the characteristics of high precision and long imaging distance. However, the 3D image obtained by laser range-gated imaging requires high-precision excitation pulse synchronization control, often reaching picosecond-level synchronization accuracy, which increases the complexity of the system and is difficult to achieve. If two sets of detectors and optical systems are used to form a traditional binocular stereo vision imaging system, not only the complexity of the control system will increase, but also the cost will increase dramatically.
目前的水下三维成像技术采用的主要有两种方法:水下激光距离选通三维成像和水下双目立体视觉成像。The current underwater 3D imaging technology mainly adopts two methods: underwater laser range-gated 3D imaging and underwater binocular stereo vision imaging.
水下激光距离选通成像技术的基本原理是工作在蓝绿光波段的脉冲照明激光主动照射目标,高精度的控制系统控制探测器接收信号的时间,使得只有特定距离上的目标反射光能够被探测器收集并成像。水下激光距离选通成像技术除了可以获得目标的二维灰度图外,也可以通过选通切片,对不同距离上的目标成像,来获取深度数据,计算得到目标的三维信息。但是为了得到较高精度的三维信息,选通切片需要非常薄,即激光脉冲的脉宽和选通探测器门宽需要到达纳秒甚至皮秒级,整体系统的电子系统较为复杂和精密,对成本的需求高。且要获得高精度的三维图像需要长时间的获取和处理二维图像,三维图像的实时性难以保证。The basic principle of underwater laser range-gated imaging technology is that the pulsed illumination laser working in the blue-green light band actively illuminates the target, and the high-precision control system controls the time when the detector receives the signal, so that only the reflected light of the target at a specific distance can be detected. The detector collects and images. In addition to obtaining the two-dimensional grayscale image of the target, the underwater laser range-gated imaging technology can also obtain depth data and calculate the three-dimensional information of the target by imaging targets at different distances through gating slices. However, in order to obtain high-precision three-dimensional information, the gated slice needs to be very thin, that is, the pulse width of the laser pulse and the gate width of the gated detector need to reach the nanosecond or even picosecond level. The electronic system of the overall system is relatively complex and precise. High cost requirements. In addition, it takes a long time to acquire and process two-dimensional images to obtain high-precision three-dimensional images, and it is difficult to guarantee the real-time performance of three-dimensional images.
水下双目立体视觉成像技术的基本原理是基于视差原理,通过不同位置的两套成像系统获取目标的不同图像,通过计算两幅图像的对应点位置偏差来获取深度信息,进而得到水下物体的三维信息。因为电磁波在水下的迅速衰减(红光10m以内,黄橙光10-30m,绿光100m左右,蓝光最深到500m),较深的水下目标难以获得环境光的照明,所以水下双目视觉系统需要附带主动照明光。而采用主动照明会导致信噪比低,成像制冷差。因为需要获取目标的全面色彩信息,成像距离受红光传输距离限制,典型水下双目视觉系统的探测距离仅为几米,成像距离过短。The basic principle of underwater binocular stereo vision imaging technology is based on the principle of parallax. Different images of the target are obtained through two sets of imaging systems at different positions, and depth information is obtained by calculating the position deviation of the corresponding points of the two images, and then the underwater object is obtained. three-dimensional information. Because of the rapid attenuation of electromagnetic waves underwater (red light within 10m, yellow-orange light 10-30m, green light about 100m, blue light up to 500m), it is difficult for deeper underwater targets to obtain ambient light illumination, so the underwater binocular Vision systems need to be accompanied by active lighting. The use of active lighting will result in a low signal-to-noise ratio and poor imaging cooling. Because the comprehensive color information of the target needs to be obtained, the imaging distance is limited by the transmission distance of red light. The detection distance of a typical underwater binocular vision system is only a few meters, and the imaging distance is too short.
综上所述,现有的水下三维成像技术均存在使其无法满足实际应用需求的缺点。To sum up, the existing underwater three-dimensional imaging technologies all have shortcomings that make them unable to meet the needs of practical applications.
发明内容SUMMARY OF THE INVENTION
有鉴于此,为了克服上述现有技术的缺陷,本发明提出了一种基于双目单探测器的水下三维成像系统。In view of this, in order to overcome the above-mentioned defects of the prior art, the present invention proposes an underwater three-dimensional imaging system based on a binocular single detector.
所述水下三维成像系统包括:控制模块、照明模块和成像模块;The underwater three-dimensional imaging system includes: a control module, an illumination module and an imaging module;
所述控制模块连接所述照明模块和所述成像模块,所述控制模块用于控制所述照明模块和所述成像模块的开启或关闭,和记录所述成像模块形成的图像;The control module is connected to the lighting module and the imaging module, and the control module is used to control the lighting module and the imaging module to be turned on or off, and to record the image formed by the imaging module;
所述照明模块包括照明光源和匀光组件,所述匀光组件用于使所述照明光源发出的照明光均匀,完成对目标的照明;The illumination module includes an illumination light source and a uniform light assembly, and the uniform light assembly is used to make the illumination light emitted by the illumination light source uniform to complete the illumination of the target;
所述成像模块包括镜头组件和探测器,所述镜头组件用于引导所述目标反射的光信号到达探测器成像。The imaging module includes a lens assembly and a detector, and the lens assembly is used to guide the light signal reflected by the target to reach the detector for imaging.
具体地,所述水下三维成像系统还包括水密装置;Specifically, the underwater three-dimensional imaging system further includes a watertight device;
所述匀光组件设置在所述水密装置上,所述匀光组件包括第一光学窗口、第二光学窗口和第三光学窗口,所述第一光学窗口和所述第二光学窗口设置在所述第三光学窗口的两侧,所述照明光源设置在所述水密装置内;The homogenizing assembly is arranged on the watertight device, and the homogenizing assembly includes a first optical window, a second optical window and a third optical window, and the first optical window and the second optical window are arranged at the same place. On both sides of the third optical window, the illumination light source is arranged in the watertight device;
所述照明光源发出的照明光通过所述第三光学窗口进入水体,所述目标反射的光信号通过所述第一光学窗口和所述第二光学窗口进入所述水密装置。The illumination light emitted by the illumination light source enters the water body through the third optical window, and the light signal reflected by the target enters the watertight device through the first optical window and the second optical window.
在一些实施例中,所述成像模块设置在所述水密装置内,所述镜头组件包括第一反射镜、第二反射镜、第三反射镜和镜头,所述第一反射镜和所述第二反射镜设置在所述第三反射镜的两侧;In some embodiments, the imaging module is disposed in the watertight device, the lens assembly includes a first reflector, a second reflector, a third reflector and a lens, the first reflector and the first reflector Two mirrors are arranged on both sides of the third mirror;
所述第一反射镜对应所述第一光学窗口设置,所述第一反射镜用于反射从所述第一光学窗口进入所述水密装置的光信号,所述第二反射镜对应所述第二光学窗口设置,所述第二反射镜用于反射从所述第二光学窗口进入所述水密装置的光信号,所述第一反射镜反射的光信号和所述第二反射镜反射的光信号通过所述第三反射镜反射进入所述镜头,所述光信号通过所述镜头到达所述探测器。The first reflecting mirror is arranged corresponding to the first optical window, the first reflecting mirror is used to reflect the light signal entering the watertight device from the first optical window, and the second reflecting mirror corresponds to the first reflecting mirror. Two optical windows are provided, the second reflector is used to reflect the light signal entering the watertight device from the second optical window, the light signal reflected by the first reflector and the light reflected by the second reflector The signal is reflected by the third mirror into the lens, and the optical signal passes through the lens to the detector.
所述第一反射镜反射的光信号和所述第二反射镜反射的光信号通过所述第三反射镜同时到达所述探测器进行成像。通过光学元件实现空间上间隔一段距离的双目立体视觉系统,并在单探测器的左右两边同时成像,相比现有技术而言具有减小系统复杂度、降低成本的优点。成像形成的两条光路能够将目标图像成像在探测器对称的左右两边,方便之后的图像处理。The light signal reflected by the first reflecting mirror and the light signal reflected by the second reflecting mirror pass through the third reflecting mirror and simultaneously reach the detector for imaging. The binocular stereo vision system spaced apart by a certain distance in space is realized by optical elements, and images are simultaneously imaged on the left and right sides of a single detector, which has the advantages of reducing system complexity and cost compared with the prior art. The two optical paths formed by imaging can image the target image on the symmetrical left and right sides of the detector, which is convenient for subsequent image processing.
在一些实施例中,所述成像模块设置在所述水密装置内,所述镜头组件包括第一镜头、第二镜头、第一反射镜、第二反射镜和第三反射镜,第三反射镜可转动地设置在所述第一反射镜和所述第二反射镜之间;In some embodiments, the imaging module is disposed in the watertight device, and the lens assembly includes a first lens, a second lens, a first reflector, a second reflector and a third reflector, and the third reflector rotatably disposed between the first reflector and the second reflector;
所述第一镜头和所述第一反射镜与所述第一光学窗口对应设置,从所述第一光学窗口进入所述水密装置的光信号经过所述第一镜头射向所述第一反射镜,所述第二镜头和所述第二反射镜与所述第二光学窗口对应设置,从所述第二光学窗口进入所述水密装置的光信号经过所述第二镜头射向所述第二反射镜;The first lens and the first reflection mirror are arranged corresponding to the first optical window, and the light signal entering the watertight device from the first optical window is emitted to the first reflection through the first lens The second lens and the second reflecting mirror are arranged corresponding to the second optical window, and the light signal entering the watertight device from the second optical window passes through the second lens and is directed to the first two mirrors;
所述第三反射镜用于阻挡所述第一反射镜反射的光信号,并反射所述第二反射镜反射的光信号到达所述探测器,或,所述第三反射镜用于阻挡所述第二反射镜反射的光信号,并反射所述第一反射镜反射的光信号到达所述探测器。The third reflector is used to block the light signal reflected by the first reflector, and reflect the light signal reflected by the second reflector to reach the detector, or the third reflector is used to block all the light signals. The light signal reflected by the second mirror is reflected, and the light signal reflected by the first mirror is reflected to reach the detector.
所述水密装置内还设置有驱动件,所述驱动件连接所述第三反射镜,所述驱动件用于驱动所述第三反射镜转动。The watertight device is also provided with a driving member, the driving member is connected to the third reflecting mirror, and the driving member is used to drive the third reflecting mirror to rotate.
所述第三反射镜阻挡所述第一反射镜反射的光信号,反射所述第二反射镜反射的光信号到达所述探测器进行成像,然后所述驱动件驱动所述第三反射镜转动,所述第三反射镜阻挡所述第二反射镜反射的光信号,反射所述第一反射镜反射的光信号到达所述探测器进行成像;The third reflecting mirror blocks the light signal reflected by the first reflecting mirror, reflects the light signal reflected by the second reflecting mirror and reaches the detector for imaging, and then the driving member drives the third reflecting mirror to rotate , the third reflector blocks the light signal reflected by the second reflector, and reflects the light signal reflected by the first reflector to reach the detector for imaging;
或,所述第三反射镜阻挡所述第二反射镜反射的光信号,反射所述第一反射镜反射的光信号进入所述探测器进行成像,然后所述驱动件驱动所述第三反射镜转动,所述第三反射镜阻挡所述第一反射镜反射的光信号,反射所述第二反射镜反射的光信号进入所述探测器进行成像。通过光学元件实现时间上间隔一段距离的双目立体视觉系统,并在单探测器感光元件的前后帧轮流成像,相比现有技术具有减小系统复杂度、降低成本的优点。Or, the third reflector blocks the light signal reflected by the second reflector, reflects the light signal reflected by the first reflector and enters the detector for imaging, and then the driving member drives the third reflector When the mirror rotates, the third mirror blocks the light signal reflected by the first mirror, and reflects the light signal reflected by the second mirror to enter the detector for imaging. The binocular stereo vision system with a certain distance in time is realized by optical elements, and images are alternately imaged in the frames before and after the photosensitive element of the single detector, which has the advantages of reducing the complexity of the system and reducing the cost compared with the prior art.
在一些实施例中,所述成像模块设置在所述水密装置内,所述镜头组件包括第一镜头、第二镜头、第一光阑、第二光阑、第一反射镜、第二反射镜和第三反射镜,第三反射镜设置在所述第一反射镜和所述第二反射镜之间,所述第一光阑设置在所述第一反射镜和所述第三反射镜之间,所述第二光阑设置在所述第二反射镜和所述第三反射镜之间;In some embodiments, the imaging module is disposed in the watertight device, and the lens assembly includes a first lens, a second lens, a first aperture, a second aperture, a first reflector, and a second reflector and a third reflection mirror, the third reflection mirror is arranged between the first reflection mirror and the second reflection mirror, and the first diaphragm is arranged between the first reflection mirror and the third reflection mirror , the second diaphragm is arranged between the second reflection mirror and the third reflection mirror;
所述第一镜头和所述第一反射镜与所述第一光学窗口对应设置,从所述第一光学窗口进入所述水密装置的光信号经过所述第一镜头进入所述第一反射镜,所述第二镜头和所述第二反射镜与所述第二光学窗口对应设置,从所述第二光学窗口进入所述水密装置的光信号经过所述第二镜头进入所述第二反射镜,所述第一反射镜反射的光信号经过所述第一光阑后通过所述第三反射镜反射到达所述探测器,所述第二反射镜反射的光信号经过所述第二光阑后通过所述第三反射镜反射到达所述探测器。The first lens and the first reflector are arranged corresponding to the first optical window, and the light signal entering the watertight device from the first optical window enters the first reflector through the first lens , the second lens and the second reflector are arranged corresponding to the second optical window, and the light signal entering the watertight device from the second optical window enters the second reflector through the second lens The optical signal reflected by the first reflecting mirror passes through the first aperture and is reflected by the third reflecting mirror to reach the detector, and the optical signal reflected by the second reflecting mirror passes through the second light After the diaphragm, it is reflected by the third mirror to reach the detector.
所述水密装置上设置有水密接头,所述控制模块通过水密电缆和水密网线连接所述水密接头。设置水密装置使水下三维成像系统能够进入水体中进行成像,水密接头能够使进入水体中的装置与控制模块实现稳定连接。The watertight device is provided with a watertight joint, and the control module is connected to the watertight joint through a watertight cable and a watertight network cable. The watertight device is arranged so that the underwater three-dimensional imaging system can enter the water body for imaging, and the watertight joint can realize stable connection between the device entering the water body and the control module.
所述水下三维成像系统还包括脉冲控制器,所述脉冲控制器的输入端连接所述控制模块,所述脉冲控制器的输出端连接所述照明光源和所述探测器。The underwater three-dimensional imaging system further includes a pulse controller, an input end of the pulse controller is connected to the control module, and an output end of the pulse controller is connected to the illumination light source and the detector.
综上所述,本发明的基于双目单探测器的水下三维成像系统具有以下有益效果:将水下双目视觉系统与单个探测器相结合,利用光学元件将原本空间上分开的两幅图像成像到同一个探测器上,具体是空间上在同一个探测器上分开,或者是时间上在同一个探测器上分开。用单个探测器和光学元件实现双目视觉系统,使得成像系统对水下目标三维信息的提取简单可行,也能够降低成本。To sum up, the underwater three-dimensional imaging system based on binocular single detector of the present invention has the following beneficial effects: combining the underwater binocular vision system with a single detector, and using optical elements to separate the two images that were originally spatially separated The images are imaged on the same detector, specifically spatially separated on the same detector, or temporally separated on the same detector. The binocular vision system is realized with a single detector and optical element, which makes the extraction of the three-dimensional information of the underwater target simple and feasible, and can also reduce the cost.
附图说明Description of drawings
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions in the embodiments of the present application more clearly, the following briefly introduces the drawings that are used in the description of the embodiments. Obviously, the drawings in the following description are only some embodiments of the present application. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without creative effort.
图1为本发明的实施例1的水下三维成像系统的结构示意图;1 is a schematic structural diagram of an underwater three-dimensional imaging system according to
图2为张正友标定法在空腔中和水体中的应用示意图;Fig. 2 is the application schematic diagram of Zhang Zhengyou's calibration method in cavity and water body;
图3为选通图像到深度信息的提取示意图;Fig. 3 is the extraction schematic diagram of gating image to depth information;
图4为本发明的实施例2的水下三维成像系统的结构示意图;4 is a schematic structural diagram of an underwater three-dimensional imaging system according to
图5为本发明的实施例3的水下三维成像系统的结构示意图。FIG. 5 is a schematic structural diagram of an underwater three-dimensional imaging system according to Embodiment 3 of the present invention.
附图标记:Reference number:
1-控制模块;2-照明光源;31-第一光学窗口;32-第二光学窗口;33-第三光学窗口;41-第一反射镜;42-第二反射镜;43-第三反射镜;44-驱动件;5-镜头;51-第一镜头;52-第二镜头;6-探测器;7-水密装置;71-水密接头;72-水密电缆和水密网线;8-脉冲控制器;91-第一光阑;92-第二光阑。1-control module; 2-illumination light source; 31-first optical window; 32-second optical window; 33-third optical window; 41-first reflector; 42-second reflector; 43-third reflector Mirror; 44-Driver; 5-Lens; 51-First Lens; 52-Second Lens; 6-Detector; 7-Watertight Device; 71-Watertight Connector; 72-Watertight Cable and Watertight Network Cable; 8-Pulse Control 91-first aperture; 92-second aperture.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
本发明提供了一种基于双目单探测器的水下三维成像系统,利用一个探测器捕获两条光路所成的像,通过得到的两张图像计算得到目标的三维信息。The invention provides an underwater three-dimensional imaging system based on a binocular single detector. One detector is used to capture images formed by two optical paths, and the three-dimensional information of the target is obtained by calculating the two obtained images.
本发明的水下三维成像系统具体包括:控制模块、照明模块和成像模块。The underwater three-dimensional imaging system of the present invention specifically includes: a control module, an illumination module and an imaging module.
控制模块连接照明模块和成像模块,控制模块用于控制照明模块和成像模块的开启或关闭,和记录成像模块形成的图像。照明模块包括照明光源和匀光组件,匀光组件用于使照明光源发出的照明光均匀以完成对目标的照明。成像模块包括镜头组件和探测器,镜头组件用于引导目标反射的光信号到达探测器成像。The control module is connected to the lighting module and the imaging module, and the control module is used to control the lighting module and the imaging module to be turned on or off, and to record the image formed by the imaging module. The illuminating module includes an illuminating light source and a uniform light component, and the uniform light component is used to make the illuminating light emitted by the illuminating light source uniform so as to complete the illumination of the target. The imaging module includes a lens assembly and a detector, and the lens assembly is used to guide the light signal reflected by the target to reach the detector for imaging.
实施例1Example 1
本实施例提供了一种基于双目单探测器的水下三维成像系统的具体结构。参见说明书附图1,本实施例的基于双目单探测器6的水下三维成像系统的控制模块1包括上位机,照明光源2为照明激光,匀光组件包括第一光学窗口31、第二光学窗口32和第三光学窗口33,镜头组件包括第一反射镜41、第二反射镜42、第三反射镜43和镜头5,第一反射镜41和第二反射镜42设置在第三反射镜43的两侧,探测器6为选通相机。设置有水密装置7用于容纳照明模块和成像模块,具体地,匀光组件设置在水密装置7上,照明光源2和成像模块设置在水密装置7内部。上位机位于水面上,水密装置7位于水体内,水密装置7上设置有水密接头71,上位机通过水密电缆和水密网线72连接水密接头71,水密接头71中引出线材连接水密装置7内部的照明光源2和成像模块的器件。This embodiment provides a specific structure of an underwater three-dimensional imaging system based on a binocular single detector. Referring to FIG. 1 of the description, the
照明光源2设置在探测器6的下方,照明光源2发出的照明光通过第三光学窗口33进入水体,目标反射的光信号通过第一光学窗口31和第二光学窗口32进入水密装置7。第一反射镜41对应第一光学窗口31设置,第一反射镜41反射从所述第一光学窗口31进入水密装置7的光信号。第二反射镜42对应第二光学窗口32设置,第二反射镜42反射从第二光学窗口32进入水密装置7的光信号。第一反射镜41反射的光信号和第二反射镜42反射的光信号通过第三反射镜43反射进入镜头5,光信号通过镜头5到达探测器6。第一反射镜41反射的光信号和第二反射镜42反射的光信号通过第三反射镜43能够同时到达探测器6进行成像。The
进一步,水密装置7内还设置有脉冲控制器8,脉冲控制器8的输入端连接控制模块1,脉冲控制器8的输出端连接照明光源2和探测器6。脉冲控制器8用于接收上位机的指令控制照明光源2发出照明光,和,在第一反射镜41反射的光信号和第二反射镜42反射的光信号通过第三反射镜43反射到达探测器6时控制探测器6打开电子快门。Further, the
本实施例提供的基于双目单探测器6的水下三维成像系统用于进行水下三维成像时,进行成像的过程包括:上位机发出指令让选通相机和照明激光处于待机状态,脉冲控制器8在接收到上位机的指令后向照明激光发射激励脉冲,使照明激光发出脉冲激光,脉冲激光通过第三光学窗口33进入水体并照亮水下目标。目标反射的光信号通过第一光学窗口31和第二光学窗口32进入水密装置7,水下三维成像系统中存在两条光路,其中一条光路经第一光学窗口31、第一反射镜41、第三反射镜43、镜头5到达选通相机,另一条光路经第二光学窗口32、第二反射镜42、第三反射镜43、镜头5到达选通相机。两条光路获取的目标图像到达选通相机时,脉冲控制器8发出的激励脉冲控制选通相机打开电子快门,让两条光路获取的图像各自覆盖选通相机的感光元件的一半面积。选通相机成像后输出图像,输出的图像通过水密电缆和水密网线72进入上位机,被程序记录。When the underwater three-dimensional imaging system based on the binocular
对输出至上位机的图像进行处理能够获得目标的深度信息,即三维信息。在图像处理过程中,将通过本实施例的水下三维成像系统输出的图像一分为二,能够用于计算目标的深度信息。如图2和图3所示,水下三维成像系统的内外参数通过张正友标定法在空气中和不同条件的水体中进行标定。通过标定后的水下三维成像系统和选通相机获取的来自水下三维成像系统的图像后,通过特征点找到两幅图中的对应点,借助标定后的相机参数,从而获得目标的深度信息。The depth information of the target, that is, the three-dimensional information, can be obtained by processing the image output to the host computer. In the image processing process, the image output by the underwater three-dimensional imaging system of this embodiment is divided into two parts, which can be used to calculate the depth information of the target. As shown in Figures 2 and 3, the internal and external parameters of the underwater 3D imaging system were calibrated in air and water bodies with different conditions by Zhang Zhengyou's calibration method. After the images from the underwater 3D imaging system are obtained through the calibrated underwater 3D imaging system and the gating camera, the corresponding points in the two images are found through the feature points, and the depth information of the target is obtained with the help of the calibrated camera parameters. .
在本实施例中,第三反射镜43为直角棱形反射镜,能够同时对水下三维成像系统中的两条光路中的光信号进行反射。In this embodiment, the third reflecting
本实施例的水下三维成像系统通过光学元件实现空间上间隔一段距离的双目立体视觉系统,并在单探测器6的左右两边同时成像,相比现有技术而言具有减小系统复杂度、降低成本的优点。成像形成的两条光路能够将目标图像成像在探测器6对称的左右两边,方便之后的图像处理。The underwater three-dimensional imaging system of this embodiment realizes a binocular stereo vision system spaced apart by a certain distance through optical elements, and simultaneously images the left and right sides of the
实施例2Example 2
本实施例提供了一种基于双目单探测器6的水下三维成像系统的具体结构。参见说明书附图4,本实施例的基于双目单探测器6的水下三维成像系统的控制模块1包括上位机,照明光源2为照明激光,匀光组件包括第一光学窗口31、第二光学窗口32和第三光学窗口33,镜头组件包括第一镜头51、第二镜头52、第一反射镜41、第二反射镜42和第三反射镜43,第三反射镜43可转动地设置在第一反射镜41和第二反射镜42之间,探测器6为选通相机。设置有水密装置7用于容纳照明模块和成像模块,具体地,匀光组件设置在水密装置7上,照明光源2和成像模块设置在水密装置7内部。上位机位于水面上,水密装置7位于水体内,水密装置7上设置有水密接头71,上位机通过水密电缆和水密网线72连接水密接头71,水密接头71中引出线材连接水密装置7内部的照明光源2和成像模块的器件。This embodiment provides a specific structure of an underwater three-dimensional imaging system based on a binocular
照明光源2设置在探测器6的下方,照明光源2发出的照明光通过第三光学窗口33进入水体,目标反射的光信号通过第一光学窗口31和第二光学窗口32进入水密装置7。第一镜头51和第一反射镜41与第一光学窗口31对应设置,从第一光学窗口31进入水密装置7的光信号经过第一镜头51射向第一反射镜41。第二镜头52和第二反射镜42与第二光学窗口32对应设置,从第二光学窗口32进入水密装置7的光信号经过第二镜头52射向第二反射镜42。第三反射镜43能够阻挡第一反射镜41反射的光信号,并反射第二反射镜42反射的光信号到达探测器6,或,阻挡第二反射镜42反射的光信号,并反射第一反射镜41反射的光信号到达探测器6。通过控制第三反射镜43的朝向能够使水下三维成像系统的两路光信号分时成像,连续两幅图像进入控制模块1的处理系统中计算深度信息。The
进一步,水密装置7内还设置有脉冲控制器8和驱动件44。脉冲控制器8的输入端连接控制模块1,脉冲控制器8的输出端连接照明光源2和探测器6。脉冲控制器8用于接收上位机的指令控制照明光源2发出照明光,和,在第一反射镜41反射的光信号和第二反射镜42反射的光信号通过第三反射镜43反射到达探测器6时控制探测器6打开电子快门。驱动件44的输入端连接控制模块1,输出端连接第三反射镜43,驱动件44用于驱动第三反射镜43转动。在一些实施例中,设置马达为驱动件44。Further, the
本实施例提供的基于双目单探测器6的水下三维成像系统用于进行水下三维成像时,进行成像的过程包括:上位机发出指令让选通相机和照明激光处于待机状态,脉冲控制器8在接收到上位机的指令后向照明激光发射激励脉冲,使照明激光发出脉冲激光,脉冲激光通过第三光学窗口33进入水体并照亮水下目标。目标反射的光信号通过第一光学窗口31和第二光学窗口32进入水密装置7,水下三维成像系统中存在两条能够成像的光路,其中一条光路经第一光学窗口31、第一镜头51、第一反射镜41、第三反射镜43到达选通相机,另一条光路经第二光学窗口32、第二镜头52、第二反射镜42、第三反射镜43到达选通相机。When the underwater three-dimensional imaging system based on the binocular
在本实施例中,第三反射镜43为转镜,使得水下三维成像系统中的两路光信号能够分时成像。具体地,当第三反射镜43以如图4所示的状态设置时,第一镜头51和第一反射镜41采集的光信号被挡住,通过第二反射镜42反射的光信号能够被第三反射镜43反射从而到达选通相机进行成像。选通相机输出图像后,驱动件44驱动第三反射镜43转动,此时第二镜头52和第二反射镜42采集的光信号被挡住,通过第一反射镜41反射的光信号能够被第三反射镜43反射从而到达选通相机进行成像。优选地,驱动件44每次驱动第三反射镜43转动的角度均为180°,便于之后对到达探测器6成像的图像进行处理。In this embodiment, the third reflecting
本实施例的水下三维成像系统成像过程中只要两路光信号是分时成像即可,具体的成像顺序可以是:第三反射镜43阻挡第一反射镜41反射的光信号,反射第二反射镜42反射的光信号到达探测器6进行成像,所述驱动件44驱动第三反射镜43转动,第三反射镜43阻挡第二反射镜42反射的光信号,反述第一反射镜41反射的光信号到达探测器6进行成像。或,第三反射镜43阻挡第二反射镜42反射的光信号,反射第一反射镜41反射的光信号进入探测器6进行成像,然后驱动件44驱动第三反射镜43转动,第三反射镜43阻挡第一反射镜41反射的光信号,反射第二反射镜42反射的光信号进入探测器6进行成像。In the imaging process of the underwater three-dimensional imaging system of this embodiment, as long as the two optical signals are time-sharing imaging, the specific imaging sequence can be: the third reflecting
光路到达探测器6后形成的图像输出至上位机进行记录,对输出至上位机的图像进行处理能够获得目标的深度信息,即三维信息。在图像处理过程中,将通过本实施例的水下三维成像系统连续输出的两张图像能够用于计算目标的深度信息。如图2和图3所示,水下三维成像系统的内外参数通过张正友标定法在空气中和不同条件的水体中进行标定。通过标定后的水下三维成像系统和选通相机获取的来自水下三维成像系统的图像后,通过特征点找到两幅图中的对应点,借助标定后的相机参数,从而获得目标的深度信息。The image formed after the optical path reaches the
本实施例的水下三维成像系统通过光学元件实现时间上间隔一段距离的双目立体视觉系统,并在单探测器6感光元件的前后帧轮流成像,相比现有技术具有减小系统复杂度、降低成本的优点。The underwater three-dimensional imaging system of this embodiment realizes a binocular stereo vision system separated by a certain distance in time through optical elements, and takes turns to image the frames before and after the photosensitive element of the
实施例3Example 3
参见说明书附图5,本实施例的基于双目单探测器6的水下三维成像系统的控制模块1包括上位机,照明光源2为照明激光,匀光组件包括第一光学窗口31、第二光学窗口32和第三光学窗口33,镜头组件包括第一镜头51、第二镜头52、第一光阑91、第二光阑92、第一反射镜41、第二反射镜42和第三反射镜43,第三反射镜43设置在第一反射镜41和第二反射镜42之间,第一光阑91设置在第一反射镜41和第三反射镜43之间,第二光阑92设置在第二反射镜42和第三反射镜43之间,探测器6为选通相机。设置有水密装置7用于容纳照明模块和成像模块,具体地,匀光组件设置在水密装置7上,照明光源2和成像模块设置在水密装置7内部。上位机位于水面上,水密装置7位于水体内,水密装置7上设置有水密接头71,上位机通过水密电缆和水密网线72连接水密接头71,水密接头71中引出线材连接水密装置7内部的照明光源2和成像模块的器件。Referring to FIG. 5 of the description, the
照明光源2设置在探测器6的下方,照明光源2发出的照明光通过第三光学窗口33进入水体,目标反射的光信号通过第一光学窗口31和第二光学窗口32进入水密装置7。第一镜头51和第一反射镜41与第一光学窗口31对应设置,从第一光学窗口31进入水密装置7的光信号经过第一镜头51进入第一反射镜41,第二镜头52和第二反射镜42与第二光学窗口32对应设置,从第二光学窗口32进入水密装置7的光信号经过第二镜头52进入第二反射镜42,第一反射镜41反射的光信号经过第一光阑91后通过第三反射镜43反射到达探测器6,第二反射镜42反射的光信号讲过第二光阑92后通过第三反射镜43反射到达探测器6。The
本实施例提供的基于双目单探测器6的水下三维成像系统用于进行水下三维成像时,目标反射的光信号通过第一光学窗口31和第二光学窗口32进入水密装置7,水下三维成像系统中存在两条光路,其中一条光路经第一光学窗口31、第一镜头51、第一反射镜41、第一光阑91、第三反射镜43到达选通相机,另一条光路经第二光学窗口32、第二镜头52、第二反射镜42、第二光阑92、第三反射镜43到达选通相机。两条光路获取的目标图像到达选通相机时,脉冲控制器8发出的激励脉冲控制选通相机打开电子快门,让两条光路获取的图像各自覆盖选通相机的感光元件的一半面积。选通相机成像后输出图像,输出的图像通过水密电缆和水密网线72进入上位机,被程序记录。When the underwater three-dimensional imaging system based on the binocular
与实施例1所述的方案相比,本实施例的水下三维成像系统能够让两条光路具有更大的视野。Compared with the solution described in
其他与实施例1相同的内容在此不再赘述。Other contents that are the same as those in
可选地,第一反射镜41和第二反射镜42可以是平面反射镜,也可以是凹面反射镜。相比之下,第一反射镜41和第二反射镜42采用凹面反射镜可以拓展成像视野,但是双目光学系统的参数标定会更为复杂,从成像探测器6中获取三维信息更难。Optionally, the first reflecting
本发明也可以被应用到其他需要三维测量但是探测器6价格昂贵的成像系统中,如特定波段的红外相机、日盲紫外相机等等。The present invention can also be applied to other imaging systems that require three-dimensional measurement but the
综上所述,本发明提供的基于双目单探测器的水下三维成像系统将水下双目视觉系统与单个探测器相结合,利用光学元件将原本空间上分开的两幅图像成像到同一个探测器上,具体是空间上在同一个探测器上分开,或者是时间上在同一个探测器上分开。用单个探测器和光学元件实现双目视觉系统,使得成像系统对水下目标三维信息的提取简单可行,也能够降低成本。To sum up, the underwater three-dimensional imaging system based on binocular single detector provided by the present invention combines the underwater binocular vision system with a single detector, and uses optical elements to image the two images that were originally spatially separated into the same one. On one detector, specifically, the space is separated on the same detector, or the time is separated on the same detector. The binocular vision system is realized with a single detector and optical element, which makes the extraction of the three-dimensional information of the underwater target simple and feasible, and can also reduce the cost.
本发明通过一套探测器加上光学系统,构建分辨率高、成像距离远、成像速度快的水下三维成像系统。本发明的水下三维成像系统形成的图像能够从单幅图像中获取目标的三维信息,能够实现二维灰度图和三维深度信息的实时显示。The invention constructs an underwater three-dimensional imaging system with high resolution, long imaging distance and fast imaging speed through a set of detectors and an optical system. The image formed by the underwater three-dimensional imaging system of the present invention can obtain the three-dimensional information of the target from a single image, and can realize the real-time display of the two-dimensional grayscale image and the three-dimensional depth information.
以上所述仅为本发明的较佳实施例,并不用以限制本发明,除了以上实施例以外,还可以具有不同的变形例,以上实施例的技术特征可以相互组合,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention and are not intended to limit the present invention. In addition to the above embodiments, different modifications are also possible. The technical features of the above embodiments can be combined with each other. Within the scope of the present invention, any modifications, equivalent replacements, improvements, etc. made should be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111479971.5A CN114353689A (en) | 2021-12-06 | 2021-12-06 | An underwater three-dimensional imaging system based on binocular single detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111479971.5A CN114353689A (en) | 2021-12-06 | 2021-12-06 | An underwater three-dimensional imaging system based on binocular single detector |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114353689A true CN114353689A (en) | 2022-04-15 |
Family
ID=81098059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111479971.5A Pending CN114353689A (en) | 2021-12-06 | 2021-12-06 | An underwater three-dimensional imaging system based on binocular single detector |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114353689A (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203012138U (en) * | 2012-12-05 | 2013-06-19 | 中国工程物理研究院流体物理研究所 | Underwater detection object optics imaging device |
CN104460220A (en) * | 2014-12-31 | 2015-03-25 | 苏州江奥光电科技有限公司 | Device utilizing single camera for achieving binocular vision three-dimensional imaging |
CN107063117A (en) * | 2017-03-15 | 2017-08-18 | 上海大学 | Underwater laser synchronous scanning range of triangle imaging system and method based on optical field imaging |
CN110200315A (en) * | 2018-12-11 | 2019-09-06 | 何永辉 | A kind of imaging device for cigarette apparent visual detection machine |
CN110530286A (en) * | 2019-08-23 | 2019-12-03 | 北京航空航天大学 | A Novel Single-Camera 3D Digital Image Correlation System Using Combined Prism |
CN111060036A (en) * | 2020-01-16 | 2020-04-24 | 苏州灵猴机器人有限公司 | Device for detecting straightness of cylinder |
CN111505659A (en) * | 2020-05-08 | 2020-08-07 | 中国科学院半导体研究所 | Three-dimensional imaging method and imaging system for noise calculation of underwater water bodies |
-
2021
- 2021-12-06 CN CN202111479971.5A patent/CN114353689A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203012138U (en) * | 2012-12-05 | 2013-06-19 | 中国工程物理研究院流体物理研究所 | Underwater detection object optics imaging device |
CN104460220A (en) * | 2014-12-31 | 2015-03-25 | 苏州江奥光电科技有限公司 | Device utilizing single camera for achieving binocular vision three-dimensional imaging |
CN107063117A (en) * | 2017-03-15 | 2017-08-18 | 上海大学 | Underwater laser synchronous scanning range of triangle imaging system and method based on optical field imaging |
CN110200315A (en) * | 2018-12-11 | 2019-09-06 | 何永辉 | A kind of imaging device for cigarette apparent visual detection machine |
CN110530286A (en) * | 2019-08-23 | 2019-12-03 | 北京航空航天大学 | A Novel Single-Camera 3D Digital Image Correlation System Using Combined Prism |
CN111060036A (en) * | 2020-01-16 | 2020-04-24 | 苏州灵猴机器人有限公司 | Device for detecting straightness of cylinder |
CN111505659A (en) * | 2020-05-08 | 2020-08-07 | 中国科学院半导体研究所 | Three-dimensional imaging method and imaging system for noise calculation of underwater water bodies |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105093235B (en) | A kind of synchronous scanning intersection measurement fusion of imaging system | |
JP5512675B2 (en) | Rolling camera system | |
CN109581787B (en) | An underwater imaging device and method using laser spot scanning | |
US7940444B2 (en) | Method and apparatus for synchronous laser beam scanning | |
JP2010156690A (en) | Sensor and image system for remote object detection | |
CN103690141A (en) | Internal rectal optical, optoacoustic and ultrasonic multimode imaging endoscope and imaging method thereof | |
CN113596298B (en) | Underwater laser synchronous field scanning imaging device and method | |
CN107063117A (en) | Underwater laser synchronous scanning range of triangle imaging system and method based on optical field imaging | |
CN105530399B (en) | Indoor footprint harvester based on linearly polarized light glancing incidence formula scan imaging method | |
CN114264249B (en) | Three-dimensional measurement system and method for deep hole narrow inner cavity | |
CN107836112B (en) | Optical projection system | |
CN103499335A (en) | Three-dimensional distance measuring method and device | |
JP2009031091A (en) | Device for measuring rotary body | |
CN114353689A (en) | An underwater three-dimensional imaging system based on binocular single detector | |
CN110879216B (en) | Multi-frame shadow diagnosis method | |
CN215813342U (en) | Depth data measuring head and partial depth data measuring apparatus | |
CN111830525B (en) | Laser triangle ranging system | |
CN110677569A (en) | Visual device for detecting inside of high-temperature narrow cavity | |
JP7664658B2 (en) | Depth data measuring head, computing device and measuring method | |
CN109358335A (en) | A ranging device combining solid-state area array lidar and dual CCD cameras | |
CN205407958U (en) | Indoor footprint collection system based on linearly polarized light glancing incidence formula scanning imaging method | |
JP7314659B2 (en) | Range finder and camera | |
US20230084212A1 (en) | Three-dimensional space camera and photographing method therefor | |
JP2004028602A (en) | Laser radar system for monitoring, and imaging method | |
CN113596309A (en) | Real-time acquisition device and method for underwater differential polarization image |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20220415 |
|
RJ01 | Rejection of invention patent application after publication |