CN114350697A - Preparation method and catalytic application of strain for improving caffeic acid yield - Google Patents
Preparation method and catalytic application of strain for improving caffeic acid yield Download PDFInfo
- Publication number
- CN114350697A CN114350697A CN202210133120.3A CN202210133120A CN114350697A CN 114350697 A CN114350697 A CN 114350697A CN 202210133120 A CN202210133120 A CN 202210133120A CN 114350697 A CN114350697 A CN 114350697A
- Authority
- CN
- China
- Prior art keywords
- plasmid
- caffeic acid
- strain
- seq
- gene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- QAIPRVGONGVQAS-DUXPYHPUSA-N trans-caffeic acid Chemical compound OC(=O)\C=C\C1=CC=C(O)C(O)=C1 QAIPRVGONGVQAS-DUXPYHPUSA-N 0.000 title claims abstract description 154
- ACEAELOMUCBPJP-UHFFFAOYSA-N (E)-3,4,5-trihydroxycinnamic acid Natural products OC(=O)C=CC1=CC(O)=C(O)C(O)=C1 ACEAELOMUCBPJP-UHFFFAOYSA-N 0.000 title claims abstract description 77
- 229940074360 caffeic acid Drugs 0.000 title claims abstract description 77
- 235000004883 caffeic acid Nutrition 0.000 title claims abstract description 77
- QAIPRVGONGVQAS-UHFFFAOYSA-N cis-caffeic acid Natural products OC(=O)C=CC1=CC=C(O)C(O)=C1 QAIPRVGONGVQAS-UHFFFAOYSA-N 0.000 title claims abstract description 77
- 238000002360 preparation method Methods 0.000 title claims abstract description 31
- 230000003197 catalytic effect Effects 0.000 title claims abstract description 13
- NGSWKAQJJWESNS-UHFFFAOYSA-N 4-coumaric acid Chemical compound OC(=O)C=CC1=CC=C(O)C=C1 NGSWKAQJJWESNS-UHFFFAOYSA-N 0.000 claims abstract description 76
- 239000013612 plasmid Substances 0.000 claims abstract description 76
- 238000006243 chemical reaction Methods 0.000 claims abstract description 44
- 108010074633 Mixed Function Oxygenases Proteins 0.000 claims abstract description 39
- 229940093681 4-coumaric acid Drugs 0.000 claims abstract description 38
- 238000000034 method Methods 0.000 claims abstract description 33
- 102000004190 Enzymes Human genes 0.000 claims abstract description 11
- 108090000790 Enzymes Proteins 0.000 claims abstract description 11
- 101710088194 Dehydrogenase Proteins 0.000 claims abstract description 10
- 230000006698 induction Effects 0.000 claims abstract description 4
- 238000004113 cell culture Methods 0.000 claims abstract 2
- 239000002773 nucleotide Substances 0.000 claims description 60
- 125000003729 nucleotide group Chemical group 0.000 claims description 60
- 108090000623 proteins and genes Proteins 0.000 claims description 46
- 239000012634 fragment Substances 0.000 claims description 40
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 24
- VZTDIZULWFCMLS-UHFFFAOYSA-N ammonium formate Chemical compound [NH4+].[O-]C=O VZTDIZULWFCMLS-UHFFFAOYSA-N 0.000 claims description 21
- 239000000243 solution Substances 0.000 claims description 19
- 239000002028 Biomass Substances 0.000 claims description 18
- 238000010276 construction Methods 0.000 claims description 18
- 238000004128 high performance liquid chromatography Methods 0.000 claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- 239000012880 LB liquid culture medium Substances 0.000 claims description 9
- 238000000855 fermentation Methods 0.000 claims description 7
- 230000004151 fermentation Effects 0.000 claims description 7
- 239000001963 growth medium Substances 0.000 claims description 7
- 239000008055 phosphate buffer solution Substances 0.000 claims description 7
- 239000013049 sediment Substances 0.000 claims description 7
- 230000004544 DNA amplification Effects 0.000 claims description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 6
- 238000005520 cutting process Methods 0.000 claims description 6
- 239000002054 inoculum Substances 0.000 claims description 6
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 claims description 6
- 238000003752 polymerase chain reaction Methods 0.000 claims description 6
- 230000002194 synthesizing effect Effects 0.000 claims description 6
- 229940041514 candida albicans extract Drugs 0.000 claims description 5
- 239000012137 tryptone Substances 0.000 claims description 5
- 239000012138 yeast extract Substances 0.000 claims description 5
- 230000002210 biocatalytic effect Effects 0.000 claims description 4
- 102000038379 digestive enzymes Human genes 0.000 claims description 4
- 108091007734 digestive enzymes Proteins 0.000 claims description 4
- 238000004321 preservation Methods 0.000 claims description 4
- 230000035484 reaction time Effects 0.000 claims description 4
- 229920000936 Agarose Polymers 0.000 claims description 3
- 229910019142 PO4 Inorganic materials 0.000 claims description 3
- 230000003213 activating effect Effects 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 238000002635 electroconvulsive therapy Methods 0.000 claims description 3
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 claims description 3
- 239000002609 medium Substances 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 239000011780 sodium chloride Substances 0.000 claims description 3
- 241001052560 Thallis Species 0.000 claims description 2
- 238000009472 formulation Methods 0.000 claims description 2
- 230000001939 inductive effect Effects 0.000 claims description 2
- 239000008363 phosphate buffer Substances 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims 2
- 239000000758 substrate Substances 0.000 abstract description 7
- 239000000126 substance Substances 0.000 abstract description 5
- 241000894006 Bacteria Species 0.000 abstract description 4
- 239000005515 coenzyme Substances 0.000 abstract description 4
- 241000588724 Escherichia coli Species 0.000 abstract description 3
- 230000002503 metabolic effect Effects 0.000 abstract description 3
- 230000003834 intracellular effect Effects 0.000 abstract description 2
- 108091008146 restriction endonucleases Proteins 0.000 abstract 2
- 238000001514 detection method Methods 0.000 description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 230000001580 bacterial effect Effects 0.000 description 6
- 238000007865 diluting Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 241000196324 Embryophyta Species 0.000 description 3
- 238000006555 catalytic reaction Methods 0.000 description 3
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 3
- 229910000397 disodium phosphate Inorganic materials 0.000 description 3
- 230000001976 improved effect Effects 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 239000002253 acid Substances 0.000 description 2
- 238000003287 bathing Methods 0.000 description 2
- 230000036983 biotransformation Effects 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 244000019459 Cynara cardunculus Species 0.000 description 1
- 235000019106 Cynara scolymus Nutrition 0.000 description 1
- 241000192091 Deinococcus radiodurans Species 0.000 description 1
- 241000628997 Flos Species 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- 241000588749 Klebsiella oxytoca Species 0.000 description 1
- 102000008109 Mixed Function Oxygenases Human genes 0.000 description 1
- 241000186364 Mycobacterium intracellulare Species 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 241000221961 Neurospora crassa Species 0.000 description 1
- 241000607715 Serratia marcescens Species 0.000 description 1
- 241000343776 Serratia plymuthica AS9 Species 0.000 description 1
- 241000254113 Tribolium castaneum Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- ZVQOOHYFBIDMTQ-UHFFFAOYSA-N [methyl(oxido){1-[6-(trifluoromethyl)pyridin-3-yl]ethyl}-lambda(6)-sulfanylidene]cyanamide Chemical compound N#CN=S(C)(=O)C(C)C1=CC=C(C(F)(F)F)N=C1 ZVQOOHYFBIDMTQ-UHFFFAOYSA-N 0.000 description 1
- PQLVXDKIJBQVDF-UHFFFAOYSA-N acetic acid;hydrate Chemical compound O.CC(O)=O PQLVXDKIJBQVDF-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000000941 bile Anatomy 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 210000000748 cardiovascular system Anatomy 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012269 metabolic engineering Methods 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 1
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- -1 phenolic acid compounds Chemical class 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229940098362 serratia marcescens Drugs 0.000 description 1
- 238000006250 specific catalysis Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0071—Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0006—Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/42—Hydroxy-carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y114/00—Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
- C12Y114/14—Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with reduced flavin or flavoprotein as one donor, and incorporation of one atom of oxygen (1.14.14)
- C12Y114/14009—4-Hydroxyphenylacetate 3-monooxygenase (1.14.14.9)
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
The invention discloses a preparation method and catalytic application of a strain for improving caffeic acid yield, wherein a starting plasmid is selected, a monooxygenase gene HpaBC is connected to a restriction enzyme site of the plasmid to obtain a circular plasmid pHG04, the obtained circular plasmid pHG04 is used as a template, a dehydrogenase gene FDH is connected to the restriction enzyme site of the circular plasmid pHG04 to obtain a circular recombinant plasmid pHG05, and then escherichia coli metabolic bacteria is used as the starting strain to introduce the circular recombinant plasmid pHG05 by a chemical conversion method to obtain a constructed recombinant strain sHG 05; the constructed recombinant strain sHG05 is used as biological enzyme, and is subjected to cell culture and induction, and then 4-coumaric acid is catalyzed to prepare caffeic acid, and the yield of the caffeic acid is detected. The invention takes escherichia coli metabolic bacteria as an initial strain, introduces recombinant plasmid pHG05 through a chemical conversion method, obtains a new strain for producing caffeic acid, can be used as biological enzyme to catalyze 4-coumaric acid to prepare caffeic acid, can provide sufficient intracellular coenzyme for the reaction process, reduces substrate residue and improves the yield of the caffeic acid.
Description
Technical Field
The invention relates to a preparation method and catalytic application of a strain for improving caffeic acid yield, and belongs to the technical field of metabolic engineering.
Background
Caffeic acid is widely distributed in herba Artemisiae Scopariae, herba Cynara scolymus, flos Lonicerae, etc., belongs to phenolic acid compounds, and has pharmacological effects of protecting cardiovascular system, resisting mutagenesis and cancer, resisting bacteria and virus, reducing blood lipid and blood sugar, resisting leukemia, regulating immunity, promoting bile flow, stopping bleeding, and resisting oxidation. Firstly, caffeic acid is extracted from plants, but the content is low, a large number of plants are consumed, the occupied area is large, and the plant culture is greatly influenced by weather; with the development of industry, caffeic acid was synthesized by chemical method, but because the caffeic acid has cis-form and trans-form difference in structure and substrate residue, the yield is low, and the complete separation of single pure caffeic acid is difficult. In view of this, the invention provides a preparation method and a catalytic application of a strain for improving the yield of caffeic acid.
Disclosure of Invention
Aiming at the problems in the prior art, the invention provides a preparation method of a bacterial strain for improving the yield of caffeic acid, which takes escherichia coli metabolic bacteria as an original bacterial strain, introduces a recombinant plasmid pHG05 through a chemical conversion method to obtain a novel bacterial strain for producing caffeic acid, and takes the bacterial strain as a biological enzyme for catalyzing 4-coumaric acid to prepare caffeic acid, so that sufficient intracellular coenzyme can be provided for the reaction process, the substrate residue is reduced, and the yield of caffeic acid is improved.
In order to achieve the purpose, the invention adopts the following technical scheme:
the invention provides a preparation method of a strain for improving caffeic acid yield, which comprises the following specific preparation steps:
s1, constructing a plasmid pHG 04: using plasmid as a template, carrying out gene amplification by polymerase chain reaction, digesting by DpnI (methylated template digestive enzyme) to obtain a linearized vector, marking the linearized vector as a linearized vector 1, synthesizing a monooxygenase gene HpaBC through a whole gene, marking the monooxygenase gene HpaBC as a gene fragment 1, connecting the gene fragment 1 at the enzyme cutting site of the linearized vector 1 by a connecting kit to obtain a circular plasmid, and marking the circular plasmid as pHG 04;
s2, constructing a recombinant plasmid pHG 05: taking the circular plasmid pHG04 constructed in the step S1 as a template, performing gene amplification through polymerase chain reaction, digesting by DpnI to obtain a linearized vector, marking the linearized vector as a linearized vector 2, synthesizing dehydrogenase gene FDH through a whole gene, marking the dehydrogenase gene FDH as a gene fragment 2, connecting the enzyme cutting sites of the linearized vector 2 with the gene fragment 2 through a connecting kit to obtain a recombinant circular plasmid, and marking the recombinant circular plasmid as pHG 05;
s3, constructing a recombinant strain sHG 05: adding 1 μ l of the circular recombinant plasmid pHG05 constructed in the step S2 into 100 μ l of BL21 (DE 3) competent cells, carrying out ice bath for 30min, placing in a water bath for hot compress for heat shock treatment, immediately carrying out ice bath for 2min, adding 1ml of LB liquid culture medium, placing at 37 ℃ for culture for 1h to recover thalli, finally uniformly coating the cells containing the circular recombinant plasmid pHG05 on an agarose culture dish, and picking a single colony to obtain a recombinant strain, wherein the recombinant strain is marked as sHG 05;
s4, preservation of thallus: and (4) adding glycerol into the recombinant strain sHG05 constructed in the step S3 to enable the final concentration of the recombinant strain sHG05 to be 15-40%, and placing the recombinant strain in a refrigerator at the temperature of-80 ℃ for preservation.
Wherein, the plasmid in the step S1 is one of a plasmid pADuet, a plasmid pCDuet, a plasmid pEDuet or a plasmid pRDuet, the nucleotide sequence of the plasmid pADuet is shown in SEQ ID NO.1, the nucleotide sequence of the plasmid pCDuet is shown in SEQ ID NO.2, the nucleotide sequence of the plasmid pEDuet is shown in SEQ ID NO.3, and the nucleotide sequence of the plasmid pRDuet is shown in SEQ ID NO. 4.
Wherein the nucleotide sequence of the monooxygenase gene HpaBC in the step S1 is any one of the sequences shown in SEQ ID NO. 5-SEQ ID NO. 8.
Wherein the nucleotide sequence of the dehydrogenase gene FDH in the step S2 is any one sequence shown in SEQ ID NO. 9-SEQ ID NO. 11.
Wherein the water bath temperature in step S3 is 42 deg.C, and the hot compress time is 60S.
The invention also provides a catalysis method for preparing caffeic acid by using the prepared bacterial strain, which comprises the following specific catalysis steps:
S.S1, fermentation culture: activating the recombinant strain sHG05 preserved in the glycerol into an LB liquid culture medium according to the inoculum size of 1% in volume ratio, carrying out overnight culture at 37 ℃, and transferring the overnight-cultured recombinant strain sHG05 into 50ml of TB fermentation culture medium according to the inoculum size of 1% in volume ratio;
s.s2, inducible expression: when the OD600 of the cell reaches 0.2-1.2, adding IPTG (isopropyl-beta-D-thiogalactoside) with the final concentration of 0.1-0.3 mM, and carrying out induced expression for 12-24 h at 20-40 ℃;
s.s3, biotransformation: after the induction expression is finished, centrifuging for 3-15 min under the conditions that the temperature is 4 ℃ and the rotating speed is 2000-8000 rpm, taking cell sediment, placing the cell sediment into 10ml of phosphate buffer solution, adding 4-coumaric acid and ammonium formate, then carrying out biocatalytic reaction, and then measuring the content of caffeic acid by adopting high performance liquid chromatography.
Wherein the cell biomass in the step S.s3 is 8-18 g/m3The concentration of the 4-coumaric acid is 1-10 g/L, and the concentration of the ammonium formate is 1-5 g/L.
Wherein, in the step S.s3, the biocatalytic reaction temperature is 25-40 ℃, and the reaction time is 2-6 h.
Wherein the formulation of the phosphate buffer in step s.s 3: mixing solution A and solution B according to the volume ratio of 39:61, and adjusting the pH value to 7.0 to obtain a phosphate buffer solution, wherein the solution A is NaH with the concentration of 0.2mM2PO4·2H2O solution, wherein the B solution is Na with the concentration of 0.2mM2HPO4·12H2And (4) O solution.
The invention has the beneficial effects that: the invention uses BL21 (DE 3) competent cells as an original strain, introduces recombinant plasmid pHG05 by a chemical conversion method, and constructs and obtains a recombinant strain sHG 05; the recombinant strain sHG05 constructed by the invention can be used as a biological enzyme for catalyzing 4-coumaric acid to prepare caffeic acid, and during the catalytic reaction process, dehydrogenase oxidizes formate to CO2Meanwhile, NAD + is reduced into NADH to continuously assist monooxygenase, so that sufficient internal coenzyme is provided for the reaction process, and the yield of caffeic acid is effectively improved; meanwhile, the method for preparing the caffeic acid by catalytic application improves the yield of the caffeic acid, greatly reduces the residual quantity of the substrate, improves the purity of the caffeic acid, and solves the problems that the prior art has more substrate residues, low purity of the caffeic acid and low yield in the biological preparation process of the caffeic acid, and influences the next separation and purification.
Drawings
FIG. 1 is a process for producing caffeic acid according to the present invention; FIG. 2 is a standard graph of caffeic acid according to the present invention; FIG. 3 is a standard curve for 4-coumaric acid of the present invention; FIG. 4 is a plasmid map of recombinant plasmid pHG05 of the present invention; FIG. 5 is a chromatogram of example 1 of the present invention; FIG. 6 is a chromatogram of example 6 of the present invention; FIG. 7 is a chromatogram of example 7 of the present invention.
Detailed Description
In order to more clearly and completely illustrate the present invention, the following examples are given by way of illustration of the present invention, and are not intended to limit the present invention.
The manufacturer of BL21 (DE 3) competent cells used in the present invention is Scintaceae Biotechnology Co., Ltd; na used2HPO4·12H2O、Na2HPO4·12H2The manufacturers of O, 99% grade caffeic acid and 99% grade 4-coumaric acid are the chemical reagents of the national drug group.
The LB liquid culture medium used in the invention has the following formula: in each liter of culture medium, 10g of tryptone, 5g of yeast extract, 10g of NaCl and the balance of water, and the pH is controlled to be 5.5-6.5.
The formula of the TB fermentation medium used in the invention is as follows: adding 12g of tryptone, 24g of yeast extract, 4ml of glycerol and the balance of water into each liter of culture medium, and controlling the pH to be 5.5-6.5.
The phosphate buffer solution used in the invention has the following formula: solution A: taking Na2HPO4·12H2O3.12 g was dissolved in distilled water and dissolved to 100ml to obtain NaH at a concentration of 0.2mM2PO4·2H2O solution; and B, liquid B: taking Na2HPO4·12H2O7.17g was dissolved in distilled water, and the solution was adjusted to 100ml to obtain Na having a concentration of 0.2mM2HPO4·12H2O solution; mixing the solution A and the solution B in a ratio of 39:61, and adjusting the pH value to 7.0 to obtain the phosphate buffer solution.
Standard curves for caffeic acid and 4-coumaric acid
The contents of caffeic acid and 4-coumaric acid are measured by high performance liquid chromatography, and the chromatographic conditions are as follows: the chromatographic column is characterized in that the temperature of the chromatographic column is 322 ℃, the mobile phase A is 0.1% acetic acid water, the mobile phase D is methanol, the volume ratio of the mobile phase A to the mobile phase D is shown in Table 1, the flow rate is 1ml/min, and the sample injection volume is as follows: 5 mul, retention time of 22 min; by adopting the chromatographic condition, the peak time of caffeic acid is about 9.6min, and the peak time of 4-coumaric acid is about 13.4 min.
TABLE 1
Respectively taking 100mg of 99% grade caffeic acid and 99% grade 4-coumaric acid, respectively dissolving with methanol, transferring into a 50ml volumetric flask, and diluting with methanol to scale; preparing 12 10ml volumetric flasks, transferring 50ml of caffeic acid with constant volume into 1ml, 2ml, 4ml, 6ml, 8ml to 6 l0ml volumetric flasks respectively, and diluting to the scale with methanol; transferring 50ml of constant-volume 4-coumaric acid into 1ml, 2ml, 4ml, 6ml, 8ml to 6 l0ml volumetric flasks respectively, filtering with a 0.22 mu m filter head by using a disposable sterile syringe, sampling according to the chromatographic conditions, drawing a standard curve of the caffeic acid and a standard curve of the 4-coumaric acid respectively by taking the concentration as a horizontal coordinate and the peak area as a vertical coordinate, and obtaining the standard curve of the caffeic acid, wherein the y =3 x 107x - 198377,R2 = 1(R2Is a linear fitting constant), the standard curve thereof is shown in fig. 2, and a standard curve y =2 × 10 of 4-coumaric acid is obtained7x + 433989,R2 = 0.998(R2Is a linear fitting constant) whose standard curve is shown in fig. 3.
Examples
1. Construction of recombinant strain sHG 05:
the method comprises the following steps: using plasmid as a template, carrying out gene amplification through polymerase chain reaction, digesting by DNA digestive enzyme to obtain a linearized vector, marking the linearized vector as a linearized vector 1, synthesizing monooxygenase gene HpaBC through a whole gene, marking the monooxygenase gene HpaBC as a gene fragment 1, connecting the gene fragment 1 at the enzyme cutting site of the linearized vector 1 through a connecting kit to obtain a circular plasmid, and marking the circular plasmid as pHG 04; wherein the plasmid is one of a plasmid pADuet with a nucleotide sequence shown as SEQ ID NO.1, a plasmid pCDuet with a nucleotide sequence shown as SEQ ID NO.2, a plasmid pEDuet with a nucleotide sequence shown as SEQ ID NO.3 or a pRDuet with a nucleotide sequence shown as SEQ ID NO. 4; the nucleotide sequence of the monooxygenase gene HpaBC is any one sequence shown in SEQ ID NO. 5-SEQ ID NO. 8;
step two: using the circular plasmid pHG04 as a template, performing gene amplification through polymerase chain reaction, digesting by DNA digestive enzyme to obtain a linearized vector, marking the linearized vector as a linearized vector 2, synthesizing dehydrogenase gene FDH through a whole gene, marking the gene fragment 2, connecting the enzyme cutting site of the linearized vector 2 with the gene fragment 2 through a connecting kit to obtain a recombinant circular plasmid, and marking the recombinant circular plasmid as pHG 05; wherein the nucleotide sequence of the dehydrogenase gene FDH is any one sequence shown in SEQ ID NO. 9-SEQ ID NO. 11;
step three: adding 1 μ l of the above circular recombinant plasmid pHG05 into 100 μ l of BL21 (DE 3) competent cells, ice-bathing for 30min, placing in 42 deg.C water bath for hot compress for 60s for heat shock treatment, immediately ice-bathing for 2min, adding 1ml of LB liquid culture medium, placing at 37 deg.C for culture for 1h to recover thallus, uniformly coating the cells containing circular recombinant plasmid pHG05 on agarose culture dish, picking single colony to obtain recombinant strain, and marking as sHG 05; and (4) adding glycerol into the recombinant strain sHG05 constructed in the step S3 to enable the final concentration of the recombinant strain sHG05 to be 15-40%, and placing the recombinant strain in a refrigerator at the temperature of-80 ℃ for preservation.
2. The preparation method of the caffeic acid comprises the following steps:
the method comprises the following steps: activating the recombinant strain sHG05 preserved in the glycerol into an LB liquid culture medium according to the inoculum size of 1% in volume ratio for overnight culture, and transferring the recombinant strain sHG05 subjected to overnight culture into 50ml of TB fermentation medium according to the inoculum size of 1% in volume ratio;
step two: when the OD600 of the cell reaches 0.2-1.2, adding IPTG (isopropyl-beta-D-thiogalactoside) with the final concentration of 0.1-0.3 mM, and carrying out induced expression for 12-24 h at 20-40 ℃;
step three: after the induction expression is finished, centrifuging for 3-15 min under the conditions that the temperature is 4 ℃ and the rotating speed is 2000-8000 rpm, taking cell sediment, placing the cell sediment into 10ml of phosphate buffer solution, adding 4-coumaric acid and ammonium formate, placing the cell sediment at a certain temperature for reaction, then sampling, filtering the sample by using a 0.22 mu m filter head through a disposable sterile injector, diluting the sample by 10-20 times according to a caffeic acid standard curve, and measuring the content of caffeic acid by adopting high performance liquid chromatography.
Example 1
The procedure of the steps for the construction of the recombinant strain sHG05 and the preparation of caffeic acid of the example was used in this example 1: taking a plasmid pCDuet with a nucleotide sequence shown as SEQ ID NO.2 as a template, taking a monooxygenase gene HpaBC with a nucleotide sequence shown as SEQ ID NO.6 as a gene fragment 1, taking a monooxygenase gene HpaBC with a nucleotide sequence shown as SEQ ID NO.9 as a gene fragment 2, and ensuring that the cell biomass is 8g/m3The adding amount of 4-coumaric acid is 1g/L, the adding amount of ammonium formate is 1g/L, the reaction temperature is 25 ℃, samples are sampled, filtered and diluted after 1.9h of reaction, the result is shown in Table 2 by high performance liquid chromatography detection, and the chromatogram is shown in figure 5.
Example 2
The procedure of the steps for the construction of the recombinant strain sHG05 and the preparation of caffeic acid of the example was used in this example 2: taking a plasmid pCDuet with a nucleotide sequence shown as SEQ ID NO.2 as a template, taking a monooxygenase gene HpaBC with a nucleotide sequence shown as SEQ ID NO.6 as a gene fragment 1, taking a monooxygenase gene HpaBC with a nucleotide sequence shown as SEQ ID NO.9 as a gene fragment 2, and ensuring that the cell biomass is 8g/m3The addition amount of 4-coumaric acid is 1g/L, the addition amount of ammonium formate is 0.9g/L, the reaction temperature is 30 ℃, samples are sampled, filtered and diluted after 2 hours of reaction, and the results are shown in Table 2 after detection by high performance liquid chromatography.
Example 3
The procedure of the steps for the construction of the recombinant strain sHG05 and the preparation of caffeic acid of the example was used in this example 3: taking a plasmid pCDuet with a nucleotide sequence shown as SEQ ID NO.2 as a template, taking a monooxygenase gene HpaBC with a nucleotide sequence shown as SEQ ID NO.6 as a gene fragment 1, taking a monooxygenase gene HpaBC with a nucleotide sequence shown as SEQ ID NO.9 as a gene fragment 2, and taking the cell biomass as 6g/m3The adding amount of the 4-coumaric acid is 1g/L, the adding amount of the ammonium formate is 1g/L, the reaction temperature is 30 ℃, and the mixture is sampled and filtered after reacting for 2 hoursFiltering, diluting, and detecting by high performance liquid chromatography, the results are shown in table 2.
Example 4
The procedure of the steps for the construction of the recombinant strain sHG05 and the preparation of caffeic acid of the example was used in this example 4: taking a plasmid pCDuet with a nucleotide sequence shown as SEQ ID NO.2 as a template, taking a monooxygenase gene HpaBC with a nucleotide sequence shown as SEQ ID NO.6 as a gene fragment 1, taking a monooxygenase gene HpaBC with a nucleotide sequence shown as SEQ ID NO.9 as a gene fragment 2, and ensuring that the cell biomass is 8g/m3The addition amount of 4-coumaric acid is 1g/L, the addition amount of ammonium formate is 1g/L, the reaction temperature is 30 ℃, samples are sampled, filtered and diluted after 2 hours of reaction, and the results are shown in Table 2 through high performance liquid chromatography detection.
Example 5
The procedure of the steps for the construction of the recombinant strain sHG05 and the preparation of caffeic acid of the example was used in this example 5: taking a plasmid pCDuet with a nucleotide sequence shown as SEQ ID NO.2 as a template, taking a monooxygenase gene HpaBC with a nucleotide sequence shown as SEQ ID NO.6 as a gene fragment 1, taking a monooxygenase gene HpaBC with a nucleotide sequence shown as SEQ ID NO.10 as a gene fragment 2, and ensuring that the cell biomass is 8g/m3The addition amount of 4-coumaric acid is 3g/L, the addition amount of ammonium formate is 1.5g/L, the reaction temperature is 25 ℃, samples are sampled, filtered and diluted after 4 hours of reaction, and the results are shown in Table 2 after detection by high performance liquid chromatography.
Example 6
The procedure of the steps for the construction of the recombinant strain sHG05 and the preparation of caffeic acid of the example was used in this example 6: taking a plasmid pCDuet with a nucleotide sequence shown as SEQ ID NO.1 as a template, taking a monooxygenase gene HpaBC with a nucleotide sequence shown as SEQ ID NO.8 as a gene fragment 1, taking a monooxygenase gene HpaBC with a nucleotide sequence shown as SEQ ID NO.9 as a gene fragment 2, and ensuring that the cell biomass is 12g/m3The addition amount of 4-coumaric acid is 6.5g/L, the addition amount of ammonium formate is 3.2g/L, the reaction temperature is 35 ℃, samples are sampled, filtered and diluted after 4 hours of reaction, and the results are shown in Table 2 through high performance liquid chromatography detection, and the chromatogram is shown in FIG. 6.
Example 7
In this example 7The procedure of the steps for the construction of the recombinant strain sHG05 and the preparation of caffeic acid used in the examples: taking a plasmid pCDuet with a nucleotide sequence shown as SEQ ID NO.4 as a template, taking a monooxygenase gene HpaBC with a nucleotide sequence shown as SEQ ID NO.5 as a gene fragment 1, taking a monooxygenase gene HpaBC with a nucleotide sequence shown as SEQ ID NO.11 as a gene fragment 2, and taking the cell biomass as 18g/m3The addition amount of 4-coumaric acid is 10g/L, the addition amount of ammonium formate is 5g/L, the reaction temperature is 40 ℃, samples are sampled, filtered and diluted after 6 hours of reaction, and the results are shown in Table 2 and the chromatogram is shown in FIG. 7 through high performance liquid chromatography detection.
Example 8
The procedure of the steps for the construction of the recombinant strain sHG05 and the preparation of caffeic acid of the example was used in this example 8: taking a plasmid pCDuet with a nucleotide sequence shown as SEQ ID NO.3 as a template, taking a monooxygenase gene HpaBC with a nucleotide sequence shown as SEQ ID NO.7 as a gene fragment 1, taking a monooxygenase gene HpaBC with a nucleotide sequence shown as SEQ ID NO.10 as a gene fragment 2, and ensuring that the cell biomass is 12g/m3The addition amount of 4-coumaric acid is 10g/L, the addition amount of ammonium formate is 5g/L, the reaction temperature is 35 ℃, samples are sampled, filtered and diluted after 6 hours of reaction, and the results are shown in Table 2 through high performance liquid chromatography detection.
Example 9
The procedure of the steps for the construction of the recombinant strain sHG05 and the preparation of caffeic acid of the example was used in this example 9: taking a plasmid pCDuet with a nucleotide sequence shown as SEQ ID NO.3 as a template, taking a monooxygenase gene HpaBC with a nucleotide sequence shown as SEQ ID NO.7 as a gene fragment 1, taking a monooxygenase gene HpaBC with a nucleotide sequence shown as SEQ ID NO.11 as a gene fragment 2, and taking the cell biomass as 18g/m3The addition amount of 4-coumaric acid is 10g/L, the addition amount of ammonium formate is 5g/L, the reaction temperature is 42 ℃, samples are sampled, filtered and diluted after 6 hours of reaction, and the results are shown in Table 2 through high performance liquid chromatography detection.
Example 10
The procedure of the steps for the construction of the recombinant strain sHG05 and the preparation of caffeic acid of the example was used in this example 10: taking a plasmid pCDuet with a nucleotide sequence shown as SEQ ID NO.3 as a template and taking the nucleotide sequenceThe monooxygenase gene HpaBC shown as SEQ ID NO.7 is taken as a gene fragment 1, the monooxygenase gene HpaBC shown as SEQ ID NO.9 in nucleotide sequence is taken as a gene fragment 2, and the cell biomass is 18g/m3The addition amount of 4-coumaric acid is 10.5g/L, the addition amount of ammonium formate is 5g/L, the reaction temperature is 40 ℃, samples are sampled, filtered and diluted after 6 hours of reaction, and the results are shown in Table 2 after high performance liquid chromatography detection.
Example 11
The procedure of the steps for the construction of the recombinant strain sHG05 and the preparation of caffeic acid of the example was used in this example 11: taking a plasmid pCDuet with a nucleotide sequence shown as SEQ ID NO.3 as a template, taking a monooxygenase gene HpaBC with a nucleotide sequence shown as SEQ ID NO.7 as a gene fragment 1, taking a monooxygenase gene HpaBC with a nucleotide sequence shown as SEQ ID NO.9 as a gene fragment 2, and ensuring that the cell biomass is 20g/m3The addition amount of 4-coumaric acid is 10g/L, the addition amount of ammonium formate is 5g/L, the reaction temperature is 40 ℃, samples are sampled, filtered and diluted after 6 hours of reaction, and the results are shown in Table 2 through high performance liquid chromatography detection.
Example 12
The procedure of the steps for the construction of the recombinant strain sHG05 and the preparation of caffeic acid of the example was used in this example 12: taking a plasmid pCDuet with a nucleotide sequence shown as SEQ ID NO.4 as a template, taking a monooxygenase gene HpaBC with a nucleotide sequence shown as SEQ ID NO.5 as a gene fragment 1, taking a monooxygenase gene HpaBC with a nucleotide sequence shown as SEQ ID NO.11 as a gene fragment 2, and taking the cell biomass as 18g/m3The addition amount of 4-coumaric acid is 10g/L, the addition amount of ammonium formate is 5g/L, the reaction temperature is 22 ℃, samples are sampled, filtered and diluted after 6 hours of reaction, and the results are shown in Table 2 through high performance liquid chromatography detection.
Example 13
The procedure of the steps for the construction of the recombinant strain sHG05 and the preparation of caffeic acid of the example was used in this example 13: taking a plasmid pCDuet with a nucleotide sequence shown as SEQ ID NO.4 as a template, taking a monooxygenase gene HpaBC with a nucleotide sequence shown as SEQ ID NO.8 as a gene fragment 1, taking a monooxygenase gene HpaBC with a nucleotide sequence shown as SEQ ID NO.10 as a gene fragment 2, and taking the cell biomass as 18g/m3The addition amount of 4-coumaric acid is 10g/L, the addition amount of ammonium formate is 5.3g/L, the reaction temperature is 25 ℃, samples are sampled, filtered and diluted after 6 hours of reaction, and the results are shown in Table 2 after high performance liquid chromatography detection.
Example 14
The procedure of the steps for the construction of the recombinant strain sHG05 and the preparation of caffeic acid of the example was used in this example 14: taking a plasmid pCDuet with a nucleotide sequence shown as SEQ ID NO.1 as a template, taking a monooxygenase gene HpaBC with a nucleotide sequence shown as SEQ ID NO.5 as a gene fragment 1, taking a monooxygenase gene HpaBC with a nucleotide sequence shown as SEQ ID NO.11 as a gene fragment 2, and taking the cell biomass as 18g/m3The adding amount of the 4-coumaric acid is 10g/L, the adding amount of the ammonium formate is 5g/L, the reaction temperature is 27 ℃, samples are sampled, filtered and diluted after 6.2h of reaction, and the results are shown in Table 2 through high performance liquid chromatography detection.
TABLE 2
Residual quantity g/L of coumaric acid | Caffeic acid yield g/L | Conversion rate of caffeic acid | Residual quantity g/L of coumaric acid | Caffeic acid yield g/L | Conversion rate of caffeic acid | ||
Example 1 | 0.1 | 0.981 | 89.31% | Example 8 | 0.013 | 10.907 | 99.29% |
Example 2 | 0.08 | 1.003 | 91.29% | Example 9 | 0.1 | 10.791 | 98.24% |
Example 3 | 0.996 | 0.987 | 89.85% | Example 10 | 0.5 | 10.9 | 94.50% |
Example 4 | 0.003 | 1.089 | 99.14% | Example 11 | 0.175 | 10.706 | 97.46% |
Example 5 | 0.009 | 3.27 | 99.23% | Example 12 | 0.8 | 10.028 | 91.29% |
Example 6 | 0.008 | 7.093 | 99.34% | Example 13 | 0.4 | 10.53 | 95.86% |
Example 7 | 0.017 | 10.905 | 99.27% | Example 14 | 0.2 | 10.682 | 97.24% |
From the above examples, examples 1 to 14 and table 2, it can be found that the heavy material constructed by the present inventionThe group strain sHG05 can be used as biological enzyme, can be well applied to catalyze 4-coumaric acid to prepare caffeic acid, provides sufficient internal coenzyme for the reaction process, and improves the yield of caffeic acid; meanwhile, from example 4 to example 8, the discovery that the cell biomass is 8-18 g/m in the biotransformation that the recombinant strain sHG05 catalyzes 4-coumaric acid to generate caffeic acid3The concentration of the 4-coumaric acid is 1-10 g/L, the concentration of the ammonium formate is 1-5 g/L, the reaction temperature is 25-40 ℃, and the reaction time is 2-6 hours, so that the 4-coumaric acid is efficiently converted into the caffeic acid, the yield of the caffeic acid product is more than 99%, the yield of the caffeic acid is high, the residual quantity of the 4-coumaric acid substrate is greatly reduced, the purity of the caffeic acid is also effectively improved, and further, the cell biomass is preferably 8-18 g/m3The concentration of the 4-coumaric acid is 1-10 g/L, the concentration of the ammonium formate is 1-5 g/L, the reaction temperature is 25-40 ℃, and the reaction time is 2-6 h, so that the preparation method and the catalytic application of the strain provided by the invention are used as the environment of the biological catalytic reaction, the separation and purification of the caffeic acid are facilitated, and the problems that in the prior art, the separation and purification of the next step are influenced due to more substrate residues, low caffeic acid purity and low yield in the biological preparation process of the caffeic acid are solved.
Finally, it should be noted that the above embodiments are only used for illustrating and not limiting the technical solutions of the present invention, and although the present invention has been described in detail with reference to the above embodiments, it should be understood by those skilled in the art that modifications or equivalent substitutions can be made to the present invention without departing from the spirit and scope of the present invention, and all modifications or partial substitutions should be covered by the scope of the claims of the present invention.
Sequence listing
<110> Nanjing Hegu Biotechnology Ltd
<120> bacterial strain for improving caffeic acid yield and catalytic preparation method
<160> 11
<170> SIPOSequenceListing 1.0
<210> 1
<211> 3185
<212> DNA
<213> Artificial sequence
<400> 1
ggggaattgt gagcggataa caattcccct gtagaaataa ttttgtttaa ctttaataag 60
gagatatacc atgggcagca gccatactag cgcagcttaa ttaacctagg ctgctgccac 120
cgctgagcaa taactagcat aaccccttgg ggcctctaaa cgggtcttga ggggtttttt 180
gctgaaacct caggcatttg agaagcacac ggtcacactg cttccggtag tcaataaacc 240
ggtaaaccag caatagacat aagcggctat ttaacgaccc tgccctgaac cgacgaccgg 300
gtcgaatttg ctttcgaatt tctgccattc atccgcttat tatcacttat tcaggcgtag 360
caccaggcgt ttaagggcac caataactgc cttaaaaaaa ttacgccccg ccctgccact 420
catcgcagta ctgttgtaat tcattaagca ttctgccgac atggaagcca tcacagacgg 480
catgatgaac ctgaatcgcc agcggcatca gcaccttgtc gccttgcgta taatatttgc 540
ccatagtgaa aacgggggcg aagaagttgt ccatattggc cacgtttaaa tcaaaactgg 600
tgaaactcac ccagggattg gctgagacga aaaacatatt ctcaataaac cctttaggga 660
aataggccag gttttcaccg taacacgcca catcttgcga atatatgtgt agaaactgcc 720
ggaaatcgtc gtggtattca ctccagagcg atgaaaacgt ttcagtttgc tcatggaaaa 780
cggtgtaaca agggtgaaca ctatcccata tcaccagctc accgtctttc attgccatac 840
ggaactccgg atgagcattc atcaggcggg caagaatgtg aataaaggcc ggataaaact 900
tgtgcttatt tttctttacg gtctttaaaa aggccgtaat atccagctga acggtctggt 960
tataggtaca ttgagcaact gactgaaatg cctcaaaatg ttctttacga tgccattggg 1020
atatatcaac ggtggtatat ccagtgattt ttttctccat tttagcttcc ttagctcctg 1080
aaaatctcga taactcaaaa aatacgcccg gtagtgatct tatttcatta tggtgaaagt 1140
tggaacctct tacgtgccga tcaacgtctc aagagggccg cggcaaagcc gtttttccat 1200
aggctccgcc cccctgacaa gcatcacgaa atctgacgct caaatcagtg gtggcgaaac 1260
ccgacaggac tataaagata ccaggcgttt cccctggcgg ctccctcgtg cgctctcctg 1320
ttcctgcctt tcggtttacc ggtgtcattc cgctgttatg gccgcgtttg tctcattcca 1380
cgcctgacac tcagttccgg gtaggcagtt cgctccaagc tggactgtat gcacgaaccc 1440
cccgttcagt ccgaccgctg cgccttatcc ggtaactatc gtcttgagtc caacccggaa 1500
agacatgcaa aagcaccact ggcagcagcc actggtaatt gatttagagg agttagtctt 1560
gaagtcatgc gccggttaag gctaaactga aaggacaagt tttggtgact gcgctcctcc 1620
aagccagtta cctcggttca aagagttggt agctcagaga accttcgaaa aaccgccctg 1680
caaggcggtt ttttcgtttt cagagcaaga gattacgcgc agaccaaaac gatctcaaga 1740
agatcatctt attaatcaga taaaatattt ctagatttca gtgcaattta tctcttcaaa 1800
tgtagcacct gaagtcagcc ccatacgata taagttgtaa ttctcatgtt agtcatgccc 1860
cgcgcccacc ggaaggagct gactgggttg aaggctctca agggcatcgg tcgagatccc 1920
ggtgcctaat gagtgagcta acttacatta attgcgttgc gctcactgcc cgctttccag 1980
tcgggaaacc tgtcgtgcca gctgcattaa tgaatcggcc aacgcgcggg gagaggcggt 2040
ttgcgtattg ggcgccaggg tggtttttct tttcaccagt gagacgggca acagctgatt 2100
gcccttcacc gcctggccct gagagagttg cagcaagcgg tccacgctgg tttgccccag 2160
caggcgaaaa tcctgtttga tggtggttaa cggcgggata taacatgagc tgtcttcggt 2220
atcgtcgtat cccactaccg agatgtccgc accaacgcgc agcccggact cggtaatggc 2280
gcgcattgcg cccagcgcca tctgatcgtt ggcaaccagc atcgcagtgg gaacgatgcc 2340
ctcattcagc atttgcatgg tttgttgaaa accggacatg gcactccagt cgccttcccg 2400
ttccgctatc ggctgaattt gattgcgagt gagatattta tgccagccag ccagacgcag 2460
acgcgccgag acagaactta atgggcccgc taacagcgcg atttgctggt gacccaatgc 2520
gaccagatgc tccacgccca gtcgcgtacc gtcttcatgg gagaaaataa tactgttgat 2580
gggtgtctgg tcagagacat caagaaataa cgccggaaca ttagtgcagg cagcttccac 2640
agcaatggca tcctggtcat ccagcggata gttaatgatc agcccactga cgcgttgcgc 2700
gagaagattg tgcaccgccg ctttacaggc ttcgacgccg cttcgttcta ccatcgacac 2760
caccacgctg gcacccagtt gatcggcgcg agatttaatc gccgcgacaa tttgcgacgg 2820
cgcgtgcagg gccagactgg aggtggcaac gccaatcagc aacgactgtt tgcccgccag 2880
ttgttgtgcc acgcggttgg gaatgtaatt cagctccgcc atcgccgctt ccactttttc 2940
ccgcgttttc gcagaaacgt ggctggcctg gttcaccacg cgggaaacgg tctgataaga 3000
gacaccggca tactctgcga catcgtataa cgttactggt ttcacattca ccaccctgaa 3060
ttgactctct tccgggcgct atcatgccat accgcgaaag gttttgcgcc attcgatggt 3120
gtccgggatc tcgacgctct cccttatgcg actcctgcat taggaaatta atacgactca 3180
ctata 3185
<210> 2
<211> 2877
<212> DNA
<213> Artificial sequence
<400> 2
ggggaattgt gagcggataa caattcccct gtagaaataa ttttgtttaa ctttaataag 60
gagatatacc atgggcagca gccattgagg ggttttttgc tgaaacctca ggcatttgag 120
aagcacacgg tcacactgct tccggtagtc aataaaccgg taaaccagca atagacataa 180
gcggctattt aacgaccctg ccctgaaccg acgaccgggt catcgtggcc ggatcttgcg 240
gcccctcggc ttgaacgaat tgttagacat tatttgccga ctaccttggt gatctcgcct 300
ttcacgtagt ggacaaattc ttccaactga tctgcgcgcg aggccaagcg atcttcttct 360
tgtccaagat aagcctgtct agcttcaagt atgacgggct gatactgggc cggcaggcgc 420
tccattgccc agtcggcagc gacatccttc ggcgcgattt tgccggttac tgcgctgtac 480
caaatgcggg acaacgtaag cactacattt cgctcatcgc cagcccagtc gggcggcgag 540
ttccatagcg ttaaggtttc atttagcgcc tcaaatagat cctgttcagg aaccggatca 600
aagagttcct ccgccgctgg acctaccaag gcaacgctat gttctcttgc ttttgtcagc 660
aagatagcca gatcaatgtc gatcgtggct ggctcgaaga tacctgcaag aatgtcattg 720
cgctgccatt ctccaaattg cagttcgcgc ttagctggat aacgccacgg aatgatgtcg 780
tcgtgcacaa caatggtgac ttctacagcg cggagaatct cgctctctcc aggggaagcc 840
gaagtttcca aaaggtcgtt gatcaaagct cgccgcgttg tttcatcaag ccttacggtc 900
accgtaacca gcaaatcaat atcactgtgt ggcttcaggc cgccatccac tgcggagccg 960
tacaaatgta cggccagcaa cgtcggttcg agatggcgct cgatgacgcc aactacctct 1020
gatagttgag tcgatacttc ggcgatcacc gcttccctca tactcttcct ttttcaatat 1080
tattgaagca tttatcaggg ttattgtctc atgagcggat acatatttga atgtatttag 1140
aaaaataaac aaatagctag ctcactcggt cgctacgctc cgggcgtgag actgcggcgg 1200
gcgctgcgga cacatacaaa gttacccaca gattccgtgg ataagcaggg gactaacatg 1260
tgaggcaaaa cagcagggcc gcgccggtgg cgtttttcca taggctccgc cctcctgcca 1320
accacggtta agcagttccc caactgactt aaccttcgat caaaccacct ccccaggtgg 1380
ttttttcgtt tacagggcaa aagattacgc gcagaaaaaa aggatctcaa gaagatcctt 1440
tgatcttttc tactgaaccg ctctagattt cagtgcaatt tatctcttca aatgtagcac 1500
ctgaagtcag ccccatacga tataagttgt aattctcatg ttagtcatgc cccgcgccca 1560
ccggaaggag ctgactgggt tgaaggctct caagggcatc ggtcgagatc ccggtgccta 1620
atgagtgagc taacttacat taattgcgtt gcgctcactg cccgctttcc agtcgggaaa 1680
cctgtcgtgc cagctgcatt aatgaatcgg ccaacgcgcg gggagaggcg gtttgcgtat 1740
tgggcgccag ggtggttttt cttttcacca gtgagacggg caacagctga ttgcccttca 1800
ccgcctggcc ctgagagagt tgcagcaagc ggtccacgct ggtttgcccc agcaggcgaa 1860
aatcctgttt gatggtggtt aacggcggga tataacatga gctgtcttcg gtatcgtcgt 1920
atcccactac cgagatgtcc gcaccaacgc gcagcccgga ctcggtaatg gcgcgcattg 1980
cgcccagcgc catctgatcg ttggcaacca gcatcgcagt gggaacgatg ccctcattca 2040
gcatttgcat ggtttgttga aaaccggaca tggcactcca gtcgccttcc cgttccgcta 2100
tcggctgaat ttgattgcga gtgagatatt tatgccagcc agccagacgc agacgcgccg 2160
agacagaact taatgggccc gctaacagcg cgatttgctg gtgacccaat gcgaccagat 2220
gctccacgcc cagtcgcgta ccgtcttcat gggagaaaat aatactgttg atgggtgtct 2280
ggtcagagac atcaagaaat aacgccggaa cattagtgca ggcagcttcc acagcaatgg 2340
catcctggtc atccagcgga tagttaatga tcagcccact gacgcgttgc gcgagaagat 2400
tgtgcaccgc cgctttacag gcttcgacgc cgcttcgttc taccatcgac accaccacgc 2460
tggcacccag ttgatcggcg cgagatttaa tcgccgcgac aatttgcgac ggcgcgtgca 2520
gggccagact ggaggtggca acgccaatca gcaacgactg tttgcccgcc agttgttgtg 2580
ccacgcggtt gggaatgtaa ttcagctccg ccatcgccgc ttccactttt tcccgcgttt 2640
tcgcagaaac gtggctggcc tggttcacca cgcgggaaac ggtctgataa gagacaccgg 2700
catactctgc gacatcgtat aacgttactg gtttcacatt caccaccctg aattgactct 2760
cttccgggcg ctatcatgcc ataccgcgaa aggttttgcg ccattcgatg gtgtccggga 2820
tctcgacgct ctcccttatg cgactcctgc attaggaaat taatacgact cactata 2877
<210> 3
<211> 4588
<212> DNA
<213> Artificial sequence
<400> 3
ggggaattgt gagcggataa caattcccct ctagaaataa ttttgtttaa ctttaagaag 60
gagatatacc atgggcagca gccgtctact agcgcagctt aattaaccta ggctgctgcc 120
accgctgagc aataactagc ataacccctt ggggcctcta aacgggtctt gaggggtttt 180
ttgctgaaag gaggaactat atccggattg gcgaatggga cgcgccctgt agcggcgcat 240
taagcgcggc gggtgtggtg gttacgcgca gcgtgaccgc tacacttgcc agcgccctag 300
cgcccgctcc tttcgctttc ttcccttcct ttctcgccac gttcgccggc tttccccgtc 360
aagctctaaa tcgggggctc cctttagggt tccgatttag tgctttacgg cacctcgacc 420
ccaaaaaact tgattagggt gatggttcac gtagtgggcc atcgccctga tagacggttt 480
ttcgcccttt gacgttggag tccacgttct ttaatagtgg actcttgttc caaactggaa 540
caacactcaa ccctatctcg gtctattctt ttgatttata agggattttg ccgatttcgg 600
cctattggtt aaaaaatgag ctgatttaac aaaaatttaa cgcgaatttt aacaaaatat 660
taacgtttac aatttctggc ggcacgatgg catgagatta tcaaaaagga tcttcaccta 720
gatcctttta aattaaaaat gaagttttaa atcaatctaa agtatatatg agtaaacttg 780
gtctgacagt taccaatgct taatcagtga ggcacctatc tcagcgatct gtctatttcg 840
ttcatccata gttgcctgac tccccgtcgt gtagataact acgatacggg agggcttacc 900
atctggcccc agtgctgcaa tgataccgcg agacccacgc tcaccggctc cagatttatc 960
agcaataaac cagccagccg gaagggccga gcgcagaagt ggtcctgcaa ctttatccgc 1020
ctccatccag tctattaatt gttgccggga agctagagta agtagttcgc cagttaatag 1080
tttgcgcaac gttgttgcca ttgctacagg catcgtggtg tcacgctcgt cgtttggtat 1140
ggcttcattc agctccggtt cccaacgatc aaggcgagtt acatgatccc ccatgttgtg 1200
caaaaaagcg gttagctcct tcggtcctcc gatcgttgtc agaagtaagt tggccgcagt 1260
gttatcactc atggttatgg cagcactgca taattctctt actgtcatgc catccgtaag 1320
atgcttttct gtgactggtg agtactcaac caagtcattc tgagaatagt gtatgcggcg 1380
accgagttgc tcttgcccgg cgtcaatacg ggataatacc gcgaaggtaa ctggcttcag 1440
cagagcgcag ataccaaata ctgtccttct agtgtagccg tagttaggcc accacttcaa 1500
gaactctgta gcaccgccta catacctcgc tctgctaatc ctgttaccag tggctgctgc 1560
cagtggcgat aagtcgtgtc ttaccgggtt ggactcaaga cgatagttac cggataaggc 1620
gcagcggtcg ggctgaacgg ggggttcgtg cacacagccc agcttggagc gaacgaccta 1680
caccgaactg agatacctac agcgtgagct atgagaaagc gccacgcttc ccgaagggag 1740
aaaggcggac aggtatccgg taagcggcag ggtcggaaca ggagagcgca cgagggagct 1800
tccaggggga aacgcctggt atctttatag tcctgtcggg tttcgccacc tctgacttga 1860
gcgtcgattt ttgtgatgct cgtcaggggg gcggagccta tggaaaaacg ccagcaacgc 1920
ggccttttta cggttcctgg ccttttgctg gccttttgct cacatgttct ttcctgcgtt 1980
atcccctgat tctgtggata accgtattac cgcctttgag tgagctgata ccgctcgccg 2040
cagccgaacg accgagcgca gcgagtcagt gagcgaggaa gcggaagagc gcctgatgcg 2100
gtattttctc cttacgcatc tgtgcggtat ttcacaccgc atatatggtg cactctcagt 2160
acaatctgct ctgatgccgc atagttaagc cagtatacac tccgctatcg ctacgtgact 2220
gggtcatggc tgcgccccga cacccgccaa cacccgctga cgcgccctga cgggcttgtc 2280
tgctcccggc atccgcttac agacaagctg tgaccgtctc cgggagctgc atgtgtcaga 2340
ggttttcacc gtcatcaccg aaacgcgcga ggcagctgcg gtaaagctca tcagcgtggt 2400
cgtgaagcga ttcacagatg tctgcctgtt catccgcgtc cagctcgttg agtttctcca 2460
gaagcgttaa tgtctggctt ctgataaagc gggccatgtt aagggcggtt ttttcctgtt 2520
tggtcactga tgcctccgtg taagggggat ttctgttcat gggggtaatg ataccgatga 2580
aacgagagag gatgctcacg atacgggtta ctgatgatga acatgcccgg ttactggaac 2640
gttgtgaggg taaacaactg gcggtatgga tgcggcggga ccagagaaaa atcactcagg 2700
gtcaatgcca gcgcttcgtt aatacagatg taggtgttcc acagggtagc cagcagcatc 2760
ctgcgatgca gatccggaac ataatggtgc agggcgctga cttccgcgtt tccagacttt 2820
acgaaacacg gaaaccgaag accattcatg ttgttgctca ggtcgcagac gttttgcagc 2880
agcagtcgct tcacgttcgc tcgcgtatcg gtgattcatt ctgctaacca gtaaggcaac 2940
cccgccagcc tagccgggtc ctcaacgaca ggagcacgat catgctagtc atgccccgcg 3000
cccaccggaa ggagctgact gggttgaagg ctctcaaggg catcggtcga gatcccggtg 3060
cctaatgagt gagctaactt acattaattg cgttgcgctc actgcccgct ttccagtcgg 3120
gaaacctgtc gtgccagctg cattaatgaa tcggccaacg cgcggggaga ggcggtttgc 3180
gtattgggcg ccagggtggt ttttcttttc accagtgaga cgggcaacag ctgattgccc 3240
ttcaccgcct ggccctgaga gagttgcagc aagcggtcca cgctggtttg ccccagcagg 3300
cgaaaatcct gtttgatggt ggttaacggc gggatataac atgagctgtc ttcggtatcg 3360
tcgtatccca ctaccgagat gtccgcacca acgcgcagcc cggactcggt aatggcgcgc 3420
attgcgccca gcgccatctg atcgttggca accagcatcg cagtgggaac gatgccctca 3480
ttcagcattt gcatggtttg ttgaaaaccg gacatggcac tccagtcgcc ttcccgttcc 3540
gctatcggct gaatttgatt gcgagtgaga tatttatgcc agccagccag acgcagacgc 3600
gccgagacag aacttaatgg gcccgctaac agcgcgattt gctggtgacc caatgcgacc 3660
agatgctcca cgcccagtcg cgtaccgtct tcatgggaga aaataatact gttgatgggt 3720
gtctggtcag agacatcaag aaataacgcc ggaacattag tgcaggcagc ttccacagca 3780
atggcatcct ggtcatccag cggatagtta atgatcagcc cactgacgcg ttgcgcgaga 3840
agattgtgca ccgccgcttt acaggcttcg acgccgcttc gttctaccat cgacaccacc 3900
acgctggcac ccagttgatc ggcgcgagat ttaatcgccg cgacaatttg cgacggcgcg 3960
tgcagggcca gactggaggt ggcaacgcca atcagcaacg actgtttgcc cgccagttgt 4020
tgtgccacgc ggttgggaat gtaattcagc tccgccatcg ccgcttccac tttttcccgc 4080
gttttcgcag aaacgtggct ggcctggttc accacgcggg aaacggtctg ataagagaca 4140
ccggcatact ctgcgacatc gtataacgtt actggtttca cattcaccac cctgaattga 4200
ctctcttccg ggcgctatca tgccataccg cgaaaggttt tgcgccattc gatggtgtcc 4260
gggatctcga cgctctccct tatgcgactc ctgcattagg aagcagccca gtagtaggtt 4320
gaggccgttg agcaccgccg ccgcaaggaa tggtgcatgc aaggagatgg cgcccaacag 4380
tcccccggcc acggggcctg ccaccatacc cacgccgaaa caagcgctca tgagcccgaa 4440
gtggcgagcc cgatcttccc catcggtgat gtcggcgata taggcgccag caaccgcacc 4500
tgtggcgccg gtgatgccgg ccacgatgcg tccggcgtag aggatcgaga tcgatctcga 4560
tcccgcgaaa ttaatacgac tcactata 4588
<210> 4
<211> 3011
<212> DNA
<213> Artificial sequence
<400> 4
ggggaattgt gagcggataa caattcccct gtagaaataa ttttgtttaa ctttaataag 60
gagatatacc atgggcagca gccatactag cgcagcttaa ttaacctagg ctgctgccac 120
cgctgagcaa taactagcat aaccccttgg ggcctctaaa cgggtcttga ggggtttttt 180
gctgaaacct caggcatttg agaagcacac ggtcacactg cttccggtag tcaataaacc 240
ggtaaaccag caatagacat aagcggctat ttaacgaccc tgccctgaac cgacgacaag 300
ctgacgaccg ggtctccgca agtggcactt ttcggggaaa tgtgcgcgga acccctattt 360
gtttattttt ctaaatacat tcaaatatgt atccgctcat gaattaattc ttagaaaaac 420
tcatcgagca tcaaatgaaa ctgcaattta ttcatatcag gattatcaat accatatttt 480
tgaaaaagcc gtttctgtaa tgaaggagaa aactcaccga ggcagttcca taggatggca 540
agatcctggt atcggtctgc gattccgact cgtccaacat caatacaacc tattaatttc 600
ccctcgtcaa aaataaggtt atcaagtgag aaatcaccat gagtgacgac tgaatccggt 660
gagaatggca aaagtttatg catttctttc cagacttgtt caacaggcca gccattacgc 720
tcgtcatcaa aatcactcgc atcaaccaaa ccgttattca ttcgtgattg cgcctgagcg 780
agacgaaata cgcggtcgct gttaaaagga caattacaaa caggaatcga atgcaaccgg 840
cgcaggaaca ctgccagcgc atcaacaata ttttcacctg aatcaggata ttcttctaat 900
acctggaatg ctgttttccc ggggatcgca gtggtgagta accatgcatc atcaggagta 960
cggataaaat gcttgatggt cggaagaggc ataaattccg tcagccagtt tagtctgacc 1020
atctcatctg taacatcatt ggcaacgcta cctttgccat gtttcagaaa caactctggc 1080
gcatcgggct tcccatacaa tcgatagatt gtcgcacctg attgcccgac attatcgcga 1140
gcccatttat acccatataa atcagcatcc atgttggaat ttaatcgcgg cctagagcaa 1200
gacgtttccc gttgaatatg gctcatactc ttcctttttc aatattattg aagcatttat 1260
cagggttatt gtctcatgag cggatacata tttgaatgta tttagaaaaa taaacaaata 1320
ggcatgcagc gctcttccgc ttcctcgctc actgactcgc tacgctcggt cgttcgactg 1380
cggcgagcgg tgtcagctca ctcaaaagcg gtaatacggt tatactgaaa gaacagattt 1440
tggtgagtgc ggtcctccaa cccacttacc ttggttcaaa gagttggtag ctcagcgaac 1500
cttgagaaaa ccaccgttgg tagcggtggt ttttctttat ttatgagatg atgaatcaat 1560
cggtctatca agtcaacgaa cagctattcc gttactctag atttcagtgc aatttatctc 1620
ttcaaatgta gcacctgaag tcagccccat acgatataag ttgtaattct catgttagtc 1680
atgccccgcg cccaccggaa ggagctgact gggttgaagg ctctcaaggg catcggtcga 1740
gatcccggtg cctaatgagt gagctaactt acattaattg cgttgcgctc actgcccgct 1800
ttccagtcgg gaaacctgtc gtgccagctg cattaatgaa tcggccaacg cgcggggaga 1860
ggcggtttgc gtattgggcg ccagggtggt ttttcttttc accagtgaga cgggcaacag 1920
ctgattgccc ttcaccgcct ggccctgaga gagttgcagc aagcggtcca cgctggtttg 1980
ccccagcagg cgaaaatcct gtttgatggt ggttaacggc gggatataac atgagctgtc 2040
ttcggtatcg tcgtatccca ctaccgagat gtccgcacca acgcgcagcc cggactcggt 2100
aatggcgcgc attgcgccca gcgccatctg atcgttggca accagcatcg cagtgggaac 2160
gatgccctca ttcagcattt gcatggtttg ttgaaaaccg gacatggcac tccagtcgcc 2220
ttcccgttcc gctatcggct gaatttgatt gcgagtgaga tatttatgcc agccagccag 2280
acgcagacgc gccgagacag aacttaatgg gcccgctaac agcgcgattt gctggtgacc 2340
caatgcgacc agatgctcca cgcccagtcg cgtaccgtct tcatgggaga aaataatact 2400
gttgatgggt gtctggtcag agacatcaag aaataacgcc ggaacattag tgcaggcagc 2460
ttccacagca atggcatcct ggtcatccag cggatagtta atgatcagcc cactgacgcg 2520
ttgcgcgaga agattgtgca ccgccgcttt acaggcttcg acgccgcttc gttctaccat 2580
cgacaccacc acgctggcac ccagttgatc ggcgcgagat ttaatcgccg cgacaatttg 2640
cgacggcgcg tgcagggcca gactggaggt ggcaacgcca atcagcaacg actgtttgcc 2700
cgccagttgt tgtgccacgc ggttgggaat gtaattcagc tccgccatcg ccgcttccac 2760
tttttcccgc gttttcgcag aaacgtggct ggcctggttc accacgcggg aaacggtctg 2820
ataagagaca ccggcatact ctgcgacatc gtataacgtt actggtttca cattcaccac 2880
cctgaattga ctctcttccg ggcgctatca tgccataccg cgaaaggttt tgcgccattc 2940
gatggtgtcc gggatctcga cgctctccct tatgcgactc ctgcattagg aaattaatac 3000
gactcactat a 3011
<210> 5
<211> 1563
<212> DNA
<213> Serratia plymuthica AS9
<400> 5
atgaaaccag aagactttcg tgccgacagc aaacgcccgt tcaccggcgc cgagtacctg 60
aaaagcctgc aggatggccg cgaaatctat atttacggcg agcgggtgaa ggacgtcacc 120
acccacccgg cgttccgcaa tgcggcggct tcggtcggcc aattgtacga cgcgctgcac 180
gatccggtca gccaggatcg cctgtgctgg aataccgaca ccggcaacgg cggctacacc 240
cacaagttct tccgctacgc tcgcagcccg gaagaaatgc gccaacagcg tgacgccatc 300
gccgactggt cgcgccagac ctacggctgg atggggcgca ccccggacta caaggcggcc 360
ttcggctgcg ctttgggggc ctatccggag ttttacgggc agttcgccga taatgcccgc 420
cattggtaca aacgcattca ggaaaccggt ctgtacttta accacgccat cgtcaatccg 480
ccgattgacc gccacaaacc ggtcaacgaa gtgaaagacg tttacatcca ggtggagaaa 540
gagaccgacg ccggcattat cgtcagcggc gccaaggtgg tggcgaccaa ctcggcgctg 600
acccactaca actttatcgg cttcggctcc gcccaggtga tgggcgataa cccggatttt 660
gcgctgatgt ttgtggcgcc gatggacgcc gaaggggtga agcttatctc ccgcgcctcc 720
tatgagctgg tggccggcgc gaccggatcg ccgttcgatt acccgctctc gagccgtttt 780
gacgagaacg atgcaatcct gattatggat cacgtgctga tcccctggga aaacgtgctg 840
atctaccgcg atttcgatcg ttgtcgccgt tggagcaccc agggcggctt cgcccggttg 900
ttcccgctgc aggcctgcgt gcgtttggcg gtgaagatgg actttatcac cgcgctgctg 960
caaaagagcc tgtcctgcac cggcgtgctg gagttccgcg gcgtgcaggc cgatctcggc 1020
gaagtggtgg cctggcgcaa cctgttctgg tcgctgagcg atgcgatgtg cgcggagtcc 1080
acaaaatggg aaaacggcgc ctatctgccg gattccgccg cgttgcagac ctaccgcgtg 1140
atggcgccga tggcctacac caaggtgaag cacatcatcg aaaagaacgt caccagcggg 1200
ctgatttatc tgccgtccag cgtgcgcgac atgaacaacc cggagatcga caaatacctg 1260
gctcgctacg tgcgcggatc cgatgggatg gatcacgttg agcgcatcaa gatcctcaag 1320
ctgatgtggg atgcgatcgg cagcgagttc ggcggccgtc atgagctgta tgagatcaac 1380
tatgccggca gtcaggatga gatccgcctg cagtgtctgc gccacgcgca gggatccggc 1440
accatggatc agatgatgca gatggtcgac aagtgcctgt ccgattacga tcagcacggc 1500
tggaaagtgc cgcacctgca taacaatggc gatattaatc agctggataa tctgctgaag 1560
taa 1563
<210> 6
<211> 1515
<212> DNA
<213> Deinococcus radiodurans
<400> 6
atgaccaccg aattcaaggg ccagaccatt ccccccatgc acacgggcgg ccagggcgcc 60
gtcaccgggc agcgatttct cgaccgcctg cgtcagaacc cgccgacgct gtatatcgac 120
gggcagcggg tggccgaccc caccacccac cccagcacca gaaacatgtg ccagtcgctc 180
gcgggcctct acgacctgca atttcaggaa gacctgaaag aaacgctgac ctacgaggac 240
ggcggcaagc gctacgcccg ctcgttcatg gtgccgcgca ccaaagacga cctgcgcctg 300
attgccgagt cgcaccgcat tcgcgccaat tacggcctgg gctttctggg ccgtgcgccc 360
gactacatga acgccaacgt gatggcggcg ggcgccgggg ccgagtattt caacgggtgc 420
agcgcggcgg tgcccggcga ccccaagcgc gattttgccg ccaacatgcg ccgctattac 480
gagtatgtgc agggcaacga cctgtgcctg acccacgcgc tgaccaaccc gcaggtcaac 540
cgcagcaaga tggcctccga actgcccgac ccgtacatcg cgctgggcat cgtggaggaa 600
acggacgaag gcgtgatcgt gcgcggcgcc cgcatgatgg cgacgctgcc gattgccgac 660
gaaatcctga ttttccccag tacggtgctc aaggaaaacg ccgacaagag ccgctacgcg 720
atgggtttcg ggattcctac caatacgccc ggcctcagct ttcagtgccg cgagccgatt 780
gacgtgggcc gcgaccccga agaccatccc ctcagcagcc gcttcgacga acaggacgcc 840
ttcgtcatct tcgacgacgt gctggtgccc tgggagcgca ttttcttgct ctacgacgtg 900
gaactggcga acaaggccta cgccggcacc gacgccgtac tgcacatggc ctatcaggtg 960
gtcaacctca aaatcgccaa gaccgaggcg ttcctgggca ccgcgcagag catcgtgaac 1020
gccatcggca gcggcgggtt tcagcatgtg caggccaaaa tcgccgaaat catcatcatg 1080
ctcgaaatca tgaaggcgct ggaagtcgcc gcccgcgagc aggccgagcc gaacgactac 1140
ggtgtgatga cccccgcccg tgccccgctg gacgccgccc gcaactacta ccccgccaac 1200
cacgcccggc tgcccgagct gctgcaacta ctgggggcgt ccggaatcat catgatgccg 1260
agcaaggccg accgcgaagg cccgctgggg ccgcaaatcg ccaagtacct gcaaaccggc 1320
aacgccaacg ccgacgaacg cctgcgcctc tttcgcctcg cctgggacat gtccatgagc 1380
agtttcgcgg gccgccagga actctacgag cgctacttct tcggcgaccc ggtgcggatg 1440
cactcggcgc tgtacgaggt ctacgacagc agcgaagcgg tggcgcggat tggggagttt 1500
ttgcagcgga agtga 1515
<210> 7
<211> 516
<212> DNA
<213> Serratiamarcescens
<400> 7
atgtctcagg aaaatgaaca gcggctgcgc tttcgcgacg cgatggccag cctgtcggcg 60
gcggtgaata tcgtcaccac cgacggcccg gcggggcgct gcggcatcac cgccacggcg 120
gtgtgctcgg tgaccgatac gccgccgacg ctgctggtgt gcatcaaccg caacagcgcg 180
atgaacccgg tatttcagga aaatcgcagg ctgtgcgtca acgtgctcaa ccacgaacag 240
gaactgatgg cgcgccactt cgccggcatg accggcgtca gcatggaaga tcgtttcagg 300
ctggaagagt ggcagcttgg cgcgttgggg cagcctgtat tgcgcaatac cctggccagc 360
ctggaagggg agatcgagca gatccagagc atcggcactc accagatgta cctggtgcag 420
atcaagcaga tcgcgctgag cgaagccggc aacggcctga tctacttcaa gcgcaacttc 480
cattcggtga tccaccagat ggcggtgccg gcctga 516
<210> 8
<211> 1563
<212> DNA
<213> Klebsiellaoxytoca
<400> 8
atgaaacctg aaaatttccg tgcagacgct aaacgcccgt taactggcga agagtacctg 60
aagagcctgc aggacggccg cgaaatctat atctacggcg aacgcgttaa ggacgtgacc 120
acccacccgg cgttccgcaa cgccgccgcc tccgtcgccc agatgtacga tgcgctgcat 180
aaacccgagc tgcaggatac cctgtgctgg ggcaccgata ccggcagcgg cggctatacc 240
cacaagttct tccgcgtcgc gaaaagcgcc gacgatctgc gccagcagcg cgacgccatc 300
gctgaatggt cgcgcctgag ctacggctgg atgggccgta ccccggacta caaagccgca 360
ttcggctgcg cgctcggcgc aaacccggcg ttttatggtc agtttgaaca gaacgcccgt 420
aactggtaca cccgcatcca ggaaaccggc ctctacttta accacgccat cgtcaacccg 480
ccgatcgacc gccataaacc agccgacgaa gtgaaagacg tctatatcaa gctggagaaa 540
gagaccgatg ccgggatcat cgtcagcggc gcgaaagtgg tggccaccaa ctcggcgctg 600
acccactaca atatgattgg cttcggctcg gcgcaggtga tgggcgaaaa cccggacttc 660
gcgctgatgt ttgtcgcgcc gatggatgcc gaaggcgtta agcttatctc ccgcgcctcc 720
tatgaactgg tcgccggagc aaccggatcg ccgtacgact atccgctctc cagccgcttc 780
gacgaaaacg atgcgatcct ggtgatggat aatgtgctga tcccatggga aaacgtgctg 840
atctatcgcg acttcgatcg ctgccgccgc tggacgatgg aaggcggttt cgcccgcatg 900
tatccgctgc aggcctgcgt gcgtctggcc gtgaagctcg actttatcac cgccctgctc 960
aagcgctcgc tggagtgcac cggcaccctg gagttccgcg gcgtacaggc ggatctcggc 1020
gaagtggtag cctggcgcaa tatgttctgg gcgctgagcg actcgatgtg cgccgaagcc 1080
acgccgtggg ttaacggcgc gtatctgccg gatcacgccg cgctgcaaac ctatcgcgtg 1140
atggcgccga tggcctacgc caaaatcaaa aacattattg aacgcaacgt caccagcggc 1200
ctgatctatc tgccgtccag cgcccgcgat ctcaacaatc cgcagatcaa cgaatatctg 1260
gcgaaatacg tgcgcggatc gaacggcatg gatcacgtcg agcgtatcaa gatcctcaaa 1320
ttgatgtggg acgccatcgg cagcgagttt ggtgggcgtc acgaactgta cgaaatcaac 1380
tactcaggta gccaggatga aattcgcctg cagtgcctgc gtcaggcgca gagctccggc 1440
aacatggaca aaatgatggc gatggtggat cgctgcctgt ccgagtacga ccagaacggc 1500
tggacggtgc cgcatctgca caacaatacc gatatcaaca tgctggataa gctgctgaag 1560
taa 1563
<210> 9
<211> 2318
<212> DNA
<213> Neurospora crassa
<400> 9
ggggccgcca gactagcagg caaagctaga ggtaccttga tggatgcagc tctcgttgtg 60
atgggaggta agtaggagcg cgaggaaaag aggggctcaa gtgaatgaga gaagagaccc 120
gggctgattc agttccttgg tctttttttg aagatataaa tcatggacat ttcccgtctt 180
gtcctcatct actacatcac cactcttcac tcaacaacag acactctact ataaagacgt 240
tcctctcgtc tttcatccat ccactataac accaaacttt tctatcacat aaacaaaaca 300
accgacaaaa tggtacgttt agcgcgctcc gttgcttctt ctccctcttc cttcacttcg 360
gtccttccac agtgtttctc aaacatcatc acccccgaga gcgtccagcc ttcgacctag 420
tgtccagggc tactcctcga cgggacttca ccagtgtcgg cagcagcaac tccccgcaag 480
tgtacaattg ctaacaacat gacgcgaaca ggtcaaggtt cttgctgttc tctacgacgg 540
tggcaagcac ggcgaggagg taagatgaac attttccaca tccaacttac tccactctgt 600
catggagtgg ccatccactt tccttggcat atccgccaaa tgtctccatc accattgtcc 660
atgatcgatc aaaagcccag ccctatgagc tcaagagccc aaaaaaagaa gagcgctgag 720
aaagatgaga caacctgagc tacatctctc atgcgactga aagagacgga acggacacaa 780
atggcggggt agacatggct cgctcaaagg catcaccgca actgtttacc cgtcatgttg 840
aatgcttgag gtcacggacc gggtttcggg atccattcgg ggatgtgggg cgccaccccg 900
acctgctttg gcgtcgaacc cggcggttgg cttccggctt ggcatagcgt gggttgttgg 960
cttggctttt atggacatgg caatggagac attggatgac acgggaaata tgggagaaaa 1020
caccaagaag gcaatggcta acaattgtca actcatcagg ttcccgagct tctcggaacc 1080
atccagaacg agcttggtct ccgcaagtgg ctcgaggatc agggccacac cctcgtcacc 1140
acctgcgaca aggacggcga gaactctacc tttgacaagg agctcgagga tgccgagatc 1200
atcatcacca ctcccttcca ccccggctac ctcactgctg agcgtctcgc ccgcgccaag 1260
aagctcaagc ttgctgtcac tgccggtatc ggttccgacc acgtcgacct caatgccgcc 1320
aacaagacca acggcggtat caccgtcgcc gaggttaccg gctccaacgt cgtctccgtt 1380
gctgagcacg ttctcatgac catcctcgtc ctcgtccgca acttcgttcc cgcccacgag 1440
cagatccagg agggccgctg ggacgtcgcc gaggccgcca agaacgagtt cgatctcgag 1500
ggcaaggttg tcggtaccgt cggtgtcggc cgtatcggtg agcgtgtcct ccgccgtctc 1560
aagcccttcg actgcaagga gctcctctac tacgactacc agcccctttc cgccgagaag 1620
gaggctgaga tcggctgccg ccgcgtcgcc gacctcgagg agatgctcgc ccagtgcgac 1680
gtcgtcacca tcaactgccc ccttcacgag aagacccagg gtctcttcaa caaggagctc 1740
atctccaaga tgaagaaggg ctcgtggctc gtcaacactg cccgtggcgc catcgtcgtc 1800
aaggaggacg tcgccgaggc cctcaagtcc ggccacctcc gcggctacgg cggtgacgtc 1860
tggttccccc agcccgcccc tcaggaccac cccctccgct acgccaagaa ccccttcggc 1920
ggcggcaacg ccatggtccc ccacatgtcc ggcacctcgc tcgacgccca gaagcgttac 1980
gctgctggca ccaaggccat catcgagagc tacctctccg gcaagcacga ctacaggcct 2040
gaggacctca tcgtctacgg cggtgactac gccaccaagt cttatggtga gcgcgagcgc 2100
gccaaggctg ctgctgctgc tgccaagtct gcttaaggag ggcatcagca agcagcaagc 2160
acttcttttt tttttctttt gcatttttgc atgattaaat agcgattttt gggggctttc 2220
ttttgggata tatatctggt tttgggtatg aagcaataaa gatcgtggaa tatcaatgat 2280
catgacctga cctaacaata atcgttccca ttgtgatg 2318
<210> 10
<211> 2135
<212> DNA
<213> Tribolium castaneum
<400> 10
aacgaaggtg tttttttcca ccatgactac tgccggaaag gtaatttttt cataattatg 60
ttcagattaa ccgttttgat ccctcagcct ataacttgca aagctgcagt tgcttggggg 120
cccccgagaa gacctaaaac tcgaaaccat cgaagtggcc cctcctaaga gtcacgaagt 180
ccgaattaaa attatttaca gtgcagtttg tcatacagat gcttacaccc tcagtggcca 240
agatcccgag ggattattcc ctgtcatctt aggccacgag ggcggtggaa ttgtggaaag 300
tgtgggagag ggagttacaa acgttcagcc aggtatttta caattgctca ttgatttcta 360
attaattgaa atgaaaaggt gaccatgtca ttccgttata cattccccaa tgtggcgaat 420
gcaaattttg caagtcgccc aaaaccaact tgtgccaaaa aatcagggtg acacagggac 480
aaggggtgat gcccgatggt accagtagat tcacgtgcaa tggtaaaaaa gtgtaccatt 540
ttatgggttg ctccaccttt agcgagtata ccgttgttgc cgacatctca gttgctaaag 600
taagtgataa caaaggtgaa ggtcaccagt attaatcatt gttatcaagg tgaatcccaa 660
tgccgaactt gacaaaattt gtctgttggg ttgtggcgtc ccaactggat atggagcagc 720
cttaaatacc gccaaagttg aaaaagggag cacctgcgcg gtttggggct tgggggctgt 780
gggccttgcc gtcgggattg gatgcaaggc tgcgggggcg tccaaaatca tcggagtcga 840
tgtcaatcca gacaaattca aaattggtaa aaacacaatt ttcagtaaaa cctctacaat 900
ccgaacctaa ttttattgac attaagtgta taaatagtac ctataaaact atgccgggtg 960
tttcagtttg gtattgtaac ttatttattt aaaataatta taacaaatca cataccgggt 1020
gatgagtttc acataccaca tatatcgtta tatgtttatt aacgtctatc agtaggatat 1080
ttagttttca agtgtttcat cgataatgca tggaatacag gtacgatcaa tttgaaatca 1140
tttctttttt atttgttgtt tattaccgtt accaactgac acaaaattcc gtagacattt 1200
tttttattat taaaatgaga aaaaaaagag ggtgcaaatt gtaacagata gcataaaata 1260
gtcgttttat gagggttata aaacttgttg tttttgagat tattttttac tacttaaatt 1320
ttaaaatata aatttccctt ctatgtagcc taccgtgatt ttgataattt gacatataat 1380
tttctagcca taaatttaca ccaattgttt caaaaaactg atatccgtcg aagttacttg 1440
agaatgctac ttctttatat catcaatttc agtactgttt tcaaactttt attacttttt 1500
gagatacgct atacaaatct agcaattttg catctcgtag tatttagttc aaatatcgca 1560
ttatttattg ttgcaatgaa ttcgtagcca aagacttcgg cttcaccgac ttcgtgaacc 1620
ccaaagacta cgaaaagccg attcaggaag tgttggctga aaagacagac ggtggtctcg 1680
acttcacttt cgaatgtgtt gggaatgttc agactatgag agcagcgttg gagtcatgtc 1740
acaagggttg gggggtctcc acaattgtgg gggttgctgg tgcagggcaa gaaataagca 1800
ctagaccttt ccagctcgta acagggaggg tgtggaaagg aacggctttt ggagggtgga 1860
aaagccgcga tagtgttccg aaactagttg aggaatattg ccataaacct caaatcatgc 1920
cgcttgacaa gtttatcacg cataatttga aatttggtca aattaacgaa gcgttccatc 1980
ttatgcacaa aggggaaagg taagttcttt tattgtgtga tacttgactt attatttttt 2040
tagtattcga actgttgttg caattgctgg aagtgcgtaa agtaaacaca ttgtcaatac 2100
gaaaatattt taattaataa aaatggaaaa attaa 2135
<210> 11
<211> 1136
<212> DNA
<213> Mycobacterium intracellulare
<400> 11
atggcgaaat gcgtgatggt gctgtatccg gatccggtgg atggctatcc gccggcgtat 60
gcgcgcgata gcattccgac cattcatggc tatccacccc gagcaccatt gattttaccc 120
cgggcgaact gctgggctgc gtgagcggcg cgctgggcct gcgcaaattt tttgaagatg 180
cgggccatga actggtggtg acgagcgata aagatggccc ggatagcgaa tttgaacgcg 240
cgctgccgga tgcggaaatt gtgattagtc agccgttttg gccggcgtat ctgaccaaag 300
aacgcattgc gaaagcgccg aaactgaaac tggcgctgac cgcgggcatt ggcagcgatc 360
atgtggatct ggatgcggcg aaagaacgcg gcattaccgt ggcggaagtg acctatagca 420
acagcattag cgtggcggaa catgcggtga tgcagattct ggcgctggtg cgcaactttg 480
tgccgagcca tcgctgggcg gtggagggcg gctggaacat tgcggattgc gtggaacgcg 540
cgtatgatct ggaaggcatg gatgtgggcg tgattgcggc gggccgcatt ggccgtgccg 600
tgctgcgccg tctggcgcca tttgatgtga acctgcatta taccgatacc cgccgcctgg 660
cgccggaggt ggaaaaagaa ctgaacgtga cctttcatcc gaccgtgcaa gaactggtgc 720
gcgcggtgga tgtggtgagc attcatagcc cgctgtatgc ggatacccgc gcgatgtttg 780
atgaaaaact gattagcacc atgcgccgcg gcagctatat tgtgaacacc gcgcgcgcgg 840
aagaaaccgt gccggaagcg attgcggatg cgctgcgcag cggtcagctg ggcggctatg 900
cgggcgatgt gtggtatccg cagccgccac cggttgcgca tccgtggcgc accatgccga 960
acaacgcgat gaccccgcat gttagcggca ccaccctgag cgcgcaagcg cgctatgcgg 1020
cgggcacccg cgaaattctg gaaagctggt ttgcgggcac cccgattcgc ccggaatatc 1080
tgattgtgga aggcggccgc ctggcgggca ccggcgcgct gagctatcag aaataa 1136
Claims (9)
1. A preparation method of a strain for improving the yield of caffeic acid is characterized by comprising the following specific preparation steps:
s1, construction of plasmid pHG04
Using plasmid as a template, carrying out gene amplification by polymerase chain reaction, digesting by DpnI (methylated template digestive enzyme) to obtain a linearized vector, marking the linearized vector as a linearized vector 1, synthesizing a monooxygenase gene HpaBC through a whole gene, marking the monooxygenase gene HpaBC as a gene fragment 1, connecting the gene fragment 1 at the enzyme cutting site of the linearized vector 1 by a connecting kit to obtain a circular plasmid, and marking the circular plasmid as pHG 04;
s2 construction of recombinant plasmid pHG05
Taking the circular plasmid pHG04 constructed in the step S1 as a template, performing gene amplification through polymerase chain reaction, digesting by DpnI to obtain a linearized vector, marking the linearized vector as a linearized vector 2, synthesizing dehydrogenase gene FDH through a whole gene, marking the dehydrogenase gene FDH as a gene fragment 2, connecting the enzyme cutting sites of the linearized vector 2 with the gene fragment 2 through a connecting kit to obtain a recombinant circular plasmid, and marking the recombinant circular plasmid as pHG 05;
s3 construction of recombinant Strain sHG05
Adding 1 μ l of the circular recombinant plasmid pHG05 constructed in the step S2 into 100 μ l of BL21 (DE 3) competent cells, carrying out ice bath for 30min, placing in a water bath for hot compress for heat shock treatment, immediately carrying out ice bath for 2min, adding 1ml of LB liquid culture medium, placing at 37 ℃ for culture for 1h to recover thalli, finally uniformly coating the cells containing the circular recombinant plasmid pHG05 on an agarose culture dish, and picking a single colony to obtain a recombinant strain, wherein the recombinant strain is marked as sHG 05; the formula of the LB liquid culture medium: in each liter of culture medium, 10g of tryptone, 5g of yeast extract, 10g of NaCl and the balance of water, wherein the pH is controlled to be 5.5-6.5;
s4 cell culture
And (4) adding glycerol into the recombinant strain sHG05 constructed in the step S3 to enable the final concentration of the recombinant strain sHG05 to be 15-40%, and placing the recombinant strain in a refrigerator at the temperature of-80 ℃ for preservation.
2. The method of claim 1, wherein the water bath temperature is 42 ℃ and the hot compress time is 60S in step S3.
3. The method of claim 1, wherein the plasmid in step S1 is one of plasmid pADuet, plasmid pCDuet, plasmid pEDuet or plasmid pRDuet; wherein the nucleotide sequence of the plasmid pADuet is shown as SEQ ID NO.1, the nucleotide sequence of the plasmid pCDuet is shown as SEQ ID NO.2, the nucleotide sequence of the plasmid pEDuet is shown as SEQ ID NO.3, and the nucleotide sequence of the plasmid pRDuet is shown as SEQ ID NO. 4.
4. The method for preparing a strain capable of improving caffeic acid production according to claim 1, wherein the nucleotide sequence of the monooxygenase gene HpaBC of step S1 is any one of the sequences shown in SEQ ID No. 5-SEQ ID No. 8.
5. The method for preparing a strain capable of improving caffeic acid production according to claim 1, wherein the nucleotide sequence of the dehydrogenase gene FDH in step S2 is any one of the sequences shown in SEQ ID No. 9-SEQ ID No. 11.
6. A catalytic process for the preparation of caffeic acid using the strain prepared according to claim 1, characterized by the following specific catalytic steps:
s. 1, fermentation culture
Activating the recombinant strain sHG05 preserved in the glycerol into an LB liquid culture medium according to the inoculum size of 1% in volume ratio, carrying out overnight culture at 37 ℃, and transferring the overnight-cultured recombinant strain sHG05 into 50ml of TB fermentation culture medium according to the inoculum size of 1% in volume ratio; the formula of the LB liquid culture medium: in each liter of culture medium, 10g of tryptone, 5g of yeast extract, 10g of NaCl and the balance of water, wherein the pH is controlled to be 5.5-6.5; the formula of the TB fermentation medium comprises the following components: in each liter of culture medium, 12g of tryptone, 24g of yeast extract, 4ml of glycerol and the balance of water, wherein the pH is controlled to be 5.5-6.5;
s. 2, inducible expression
When the OD600 of the cell reaches 0.2-1.2, adding IPTG (isopropyl-beta-D-thiogalactoside) with the final concentration of 0.1-0.3 mM, and carrying out induced expression for 12-24 h at 20-40 ℃;
s. 3, bioconversion
After the induction expression is finished, centrifuging for 3-15 min under the conditions that the temperature is 4 ℃ and the rotating speed is 2000-8000 rpm, taking cell sediment, placing the cell sediment into 10ml of phosphate buffer solution, adding 4-coumaric acid and ammonium formate, then carrying out biocatalytic reaction, and then measuring the content of caffeic acid by adopting high performance liquid chromatography.
7. The catalytic process of claim 6, wherein the cell biomass in step S.s3 is 8-18 g/m3The concentration of the 4-coumaric acid is 1-10 g/L, and the concentration of the ammonium formate is 1-5 g/L.
8. The catalytic method of claim 6, wherein the biocatalytic reaction temperature in step S.s3 is 25-40 ℃ and the reaction time is 2-6 hours.
9. The catalytic process for the preparation of caffeic acid of claim 6, wherein the formulation of phosphate buffer in step s.s 3: mixing solution A and solution B according to the volume ratio of 39:61, and adjusting the pH value to 7.0 to obtain a phosphate buffer solution, wherein the solution A is NaH with the concentration of 0.2mM2PO4·2H2O solution, wherein the B solution is Na with the concentration of 0.2mM2HPO4·12H2And (4) O solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210133120.3A CN114350697A (en) | 2022-02-14 | 2022-02-14 | Preparation method and catalytic application of strain for improving caffeic acid yield |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210133120.3A CN114350697A (en) | 2022-02-14 | 2022-02-14 | Preparation method and catalytic application of strain for improving caffeic acid yield |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114350697A true CN114350697A (en) | 2022-04-15 |
Family
ID=81093275
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210133120.3A Pending CN114350697A (en) | 2022-02-14 | 2022-02-14 | Preparation method and catalytic application of strain for improving caffeic acid yield |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114350697A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130143507A (en) * | 2012-06-21 | 2013-12-31 | 한국생명공학연구원 | Method of production of 4-coumaric acid, caffeic acid and ferulic acid by artificial metabolism pathway in strain producing high tyrosine |
CN108699577A (en) * | 2015-10-02 | 2018-10-23 | 西姆莱斯有限公司 | Biological technique method for providing 3,4- dihydroxy benzenes based compound and its methylated variant |
CN108949652A (en) * | 2018-04-19 | 2018-12-07 | 江南大学 | A kind of engineering bacteria and its caffeinic application of production |
CN110938606A (en) * | 2018-12-24 | 2020-03-31 | 中国科学院微生物研究所 | HpaBC gene, mutant and application thereof |
CN111849794A (en) * | 2020-06-29 | 2020-10-30 | 扬州大学 | Saccharomyces cerevisiae recombinant strain and construction method and application thereof |
-
2022
- 2022-02-14 CN CN202210133120.3A patent/CN114350697A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130143507A (en) * | 2012-06-21 | 2013-12-31 | 한국생명공학연구원 | Method of production of 4-coumaric acid, caffeic acid and ferulic acid by artificial metabolism pathway in strain producing high tyrosine |
CN108699577A (en) * | 2015-10-02 | 2018-10-23 | 西姆莱斯有限公司 | Biological technique method for providing 3,4- dihydroxy benzenes based compound and its methylated variant |
CN108949652A (en) * | 2018-04-19 | 2018-12-07 | 江南大学 | A kind of engineering bacteria and its caffeinic application of production |
CN110938606A (en) * | 2018-12-24 | 2020-03-31 | 中国科学院微生物研究所 | HpaBC gene, mutant and application thereof |
CN111849794A (en) * | 2020-06-29 | 2020-10-30 | 扬州大学 | Saccharomyces cerevisiae recombinant strain and construction method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107058358B (en) | Construction of double-spacer sequence recognition and cleavage CRISPR-Cas9 vector and application of vector in Verticillium daemonii | |
CN108624546B (en) | recombinant bacillus amyloliquefaciens and construction method and application thereof | |
CN109825522B (en) | Traceless double-target-point genome editing system | |
AU2022201838A1 (en) | Bacteria engineered to reduce hyperphenylalaninemia | |
CN110129354B (en) | N-acetylneuraminic acid specific biosensor and application thereof | |
JPH06339373A (en) | Preparation of thermally stable dna polymerase | |
CN109609579B (en) | Genetically engineered bacterium for producing beta-carotene and construction method thereof | |
CN112175891B (en) | Genetically engineered bacterium for producing trehalose and construction method and application thereof | |
CN113293120B (en) | Construction and application of recombinant escherichia coli producing adipic acid | |
CN114350697A (en) | Preparation method and catalytic application of strain for improving caffeic acid yield | |
CN114921439A (en) | CRISPR-Cas effector protein, and gene editing system and application thereof | |
CN116732147A (en) | High-specificity primer for isothermal amplification and application thereof | |
CN112522370B (en) | Nucleic acid hand-free reagent and application and use method thereof in nucleic acid detection | |
WO2023107464A2 (en) | Methods and compositions for genetically modifying human gut microbes | |
WO2004033633A2 (en) | Compatible host/vector systems for expression of dna | |
CN100422308C (en) | High fermentation rate type recombinant alcoholic fermentation yeast, the building and expression carrier thereof | |
CN114672470A (en) | Cytochrome P450BM3 mutant enzyme and application thereof in synthesizing P-hydroxybiphenyl through biological catalysis | |
CN114836555A (en) | Bridged primer probe combination, kit and detection method for detecting helicobacter pylori point mutation by fluorescent quantitative PCR | |
KR101039521B1 (en) | PCR composition comprising ethylene glycol tetraacetic acid as a chelating agent for reducing or preventing PCR inhibition and non-specific amplification caused by metal ion | |
CN112725211A (en) | Recombinant pichia pastoris, culture method and application | |
CN112877408A (en) | Method and kit for detecting helicobacter pylori virulence gene type by using loop-mediated isothermal amplification method | |
CN113862299A (en) | Vector for homologous recombination and application thereof | |
CN111979134A (en) | Construction and application of recombinant saccharomyces cerevisiae for synthesizing carminic acid | |
CN115873811B (en) | PBCV-1 ligase mutant, expression and purification method and application | |
CN109371052B (en) | Method for improving electrotransformation efficiency of high GC content cuprophaga bacteria |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20220415 |